A Time Traveler in Gödel Spacetime

Given any two points p and q in Gödel spacetime, there is a smooth, future-directed timelike curve that runs from p and q. (Hence, since we can always combine timelike curves that run in the two directions and smooth out the joints, there is a smooth, closed timelike curve that contains p and q.)


A time traveler in Gödel spacetime can start at any point p, return to that point, and stop off at any other desired point q along the way. To see why this holds, consider the figure above. It gives, at least, a rough, qualitative picture of Gödel spacetime with one dimension suppressed. We may as well take the central line to be the axis A and take p to be a point on A. (By homogeneity, there is no loss in generality in doing so.) Notice first that given any other point p′ on A, no matter how “far down,” there is a smooth, future-directed timelike curve that runs from p to p′. We can think of it as arising in three stages. (i) By moving “radially outward and upward” from p (i.e., along a future-directed timelike curve whose tangent vector field is of the form t ̃a + αra, with α positive), we can reach a point p1 with coordinate value r > rc. At that radius, we know, φa is timelike and future-directed. So we can find an ε > 0 such that (−εt ̃a + φa) is also timelike and future-directed there. (ii) Now consider the maximally extended, future-directed timelike curve γ through p1 whose tangent is everywhere equal to (−εt ̃a + φa) (for that value of ε). It is a spiral-shaped curve of fixed radius, with “downward pitch.” By following γ far enough, we can reach a point p2 that is well “below” p′. Now, finally, (iii) we can reach p′ by working our way upward and inward from p2 via a curve whose tangent vector is the form t ̃a + αra, but now with α negative. It remains only to smooth out the “joints” at intermediate points p1 and p2 to arrive at a smooth timelike curve that, as required, runs from p to p′.

Now consider any point q. It might not be possible to reach q from p in the same simple way we went from p to p1 – i.e., along a future-directed timelike curve that moves radially outward and upward – p might be too “high” for that. But we can get around this problem by first moving to an intermediate point p′ on A sufficiently “far down” – we have established that that is possible – and then going from there to q.

Other interesting features of Gödel spacetime are closely related to the existence of closed timelike curves. So, for example, a slice (in any relativistic spacetime) is a spacelike hypersurface that, as a subset of the background manifold, is closed. We can think of it as a candidate for a “global simultaneity slice.” It turns out that there are no slices in Gödel spacetime. More generally, given any relativistic spacetime, if it is temporally orientable and simply connected and has smooth closed timelike curves through every point, then it does not admit any slices.

Velocity of Money


The most basic difference between the demand theory of money and exchange theory of money lies in the understanding of quantity equation

M . v = P . Y —– (1)

Here M is money supply, P is price and Y is real output; in addition, v is constant velocity of money. The demand theory understands that (1) reflects the needs of the economic individual for money, not only the meaning of exchange. Under the assumption of liquidity preference, the demand theory introduces nominal interest rate into demand function of money, thus exhibiting more economic pictures than traditional quantity theory does. Let us, however concentrate on the economic movement through linearization of exchange theory emphasizing exchange medium function of money.

Let us assume that the central bank provides a very small supply M of money, which implies that the value PY of products manufactured by the producer will be unable to be realized only through one transaction. The producer has to suspend the transaction until the purchasers possess money at hand again, which will elevate the transaction costs and even result in the bankruptcy of the producer. Then, will the producer do nothing and wait for the bankruptcy?

In reality, producers would rather adjust sales value through raising or lowering the price or amount of product to attempt the realization of a maximal sales value M than reserve the stock of products to subject the sale to the limit of velocity of money. In other words, producer would adjust price or real output to control the velocity of money, since the velocity of money can influence the realization of the product value.

Every time money changes hands, a transaction is completed; thus numerous turnovers of money for an individual during a given period of time constitute a macroeconomic exchange ∑ipiYi if the prices pi can be replaced by an average price P, then we can rewrite the value of exchange as ∑ipiYi = P . Y. In a real economy, the producer will manage to make P . Y close the money supply M as much as possible through adjusting the real output or its price.

