Conjectural Existence of the Categorial Complex Branes for Generalized Calabi-Yau.

Geometric Langlands Duality can be formulated as follows: Let C be a Riemann surface (compact, without boundary), G be a compact reductive Lie group, GC be its complexification, and Mflat(G, C) be the moduli space of stable flat GC-connections on C. The Langlands dual of G is another compact reductive Lie group LG defined by the condition that its weight and coweight lattices are exchanged relative to G. Let Bun(LG, C) be the moduli stack of holomorphic LG-bundles on C. One of the statements of Geometric Langlands Duality is that the derived category of coherent sheaves on Mflat(G, C) is equivalent to the derived category of D-modules over Bun(LG, C).

Mflat(G, C) is mirror to another moduli space which, roughly speaking, can be described as the cotangent bundle to Bun(LG, C). The category of A-branes on T Bun(LG, C) (with the canonical symplectic form) is equivalent to the category of B-branes on a noncommutative deformation of T Bun(LG, C). The latter is the same as the category of (analytic) D-modules on Bun(LG, C).

So, what exactly is, the relationship between A-branes and noncommutative B-branes. This relationship arises whenever the target space X is the total space of the cotangent bundle to a complex manifold Y. It is understood that the  symplectic form ω is proportional to the canonical symplectic form on T Y. With the B-field vanishing, and Y as a complex, we regard ω as the real part of a holomorphic symplectic form Ω. If qi are holomorphic coordinates on Y, and pi are dual coordinates on the fibers of T Y,  Ω can be written as

Ω = 1/ħdpi ∧ dqi = dΘ

Since ω (as well as Ω) is exact, the closed A-model of X is rather trivial: there are no nontrivial instantons, and the quantum cohomology ring is isomorphic to the classical one.

We would like to understand the category of A-branes on X = T Y. The key observation is that ∃ a natural coisotropic A-brane on X well-defined up to tensoring with a flat line bundle on X. Its curvature 2-form is exact and given by

F = Im Ω

If we denote by I the natural almost complex structure on X coming from the complex structure on Y , we have F = ωI, and therefore the endomorphism ω−1F = I squares to −1. Therefore any unitary connection on a trivial line bundle over X whose curvature is F defines a coisotropic A-brane. 

Now, what about the endomorphisms of the canonical coisotropic A-brane, i.e., the algebra of BRST-closed open string vertex operators? This is easy if Y is an affine space. If one covers Y with charts each of which is an open subset of Cn, and then argues that the computation can be performed locally on each chart and the results “glued together”, one gets closer to the fact that the algebra in question is the cohomology of a certain sheaf of algebras, whose local structure is the same as for Y = Cn. In general, the path integral defining the correlators of vertex operators does not have any locality properties in the target space. Each term in perturbation theory depends only on the infinitesimal neighbourhood of a point. This shows that the algebra of open-string vertex operators, regarded as a formal power series in ħ, is the cohomology of a sheaf of algebras, which is locally isomorphic to a similar sheaf for X = Cn × Cn.

Let us apply these observations to the canonical coisotropic A-brane on X = T Y. Locally, we can identify Y with a region in Cn by means of holomorphic coordinate functions q1, . . . , qn. Up to BRST-exact terms, the action of the A-model on a disc Σ 􏰠takes the form

S = 1/ħ ∫∂Σ φ (pidqi)

where φ is a map from Σ to X. This action is identical to the action of a particle on Y with zero Hamiltonian, except that qi are holomorphic coordinates on Y rather than ordinary coordinates. The BRST-invariant open-string vertex operators can be taken to be holomorphic functions of p, q. Therefore quantization is locally straightforward and gives a noncommutative deformation of the algebra of holomorphic functions on T Y corresponding to a holomorphic Poisson bivector

P = ħ∂/∂pi ∧ ∂/∂qi

One can write an explicit formula for the deformed product:

􏰋(f ⋆ g)(p, q) = exp(􏰋ħ/2(∂2/∂pi∂q̃i  −  ∂2/∂qi∂p̃i )) f(p, q) g (p̃, q̃)|p̃ = p, q̃ = q

This product is known as the Moyal-Wigner product, which is a formal power series in ħ that may have zero radius of convergence. To rectify the situation, one can restrict to functions which are polynomial in the fiber coordinates pi. Such locally-defined functions on T Y can be thought of as symbols of differential operators; the Moyal-Wigner product in this case reduces to the product of symbols and is a polynomial in ħ. Thus locally the sheaf of open-string vertex operators is modelled on the sheaf of holomorphic differential operators on Y (provided we restrict to operators polynomial in pi).

