# Grothendieckian Construction of K-Theory with a Bundle that is Topologically Trivial and Class that is Torsion.

All relativistic quantum theories contain “antiparticles,” and allow the process of particle-antiparticle annihilation. This inspires a physical version of the Grothendieck construction of K-theory. Physics uses topological K-theory of manifolds, whose motivation is to organize vector bundles over a space into an algebraic invariant, that turns out to be useful. Algebraic K-theory started from Ki defined for i, with relations to classical constructions in algebra and number theory, followed by Quillen’s homotopy-theoretic definition ∀ i. The connections to algebra and number theory often persist for larger values of i, but in ways that are subtle and conjectural, such as special values of zeta- and L-functions.

One could also use the conserved charges of a configuration which can be measured at asymptotic infinity. By definition, these are left invariant by any physical process. Furthermore, they satisfy quantization conditions, of which the prototype is the Dirac condition on allowed electric and magnetic charges in Maxwell theory.

There is an elementary construction which, given a physical theory T, produces an abelian group of conserved charges K(T). Rather than considering the microscopic dynamics of the theory, all that is needed to be known is a set S of “particles” described by T, and a set of “bound state formation/decay processes” by which the particles combine or split to form other particles. These are called “binding processes.” Two sets of particles are “physically equivalent” if some sequence of binding processes convert the one to the other. We then define the group K(T) as the abelian group ZS of formal linear combinations of particles, quotiented by this equivalence relation.

Suppose T contains the particles S = {A,B,C}.

If these are completely stable, we could clearly define three integral conserved charges, their individual numbers, so K(T) ≅ Z3.

Introducing a binding process

A + B ↔ C —– (1)

with the bidirectional arrow to remind us that the process can go in either direction. Clearly K(T) ≅ Z2 in this case.

One might criticize this proposal on the grounds that we have assumed that configurations with a negative number of particles can exist. However, in all physical theories which satisfy the constraints of special relativity, charged particles in physical theories come with “antiparticles,” with the same mass but opposite charge. A particle and antiparticle can annihilate (combine) into a set of zero charge particles. While first discovered as a prediction of the Dirac equation, this follows from general axioms of quantum field theory, which also hold in string theory.

Thus, there are binding processes

B + B̄ ↔ Z1 + Z2 + · · · .

where B̄ is the antiparticle to a particle B, and Zi are zero charge particles, which must appear by energy conservation. To define the K-theory, we identify any such set of zero charge particles with the identity, so that

B + B̄ ↔ 0

Thus the antiparticles provide the negative elements of K(T).

Granting the existence of antiparticles, this construction of K-theory can be more simply rephrased as the Grothendieck construction. We can define K(T) as the group of pairs (E, F) ∈ (ZS, ZS), subject to the relations (E, F) ≅ (E+B, F +B) ≅ (E+L, F +R) ≅ (E+R, F +L), where (L, R) are the left and right hand side of a binding process (1).

Thinking of these as particles, each brane B must have an antibrane, which we denote by B̄. If B wraps a submanifold L, one expects that B̄ is a brane which wraps a submanifold L of opposite orientation. A potential problem is that it is not a priori obvious that the orientation of L actually matters physically, especially in degenerate cases such as L a point.

Now, let us take X as a Calabi-Yau threefold for definiteness. A physical A-brane, which are branes of the A-model topological string and thereby a TQFT shadow of the D-branes of the superstring, is specified by a pair (L, E) of a special Lagrangian submanifold L with a flat bundle E. The obvious question could be: When are (L1, E1) and (L2, E2) related by a binding process? A simple heuristic answer to this question is given by the Feynman path integral. Two configurations are connected, if they are connected by a continuous path through the configuration space; any such path (or a small deformation of it) will appear in the functional integral with some non-zero weight. Thus, the question is essentially topological. Ignoring the flat bundles for a moment, this tells us that the K-theory group for A-branes is H3(Y, Z), and the class of a brane is simply (rank E)·[L] ∈ H3(Y, Z). This is also clear if the moduli space of flat connections on L is connected.