For example, when a retailer comes to a strange community to sell her commodities, she always prefers to make a price through trial and error. If she finds that higher price can still promote the sales amount, then she will choose to continue raising the price until the sales amount less changes; on the other hand, if she confirms that lower price can create the more sales amount, then she will decrease the price of the commodity. Her strategy of pricing depends on price elasticity of demand for the commodity. However, the maximal value of the sales amount is determined by how much money the community can supply, thus the pricing of the retailer will make her sales close this maximal sale value, namely money for consumption of the community. This explains why the same commodity can always be sold at a higher price in the rich area.

Equation (1) is not an identical equation but an equilibrium state of exchange process in an economic system. Evidently, the difference M –  P . Y  between the supply of money and present sales value provides a vacancy for elevating sales value, in other words, the supply of money acts as the role of a carrying capacity for sales value. We assume that the vacancy is in direct proportion to velocity of increase of the sales value, and then derive a dynamical quantity equation

M(t) - P(t) . Y(t)  =  k . d[P(t) . Y(t)]/d(t) —– (2)

Here k is a positive constant and expresses a characteristic time with which the vacancy is filled. This is a speculated basic dynamical quantity equation of exchange by money. In reality, the money supply M(t) can usually be given; (2) is actually an evolution equation of sales value P(t)Y(t) , which can uniquely determine an evolving path of the price.

The role of money in (2) can be seen that money is only a medium of commodity exchange, just like the chopsticks for eating and the soap for washing. All needs for money are or will be order to carry out the commodity exchange. The behavior of holding money of the economic individuals implies a potential exchange in the future, whether for speculation or for the preservation of wealth, but it cannot directly determine the present price because every realistic price always comes from the commodity exchange, and no exchange and no price. In other words, what we are concerned with is not the reason of money generation, but form of money generation, namely we are concerned about money generation as a function of time rather than it as a function of income or interest rate. The potential needs for money which you can use various reasons to explain cannot contribute to price as long as the money does not participate in the exchange, thus the money supply not used to exchange will not occur in (2).

On the other hand, the change in money supply would result in a temporary vacancy of sales value, although sales value will also be achieved through exchanging with the new money supply at the next moment, since the price or sales volume may change. For example, a group of residents spend M(t) to buy houses of P(t)Y(t) through the loan at time t, evidently M(t) = P(t)Y(t). At time t+1, another group of residents spend M(t+1) to buy houses of P(t+1)Y(t+1) through the loan, and M(t+1) = P(t+1)Y(t+1). Thus, we can consider M(t+1) – M(t) as increase in money supply, and this increase can cause a temporary vacancy of sales value M(t+1) – P(t)Y(t). It is this vacancy that encourages sellers to try to maximize sales through adjusting the price by trial and error and also real estate developers to increase or decrease their housing production. Ultimately, new prices and production are produced and the exchange is completed at the level of M(t+1) = P(t+1)Y(t+1). In reality, the gap between M(t+1) and M(t) is often much smaller than the vacancy M(t+1) – P(t)Y(t), therefore we can approximately consider M(t+1) as M(t) if the money supply function M(t) is continuous and smooth.

However, it is necessary to emphasize that (2) is not a generation equation of demand function P(Y), which means (2) is a unique equation of determination of price (path), since, from the perspective of monetary exchange theory, the evolution of price depends only on money supply and production and arises from commodity exchange rather than relationship between supply and demand of products in the traditional economics where the meaning of the exchange is not obvious. In addition, velocity of money is not contained in this dynamical quantity equation, but its significance PY/M will be endogenously exhibited by the system.

Dynamics of Point Particles: Orthogonality and Proportionality


Let γ be a smooth, future-directed, timelike curve with unit tangent field ξa in our background spacetime (M, gab). We suppose that some massive point particle O has (the image of) this curve as its worldline. Further, let p be a point on the image of γ and let λa be a vector at p. Then there is a natural decomposition of λa into components proportional to, and orthogonal to, ξa:

λa = (λbξba + (λa −(λbξba) —– (1)

Here, the first part of the sum is proportional to ξa, whereas the second one is orthogonal to ξa.