Locally, there is no difference between the sheaf of holomorphic differential operators D(Y ) and the sheaf of holomorphic differential operatorsD(Y, L) on a holomorphic line bundle L over Y. Thus the sheaf of open-string vertex operators could be any of the sheaves D(Y, L). Moreover, the classical problem is symmetric under pi → −pi combined with the orientation reversal of Σ; if we require that quantization preserve this symmetry, then the algebra of open-string vertex operators must be isomorphic to its opposite algebra. It is known that the opposite of the sheaf D(Y, L) is the sheaf D(Y, L−1 ⊗ KY), so symmetry under pi → −pi requires L to be a square root of the canonical line bundle KY. It does not matter which square root one takes, since they all differ by flat line bundles on Y, and tensoring L by a flat line bundle does not affect the sheaf D(Y, L). The conclusion is that the sheaf of open-string vertex operators for the canonical coisotropic A-brane α on X = T Y is isomorphic to the sheaf of noncommutative algebras D(Y, K1/2). One can use this fact to associate Y to any A-brane β on X a twisted D-module, i.e., a sheaf of modules over D(Y, K1/2). Consider the A-model with target X on a strip Σ = I × R, where I is a unit interval, and impose boundary conditions corresponding to branes α and β on the two boundaries of Σ. Upon quantization of this model, one gets a sheaf on vector spaces on Y which is a module over the sheaf of open-string vertex operators inserted at the α boundary. A simple example is to take β to be the zero section of T Y with a trivial line bundle. Then the corresponding sheaf is simply the sheaf of sections of KY1/2, with a tautological action of D(Y, KY1/2).

One can argue that the map from A-branes to (complexes of) D-modules can be extended to an equivalence of categories of A-branes on X and the derived category of D-modules on Y. The argument relies on the conjectural existence of the category of generalized complex branes for any generalized Calabi-Yau. One can regard the Geometric Langlands Duality as a nonabelian generalization. 

Geometry and Localization: An Unholy Alliance? Thought of the Day 95.0

SYM5

There are many misleading metaphors obtained from naively identifying geometry with localization. One which is very close to that of String Theory is the idea that one can embed a lower dimensional Quantum Field Theory (QFT) into a higher dimensional one. This is not possible, but what one can do is restrict a QFT on a spacetime manifold to a submanifold. However if the submanifold contains the time axis (a ”brane”), the restricted theory has too many degrees of freedom in order to merit the name ”physical”, namely it contains as many as the unrestricted; the naive idea that by using a subspace one only gets a fraction of phase space degrees of freedom is a delusion, this can only happen if the subspace does not contain a timelike line as for a null-surface (holographic projection onto a horizon).

The geometric picture of a string in terms of a multi-component conformal field theory is that of an embedding of an n-component chiral theory into its n-dimensional component space (referred to as a target space), which is certainly a string. But this is not what modular localization reveals, rather those oscillatory degrees of freedom of the multicomponent chiral current go into an infinite dimensional Hilbert space over one localization point and do not arrange themselves according according to the geometric source-target idea. A theory of this kind is of course consistent but String Theory is certainly a very misleading terminology for this state of affairs. Any attempt to imitate Feynman rules by replacing word lines by word sheets (of strings) may produce prescriptions for cooking up some mathematically interesting functions, but those results can not be brought into the only form which counts in a quantum theory, namely a perturbative approach in terms of operators and states.

String Theory is by no means the only area in particle theory where geometry and modular localization are at loggerheads. Closely related is the interpretation of the Riemann surfaces, which result from the analytic continuation of chiral theories on the lightray/circle, as the ”living space” in the sense of localization. The mathematical theory of Riemann surfaces does not specify how it should be realized; if its refers to surfaces in an ambient space, a distinguished subgroup of Fuchsian group or any other of the many possible realizations is of no concern for a mathematician. But in the context of chiral models it is important not to confuse the living space of a QFT with its analytic continuation.

Whereas geometry as a mathematical discipline does not care about how it is concretely realized the geometrical aspects of modular localization in spacetime has a very specific geometric content namely that which can be encoded in subspaces (Reeh-Schlieder spaces) generated by operator subalgebras acting onto the vacuum reference state. In other words the physically relevant spacetime geometry and the symmetry group of the vacuum is contained in the abstract positioning of certain subalgebras in a common Hilbert space and not that which comes with classical theories.