But suppose it is not, say π1(L) is torsion. In this case, we need deeper physical arguments to decide whether the K-theory of these D-branes is H3(Y, Z), or some larger group. But a natural conjecture is that it will be K1(Y), which classifies bundles on odd-dimensional submanifolds. Two branes which differ only in the choice of flat connection are in fact connected in string theory, consistent with the K-group being H3(Y, Z). For Y a simply connected Calabi-Yau threefold, K1(Y) ≅ H3(Y, Z), so the general conjecture is borne out in this case

There is a natural bilinear form on H3(Y, Z) given by the oriented intersection number

I(L1, L2) = #([L1] ∩ [L2]) —– (2)

It has symmetry (−1)n. In particular, it is symplectic for n = 3. Furthermore, by Poincaré duality, it is unimodular, at least in our topological definition of K-theory.

D-branes, which are extended objects defined by mixed Dirichlet-Neumann boundary conditions in string theory, break half of the supersymmetries of the type II superstring and carry a complete set of electric and magnetic Ramond-Ramond charges. The product of the electric and magnetic charges is a single Dirac unit, and that the quantum of charge takes the value required by string duality. Saying that a D-brane has RR-charge means that it is a source for an “RR potential,” a generalized (p + 1)-form gauge potential in ten-dimensional space-time, which can be verified from its world-volume action that contains a minimal coupling term,

∫C(p + 1) —–(3)

where C(p + 1) denotes the gauge potential, and the integral is taken over the (p+1)-dimensional world-volume of the brane. For p = 0, C(1) is a one-form or “vector” potential (as in Maxwell theory), and thus the D0-brane is an electrically charged particle with respect to this 10d Maxwell theory. Upon further compactification, by which, the ten dimensions are R4 × X, and a Dp-brane which wraps a p-dimensional cycle L; in other words its world-volume is R × L where R is a time-like world-line in R4. Using the Poincaré dual class ωL ∈ H2n−p(X, R) to L in X, to rewrite (3) as an integral

R × X C(p + 1) ∧ ωL —– (4)

We can then do the integral over X to turn this into the integral of a one-form over a world-line in R4, which is the right form for the minimal electric coupling of a particle in four dimensions. Thus, such a wrapped brane carries a particular electric charge which can be detected at asymptotic infinity. Summarizing the RR-charge more formally,

LC = ∫XC ∧ ωL —– (5)

where C ∈ H∗(X, R). In other words, it is a class in Hp(X, R).

In particular, an A-brane (for n = 3) carries a conserved charge in H3(X, R). Of course, this is weaker than [L] ∈ H3(X, Z). To see this physically, we would need to see that some of these “electric” charges are actually “magnetic” charges, and study the Dirac-Schwinger-Zwanziger quantization condition between these charges. This amounts to showing that the angular momentum J of the electromagnetic field satisfies the quantization condition J = ħn/2 for n ∈ Z. Using an expression from electromagnetism, J⃗ = E⃗ × B⃗ , this is precisely the condition that (2) must take an integer value. Thus the physical and mathematical consistency conditions agree. Similar considerations apply for coisotropic A-branes. If X is a genuine Calabi-Yau 3-fold (i.e., with strict SU(3) holonomy), then a coisotropic A-brane which is not a special Lagrangian must be five-dimensional, and the corresponding submanifold L is rationally homologically trivial, since H5(X, Q) = 0. Thus, if the bundle E is topologically trivial, the homology class of L and thus its K-theory class is torsion.

If X is a torus, or a K3 surface, the situation is more complicated. In that case, even rationally the charge of a coisotropic A-brane need not lie in the middle-dimensional cohomology of X. Instead, it takes its value in a certain subspace of ⊕p Hp(X, Q), where the summation is over even or odd p depending on whether the complex dimension of X is even or odd. At the semiclassical level, the subspace is determined by the condition

(L − Λ)α = 0, α ∈ ⊕p Hp(X, Q)

where L and Λ are generators of the Lefschetz SL(2, C) action, i.e., L is the cup product with the cohomology class of the Kähler form, and Λ is its dual.