These are standardly interpreted, respectively, as the “temporal” and “spatial” components of λa relative to ξa (or relative to O). In particular, the three-dimensional vector space of vectors at p orthogonal to ξa is interpreted as the “infinitesimal” simultaneity slice of O at p. If we introduce the tangent and orthogonal projection operators

kab = ξa ξb —– (2)

hab = gab − ξa ξb —– (3)

then the decomposition can be expressed in the form

λa = kab λb + hab λb —– (4)

We can think of kab and hab as the relative temporal and spatial metrics determined by ξa. They are symmetric and satisfy

kabkbc = kac —– (5)

habhbc = hac —– (6)

Many standard textbook assertions concerning the kinematics and dynamics of point particles can be recovered using these decomposition formulas. For example, suppose that the worldline of a second particle O′ also passes through p and that its four-velocity at p is ξ′a. (Since ξa and ξ′a are both future-directed, they are co-oriented; i.e., ξa ξ′a > 0.) We compute the speed of O′ as determined by O. To do so, we take the spatial magnitude of ξ′a relative to O and divide by its temporal magnitude relative to O:

v = speed of O′ relative to O = ∥hab ξ′b∥ / ∥kab ξ′b∥ —– (7)

For any vector μa, ∥μa∥ is (μaμa)1/2 if μ is causal, and it is (−μaμa)1/2 otherwise.

We have from equations 2, 3, 5 and 6

∥kab ξ′b∥ = (kab ξ′b kac ξ′c)1/2 = (kbc ξ′bξ′c)1/2 = (ξ′bξb)


∥hab ξ′b∥ = (−hab ξ′b hac ξ′c)1/2 = (−hbc ξ′bξ′c)1/2 = ((ξ′bξb)2 − 1)1/2


v = ((ξ’bξb)2 − 1)1/2 / (ξ′bξb) < 1 —– (8)

Thus, as measured by O, no massive particle can ever attain the maximal speed 1. We note that equation (8) implies that

(ξ′bξb) = 1/√(1 – v2) —– (9)

It is a basic fact of relativistic life that there is associated with every point particle, at every event on its worldline, a four-momentum (or energy-momentum) vector Pa that is tangent to its worldline there. The length ∥Pa∥ of this vector is what we would otherwise call the mass (or inertial mass or rest mass) of the particle. So, in particular, if Pa is timelike, we can write it in the form Pa =mξa, where m = ∥Pa∥ > 0 and ξa is the four-velocity of the particle. No such decomposition is possible when Pa is null and m = ∥Pa∥ = 0.

Suppose a particle O with positive mass has four-velocity ξa at a point, and another particle O′ has four-momentum Pa there. The latter can either be a particle with positive mass or mass 0. We can recover the usual expressions for the energy and three-momentum of the second particle relative to O if we decompose Pa in terms of ξa. By equations (4) and (2), we have

Pa = (Pbξb) ξa + habPb —– (10)

the first part of the sum is the energy component, while the second is the three-momentum. The energy relative to O is the coefficient in the first term: E = Pbξb. If O′ has positive mass and Pa = mξ′a, this yields, by equation (9),

E = m (ξ′bξb) = m/√(1 − v2) —– (11)

(If we had not chosen units in which c = 1, the numerator in the final expression would have been mc2 and the denominator √(1 − (v2/c2)). The three−momentum relative to O is the second term habPb in the decomposition of Pa, i.e., the component of Pa orthogonal to ξa. It follows from equations (8) and (9) that it has magnitude

p = ∥hab mξ′b∥ = m((ξ′bξb)2 − 1)1/2 = mv/√(1 − v2) —– (12)

Interpretive principle asserts that the worldlines of free particles with positive mass are the images of timelike geodesics. It can be thought of as a relativistic version of Newton’s first law of motion. Now we consider acceleration and a relativistic version of the second law. Once again, let γ : I → M be a smooth, future-directed, timelike curve with unit tangent field ξa. Just as we understand ξa to be the four-velocity field of a massive point particle (that has the image of γ as its worldline), so we understand ξnnξa – the directional derivative of ξa in the direction ξa – to be its four-acceleration field (or just acceleration) field). The four-acceleration vector at any point is orthogonal to ξa. (This is, since ξannξa) = 1/2 ξnnaξa) = 1/2 ξnn (1) = 0). The magnitude ∥ξnnξa∥ of the four-acceleration vector at a point is just what we would otherwise describe as the curvature of γ there. It is a measure of the rate at which γ “changes direction.” (And γ is a geodesic precisely if its curvature vanishes everywhere).

The notion of spacetime acceleration requires attention. Consider an example. Suppose you decide to end it all and jump off the tower. What would your acceleration history be like during your final moments? One is accustomed in such cases to think in terms of acceleration relative to the earth. So one would say that you undergo acceleration between the time of your jump and your calamitous arrival. But on the present account, that description has things backwards. Between jump and arrival, you are not accelerating. You are in a state of free fall and moving (approximately) along a spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The floor of the observation deck, and then later the sidewalk, push you away from a geodesic path. The all-important idea here is that we are incorporating the “gravitational field” into the geometric structure of spacetime, and particles traverse geodesics iff they are acted on by no forces “except gravity.”

The acceleration of our massive point particle – i.e., its deviation from a geodesic trajectory – is determined by the forces acting on it (other than “gravity”). If it has mass m, and if the vector field Fa on I represents the vector sum of the various (non-gravitational) forces acting on it, then the particle’s four-acceleration ξnnξa satisfies

Fa = mξnnξa —– (13)

This is Newton’s second law of motion. Consider an example. Electromagnetic fields are represented by smooth, anti-symmetric fields Fab. If a particle with mass m > 0, charge q, and four-velocity field ξa is present, the force exerted by the field on the particle at a point is given by qFabξb. If we use this expression for the left side of equation (13), we arrive at the Lorentz law of motion for charged particles in the presence of an electromagnetic field:

qFabξb = mξbbξa —– (14)

This equation makes geometric sense. The acceleration field on the right is orthogonal to ξa. But so is the force field on the left, since ξa(Fabξb) = ξaξbFab = ξaξbF(ab), and F(ab) = 0 by the anti-symmetry of Fab.

Time and World-Lines

Let γ: [s1, s2] → M be a smooth, future-directed timelike curve in M with tangent field ξa. We associate with it an elapsed proper time (relative to gab) given by

∥γ∥= ∫s1s2 (gabξaξb)1/2 ds

This elapsed proper time is invariant under reparametrization of γ and is just what we would otherwise describe as the length of (the image of) γ . The following is another basic principle of relativity theory:

Clocks record the passage of elapsed proper time along their world-lines.

Again, a number of qualifications and comments are called for. We have taken for granted that we know what “clocks” are. We have assumed that they have worldlines (rather than worldtubes). And we have overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand) do not do well at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock against the wall.) Again, these concerns are important and raise interesting questions about the role of idealization in the formulation of physical theory. (One might construe an “ideal clock” as a point-size test object that perfectly records the passage of proper time along its worldline, and then take the above principle to assert that real clocks are, under appropriate conditions and to varying degrees of accuracy, approximately ideal.) But they do not have much to do with relativity theory as such. Similar concerns arise when one attempts to formulate corresponding principles about clock behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays. Then one can use clocks, rather than free particles, to determine the conformal factor.

Let g′ab be a second smooth metric on M, with g′ab = Ω2gab. Further suppose that the two metrics assign the same lengths to timelike curves – i.e., ∥γ∥g′ab = ∥γ∥gab ∀ smooth, timelike curves γ: I → M. Then Ω = 1 everywhere. (Here ∥γ∥gab is the length of γ relative to gab.)

Let ξoa be an arbitrary timelike vector at an arbitrary point p in M. We can certainly find a smooth, timelike curve γ: [s1, s2] → M through p whose tangent at p is ξoa. By our hypothesis, ∥γ∥g′ab = ∥γ∥gab. So, if ξa is the tangent field to γ,

s1s2 (g’ab ξaξb)1/2 ds = ∫s1s2 (gabξaξb)1/2 ds

∀ s in [s1, s2]. It follows that g′abξaξb = gabξaξb at every point on the image of γ. In particular, it follows that (g′ab − gab) ξoa ξob = 0 at p. But ξoa was an arbitrary timelike vector at p. So, g′ab = gab at our arbitrary point p. The principle gives the whole story of relativistic clock behavior. In particular, it implies the path dependence of clock readings. If two clocks start at an event p and travel along different trajectories to an event q, then, in general, they will record different elapsed times for the trip. This is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly line.) This is the case because, as the principle asserts, the elapsed time recorded by each of the clocks is just the length of the timelike curve it traverses from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask if there are any that minimize or maximize the recorded elapsed time between the events. The answer to the first question is “no.” Indeed, one then has the following proposition:

Let p and q be events in M such that p ≪ q. Then, for all ε > 0, there exists a smooth, future directed timelike curve γ from p to q with ∥γ ∥ < ε. (But there is no such curve with length 0, since all timelike curves have non-zero length.)