# The Affinity of Mirror Symmetry to Algebraic Geometry: Going Beyond Formalism

Even though formalism of homological mirror symmetry is an established case, what of other explanations of mirror symmetry which lie closer to classical differential and algebraic geometry? One way to tackle this is the so-called Strominger, Yau and Zaslow mirror symmetry or SYZ in short.

The central physical ingredient in this proposal is T-duality. To explain this, let us consider a superconformal sigma model with target space (M, g), and denote it (defined as a geometric functor, or as a set of correlation functions), as

CFT(M, g)

In physics, a duality is an equivalence

CFT(M, g) ≅ CFT(M′, g′)

which holds despite the fact that the underlying geometries (M,g) and (M′, g′) are not classically diffeomorphic.

T-duality is a duality which relates two CFT’s with toroidal target space, M ≅ M′ ≅ Td, but different metrics. In rough terms, the duality relates a “small” target space, with noncontractible cycles of length L < ls, with a “large” target space in which all such cycles have length L > ls.

This sort of relation is generic to dualities and follows from the following logic. If all length scales (lengths of cycles, curvature lengths, etc.) are greater than ls, string theory reduces to conventional geometry. Now, in conventional geometry, we know what it means for (M, g) and (M′, g′) to be non-isomorphic. Any modification to this notion must be associated with a breakdown of conventional geometry, which requires some length scale to be “sub-stringy,” with L < ls. To state T-duality precisely, let us first consider M = M′ = S1. We parameterise this with a coordinate X ∈ R making the identification X ∼ X + 2π. Consider a Euclidean metric gR given by ds2 = R2dX2. The real parameter R is usually called the “radius” from the obvious embedding in R2. This manifold is Ricci-flat and thus the sigma model with this target space is a conformal field theory, the “c = 1 boson.” Let us furthermore set the string scale ls = 1. With this, we attain a complete physical equivalence.

CFT(S1, gR) ≅ CFT(S1, g1/R)

Thus these two target spaces are indistinguishable from the point of view of string theory.

Just to give a physical picture for what this means, suppose for sake of discussion that superstring theory describes our universe, and thus that in some sense there must be six extra spatial dimensions. Suppose further that we had evidence that the extra dimensions factorized topologically and metrically as K5 × S1; then it would make sense to ask: What is the radius R of this S1 in our universe? In principle this could be measured by producing sufficiently energetic particles (so-called “Kaluza-Klein modes”), or perhaps measuring deviations from Newton’s inverse square law of gravity at distances L ∼ R. In string theory, T-duality implies that R ≥ ls, because any theory with R < ls is equivalent to another theory with R > ls. Thus we have a nontrivial relation between two (in principle) observable quantities, R and ls, which one might imagine testing experimentally. Let us now consider the theory CFT(Td, g), where Td is the d-dimensional torus, with coordinates Xi parameterising Rd/2πZd, and a constant metric tensor gij. Then there is a complete physical equivalence

CFT(Td, g) ≅ CFT(Td, g−1)

In fact this is just one element of a discrete group of T-duality symmetries, generated by T-dualities along one-cycles, and large diffeomorphisms (those not continuously connected to the identity). The complete group is isomorphic to SO(d, d; Z).

While very different from conventional geometry, T-duality has a simple intuitive explanation. This starts with the observation that the possible embeddings of a string into X can be classified by the fundamental group π1(X). Strings representing non-trivial homotopy classes are usually referred to as “winding states.” Furthermore, since strings interact by interconnecting at points, the group structure on π1 provided by concatenation of based loops is meaningful and is respected by interactions in the string theory. Now π1(Td) ≅ Zd, as an abelian group, referred to as the group of “winding numbers”.