If there is a smooth, timelike curve connecting p and q, there is also a jointed, zig-zag null curve connecting them. It has length 0. But we can approximate the jointed null curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of the length function), we should expect that, for all ε > 0, there is an approximating timelike curve that has length less than ε.

The answer to the second question (“Can one maximize recorded elapsed time between p and q?”) is “yes” if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e., ones with signature of form (n, 0) – we know geodesics are locally shortest curves. The corresponding result for Lorentzian metrics is that timelike geodesics are locally longest curves.

Let γ: I → M be a smooth, future-directed, timelike curve. Then γ can be reparametrized so as to be a geodesic iff ∀ s ∈ I there exists an open set O containing γ(s) such that , ∀ s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image of γ′ = γ|[s1, s2] is contained in O, then γ′ (and its reparametrizations) are longer than all other timelike curves in O from γ(s1) to γ(s2). (Here γ|[s1, s2] is the restriction of γ to the interval [s1, s2].)

Of all clocks passing locally from p to q, the one that will record the greatest elapsed time is the one that “falls freely” from p to q. To get a clock to read a smaller elapsed time than the maximal value, one will have to accelerate the clock. Now, acceleration requires fuel, and fuel is not free. So the above proposition has the consequence that (locally) “saving time costs money.” And proposition before that may be taken to imply that “with enough money one can save as much time as one wants.” The restriction here to local regions of spacetime is essential. The connection described between clock behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes, one can find future-directed timelike geodesics connecting two events that have different lengths, and so clocks following the curves will record different elapsed times between the events even though both are in a state of free fall. Furthermore – this follows from the preceding claim by continuity considerations alone – it can be the case that of two clocks passing between the events, the one that undergoes acceleration during the trip records a greater elapsed time than the one that remains in a state of free fall. (A rolled-up version of two-dimensional Minkowski spacetime provides a simple example)


Two-dimensional Minkowski spacetime rolledup into a cylindrical spacetime. Three timelike curves are displayed: γ1 and γ3 are geodesics; γ2 is not; γ1 is longer than γ2; and γ2 is longer than γ3.

The connection we have been considering between clock behavior and acceleration was once thought to be paradoxical. Recall the so-called “clock paradox.” Suppose two clocks, A and B, pass from one event to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall but B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed time for the trip than B. This was thought paradoxical because it was believed that relativity theory denies the possibility of distinguishing “absolutely” between free-fall motion and accelerated motion. (If we are equally well entitled to think that it is clock B that is in a state of free fall and A that undergoes acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The situations of A and B here are not symmetric. The distinction between accelerated motion and free fall makes every bit as much sense in relativity theory as it does in Newtonian physics.

A “timelike curve” should be understood to be a smooth, future-directed, timelike curve parametrized by elapsed proper time – i.e., by arc length. In that case, the tangent field ξa of the curve has unit length (ξaξa = 1). And if a particle happens to have the image of the curve as its worldline, then, at any point, ξa is called the particle’s four-velocity there.

Causal Isomorphism as a Diffeomorphism. Some further Rumination on Philosophy of Science. Thought of the Day 82.0

Let (M, gab) and (M′, g′ab) be (temporally oriented) relativistic spacetimes that are both future- and past-distinguishing, and let φ : M → M′ be a ≪-causal isomorphism. Then φ is a diffeomorphism and preserves gab up to a conformal factor; i.e. φ⋆(g′ab) is conformally equivalent to gab.

Under the stated assumptions, φ must be a homeomorphism. If a spacetime (M, gab) is not just past and future distinguishing, but strongly causal, then one can explicitly characterize its (manifold) topology in terms of the relation ≪. In this case, a subset O ⊆ M is open iff, ∀ points p in O, ∃ points q and r in O such that q ≪ p ≪ r and I+(q) ∩ I(r) ⊆ O (Hawking and Ellis). So a ≪-causal isomorphism between two strongly causal spacetimes must certainly be a homeomorphism. Then one invokes a result of Hawking, King, and McCarthy that asserts, in effect, that any continuous ≪-causal isomorphism must be smooth and must preserve the metric up to a conformal factor.


The following example shows that the proposition fails if the initial restriction on causal structure is weakened to past distinguishability or to future distinguishability alone. We give the example in a two-dimensional version to simplify matters. Start with the manifold R2 together with the Lorentzian metric

gab = (d(at)(db)x) − (sinh2t)(dax)(dbx)

where t, x are global projection coordinates on R2. Next, form a vertical cylinder by identifying the point with coordinates (t, x) with the one having coordinates (t, x + 2). Finally, excise two closed half lines – the sets with respective coordinates {(t, x): x = 0 and t ≥ 0} and {(t, x): x = 1 and t ≥ 0}. Figure shows, roughly, what the null cones look like at every point. (The future direction at each point is taken to be the “upward one.”) The exact form of the metric is not important here. All that is important is the indicated qualitative behavior of the null cones. Along the (punctured) circle C where t = 0, the vector fields (∂/∂t)a and (∂/∂x)a both qualify as null. But as one moves upward or downward from there, the cones close. There are no closed timelike (or null) curves in this spacetime. Indeed, it is future distinguishing because of the excisions. But it fails to be past distinguishing because I(p) = I(q) for all points p and q on C. For all points p there, I(p) is the entire region below C. Now let φ be the bijection of the spacetime onto itself that leaves the “lower open half” fixed but reverses the position of the two upper slabs. Though φ is discontinuous along C, it is a ≪-causal isomorphism. This is the case because every point below C has all points in both upper slabs in its ≪-future.

Ruminations on Philosophy of Science: A Case of Volume Measure Respecting Orientation

Let M be an n–dimensional manifold (n ≥ 1). An s-form on M (s ≥ 1) is a covariant field αb1…bs that is anti-symmetric (i.e., anti-symmetric in each pair of indices). The case where s = n is of special interest.

Let αb1…bn be an n-form on M. Further, let ξi(i = 1,…,n) be a basis for the tangent space at a point in M with dual basis ηi(i=1,…,n). Then αb1…bn can be expressed there in the form

αb1…bn = k n! η1[b1…ηnbn] —– (1)


k = αb1…bnξ1b1…ξnbn

(To see this, observe that the two sides of equation (1) have the same action on any collection of n vectors from the set {ξ1b, . . . , ξnb}.) It follows that if αb1…bn and βb1…bn are any two smooth, non-vanishing n-forms on M, then

βb1…bn = f αb1…bn

for some smooth non-vanishing scalar field f. Smooth, non-vanishing n-forms always exist locally on M. (Suppose (U, φ) is a chart with coordinate vector fields (γ⃗1)a, . . . , (γ⃗n)a, and suppose ηib(i = 1, . . . , n) are dual fields. Then η1[b1…ηnbn] qualifies as a smooth, non-vanishing n-form on U.) But they do not necessarily exist globally. Suppose, for example, that M is the two-dimensional Möbius strip, and αab is any smooth two-form on M. We see that αab must vanish somewhere as follows.


A 2-form αab on the Möbius strip determines a “positive direction of rotation” at every point where it is non-zero. So there cannot be a smooth, non-vanishing 2-form on the Möbius strip.

Let p be any point on M at which αab ≠ 0, and let ξa be any non-zero vector at p. Consider the number αab ξa ρb as ρb rotates though the vectors in Mp. If ρb = ±ξb, the number is zero. If ρb ≠ ±ξb, the number is non-zero. Therefore, as ρb rotates between ξa and −ξa, it is always positive or always negative. Thus αab determines a “positive direction of rotation” away from ξa on Mp. αab must vanish somewhere because one cannot continuously choose positive rotation directions over the entire Möbius strip.

M is said to be orientable if it admits a (globally defined) smooth, non- vanishing n-form. So far we have made no mention of metric structure. Suppose now that our manifold M is endowed with a metric gab of signature (n+, n). We take a volume element on M (with respect to gab) to be a smooth n-form εb1…bn that satisfies the normalization condition

εb1…bn εb1…bn = (−1)nn! —– (2)

Suppose εb1…bn is a volume element on M, and ξi b (i = 1,…,n) is an orthonormal basis for the tangent space at a point in M. Then at that point we have, by equation (1),

εb1…bn = k n! ξ1[b1 …ξbn] —– (3)


k = εb1…bn ξ1b1…ξnbn

Hence, by the normalization condition (2),

(−1)nn! = (k n! ξ1[b1 …ξbn]) (k n! ξ1[b1 …ξbn])

= k2 n!2 1/n! (ξ1b1 ξ1b1) … (ξnbn ξnbn) = k2 (−1)n

So k2 = 1 and, therefore, equation (3) yields

εb1…bn ξ1b1…ξnbn = ±1 —– (4)

Clearly, if εb1…bn is a volume element on M, then so is −εb1…bn. It follows from the normalization condition (4) that there cannot be any others. Thus, there are only two possibilities. Either (M, gab) admits no volume elements (at all) or it admits exactly two, and these agree up to sign.

Condition (4) also suggests where the term “volume element” comes from. Given arbitrary vectors γ1a , . . . , γna at a point, we can think of εb1…bn γ1b1 … γnbn as the volume of the (possibly degenerate) parallelepiped determined by the vectors. Notice that, up to sign, εb1…bn is characterized by three properties.

(VE1) It is linear in each index.

(VE2) It is anti-symmetric.

(VE3) It assigns a volume V with |V | = 1 to each orthonormal parallelepiped.

These are conditions we would demand of any would-be volume measure (with respect to gab). If the length of one edge of a parallelepiped is multiplied by a factor k, then its volume should increase by that factor. And if a parallelepiped is sliced into two parts, with the slice parallel to one face, then its volume should be equal to the sum of the volumes of the parts. This leads to (VE1). Furthermore, if any two edges of the parallelepiped are coalligned (i.e., if it is a degenerate parallelepiped), then its volume should be zero. This leads to (VE2). (If for all vectors ξa, εb1…bn ξb1 ξb2 = 0, then it must be the case that εb1 …bn is anti-symmetric in indices (b1, b2). And similarly for all other pairs of indices.) Finally, if the edges of a parallelepiped are orthogonal, then its volume should be equal to the product of the lengths of the edges. This leads to (VE3). The only unusual thing about εb1…bn as a volume measure is that it respects orientation. If it assigns V to the ordered sequence γ1a , . . . , γna, then it assigns (−V) to γ2a, γ1a, γ3a,…,γna, and so forth.


Let (S, CS) and (M, CM) be manifolds of dimension k and n, respectively, with 1 ≤ k ≤ n. A smooth map : S → M is said to be an imbedding if it satisfies the following three conditions.

(I1) Ψ is injective.

(I2) At all points p in S, the associated (push-forward) linear map (Ψp) : Sp → MΨ(p) is injective.

(I3) ∀ open sets O1 in S, Ψ[O1] = [S] ∩ O2 for some open set O2 in M. (Equivalently, the inverse map Ψ−1 : Ψ[S] → S is continuous with respect to the relative topology on [S].)

Several comments about the definition are in order. First, given any point p in S, (I2) implies that (Ψp)[Sp] is a k-dimensional subspace of MΨ(p). So the condition cannot be satisfied unless k ≤ n. Second, the three conditions are independent of one another. For example, the smooth map Ψ : R → R2 defined by (s) = (cos(s), sin(s)) satisfies (I2) and (I3) but is not injective. It wraps R round and round in a circle. On the other hand, the smooth map : R → R defined by (s) = s3 satisfies (I1) and (I3) but is not an imbedding because (Ψ0) : R0 → R0 is not injective. (Here R0 is the tangent space to the manifold R at the point 0). Finally, a smooth map : S → M can satisfy (I1) and (I2) but still have an image that “bunches up on itself.” It is precisely this possibility that is ruled out by condition (I3). Consider, for example, a map : R → R2 whose image consists of part of the image of the curve y = sin(1/x) smoothly joined to the segment {(0, y) : y < 1}, as in the figure below. It satisfies conditions (I1) and (I2) but is not an imbedding because we can find an open interval O1 in R such that given any open set O2 in R2, Ψ[O1] ≠ O2 ∩ Ψ[R].


Suppose(S, CS) and (M, CM) are manifolds with S ⊆ M. We say that (S, CS) is an imbedded submanifold of (M, CM) if the identity map id: S → M is an imbedding. If, in addition, k = n − 1 (where k and n are the dimensions of the two manifolds), we say that (S, CS) is a hypersurface in (M, CM). Let (S, CS) be a k-dimensional imbedded submanifold of the n-dimensional manifold (M, CM), and let p be a point in S. We need to distinguish two senses in which one can speak of “tensors at p.” There are tensors over the vector space Sp (call them S-tensors at p) and ones over the vector space Mp (call them M-tensors at p). So, for example, an S-vector ξ ̃a at p makes assignments to maps of the form f ̃: O ̃ → R where O ̃ is a subset of S that is open in the topology induced by CS, and f ̃ is smooth relative to CS. In contrast, an M-vector ξa at p makes assignments to maps of the form f : O → R where O is a subset of M that is open in the topology induced by CM, and f is smooth relative to CM. Our first task is to consider the relation between S-tensors at p and M-tensors there.

Let us say that ξa ∈ (Mp)a is tangent to S if ξa ∈ (idp)[(Sp)a]. (This makes sense. We know that (idp)[(Sp)a] is a k-dimensional subspace of (Mp)a; ξa either belongs to that subspace or it does not.) Let us further say that ηa in (Mp)a is normal to S if ηaξa =0 ∀ ξa ∈ (Mp)a that are tangent to S. Each of these classes of vectors has a natural vector space structure. The space of vectors ξa ∈ (Mp)a tangent to S has dimension k. The space of co-vectors ηa ∈ (Mp)a normal to S has dimension (n − k).

Conformal Factor. Metric Part 3.

Part 1 and Part 2.

Suppose gab is a metric on a manifold M, ∇ is the derivative operator on M compatible with gab, and Rabcd is associated with ∇. Then Rabcd (= gam Rmbcd) satisfies the following conditions.

(1) Rab(cd) = 0.

(2) Ra[bcd] = 0.

(3) R(ab)cd = 0.

(4) Rabcd = Rcdab.

Conditions (1) and (2) follow directly from clauses (2) and (3) of proposition, which goes like

Suppose ∇ is a derivative operator on the manifold M. Then the curvature tensor field Rabcd associated with ∇ satisfies the following conditions:

(1) For all smooth tensor fields αa1…arb1 …bs on M,

2∇[cd] αa1…arb1 …bs = αa1…arnb2…bs Rnb1cd +…+ αa1…arb1…bs-1n Rnbscd – αna2…arb1…bs Ra1ncd -…- αa1…ar-1nb1…bs Rarncd.

(2) Rab(cd) = 0.

(3) Ra[bcd] = 0.

(4) ∇[mRa|b|cd (Bianchi’s identity).

And by clause (1) of that proposition, we have, since ∇agbc = 0,

0 = 2∇[cd]gab = gnbRnacd + ganRnbcd = Rbacd + Rabcd.

That gives us (3). So it will suffice for us to show that clauses (1) – (3) jointly imply (4). Note first that

0 = Rabcd + Radbc + Racdb

= Rabcd − Rdabc − Racbd.

(The first equality follows from (2), and the second from (1) and (3).) So anti-symmetrization over (a, b, c) yields

0 = R[abc]d −Rd[abc] −R[acb]d.

The second term is 0 by clause (2) again, and R[abc]d = −R[acb]d. So we have an intermediate result:

R[abc]d = 0 —– (1)

Now consider the octahedron in the figure below.


Using conditions (1) – (3) and equation (1), one can see that the sum of the terms corresponding to each triangular face vanishes. For example, the shaded face determines the sum

Rabcd + Rbdca + Radbc = −Rabdc − Rbdac − Rdabc = −3R[abd]c = 0

So if we add the sums corresponding to the four upper faces, and subtract the sums corresponding to the four lower faces, we get (since “equatorial” terms cancel),

4Rabcd −4Rcdab = 0

This gives us (4).

We say that two metrics gab and g′ab on a manifold M are projectively equivalent if their respective associated derivative operators are projectively equivalent – i.e., if their associated derivative operators admit the same geodesics up to reparametrization. We say that they are conformally equivalent if there is a map : M → R such that

g′ab = Ω2gab

is called a conformal factor. (If such a map exists, it must be smooth and non-vanishing since both gab and g′ab are.) Notice that if gab and g′ab are conformally equivalent, then, given any point p and any vectors ξa and ηa at p, they agree on the ratio of their assignments to the two; i.e.,

(g′ab ξa ξa)/(gab ηaηb) =  (gab ξa ξb)/(g′ab ηaηb)

(if the denominators are non-zero).

If two metrics are conformally equivalent with conformal factor, then the connecting tensor field Cabc that links their associated derivative operators can be expressed as a function of Ω.