Of course, there is another Zd we could bring into the discussion, the Pontryagin dual of the U(1)d of which Td is an affinization. An element of this group is referred to physically as a “momentum,” as it is the eigenvalue of a translation operator on Td. Again, this group structure is respected by the interactions. These two group structures, momentum and winding, can be summarized in the statement that the full closed string algebra contains the group algebra C[Zd] ⊕ C[Zd].

In essence, the point of T-duality is that if we quantize the string on a sufficiently small target space, the roles of momentum and winding will be interchanged. But the main point can be seen by bringing in some elementary spectral geometry. Besides the algebra structure, another invariant of a conformal field theory is the spectrum of its Hamiltonian H (technically, the Virasoro operator L0 + L ̄0). This Hamiltonian can be thought of as an analog of the standard Laplacian ∆g on functions on X, and its spectrum on Td with metric g is

Spec ∆= {∑i,j=1d gijpipj; pi ∈ Zd}

On the other hand, the energy of a winding string is (intuitively) a function of its length. On our torus, a geodesic with winding number w ∈ Zd has length squared

L2 = ∑i,j=1d gijwiwj

Now, the only string theory input we need to bring in is that the total Hamiltonian contains both terms,

H = ∆g + L2 + · · ·

where the extra terms … express the energy of excited (or “oscillator”) modes of the string. Then, the inversion g → g−1, combined with the interchange p ↔ w, leaves the spectrum of H invariant. This is T-duality.

There is a simple generalization of the above to the case with a non-zero B-field on the torus satisfying dB = 0. In this case, since B is a constant antisymmetric tensor, we can label CFT’s by the matrix g + B. Now, the basic T-duality relation becomes

CFT(Td, g + B) ≅ CFT(Td, (g + B)−1)

Another generalization, which is considerably more subtle, is to do T-duality in families, or fiberwise T-duality. The same arguments can be made, and would become precise in the limit that the metric on the fibers varies on length scales far greater than ls, and has curvature lengths far greater than ls. This is sometimes called the “adiabatic limit” in physics. While this is a very restrictive assumption, there are more heuristic physical arguments that T-duality should hold more generally, with corrections to the relations proportional to curvatures ls2R and derivatives ls∂ of the fiber metric, both in perturbation theory and from world-sheet instantons.

# Philosophy of Dimensions: M-Theory. Thought of the Day 85.0

Superstrings provided a perturbatively finite theory of gravity which, after compactification down to 3+1 dimensions, seemed potentially capable of explaining the strong, weak and electromagnetic forces of the Standard Model, including the required chiral representations of quarks and leptons. However, there appeared to be not one but five seemingly different but mathematically consistent superstring theories: the E8 × E8 heterotic string, the SO(32) heterotic string, the SO(32) Type I string, and Types IIA and IIB strings. Each of these theories corresponded to a different way in which fermionic degrees of freedom could be added to the string worldsheet.

Supersymmetry constrains the upper limit on the number of spacetime dimensions to be eleven. Why, then, do superstring theories stop at ten? In fact, before the “first string revolution” of the mid-1980’s, many physicists sought superunification in eleven-dimensional supergravity. Solutions to this most primitive supergravity theory include the elementary supermembrane and its dual partner, the solitonic superfivebrane. These are supersymmetric objects extended over two and five spatial dimensions, respectively. This brings to mind another question: why do superstring theories generalize zero-dimensional point particles only to one-dimensional strings, rather than p-dimensional objects?

During the “second superstring revolution” of the mid-nineties it was found that, in addition to the 1+1-dimensional string solutions, string theory contains soliton-like Dirichlet branes. These Dp-branes have p + 1-dimensional worldvolumes, which are hyperplanes in 9 + 1-dimensional spacetime on which strings are allowed to end. If a closed string collides with a D-brane, it can turn into an open string whose ends move along the D-brane. The end points of such an open string satisfy conventional free boundary conditions along the worldvolume of the D-brane, and fixed (Dirichlet) boundary conditions are obeyed in the 9 − p dimensions transverse to the D-brane.

D-branes make it possible to probe string theories non-perturbatively, i.e., when the interactions are no longer assumed to be weak. This more complete picture makes it evident that the different string theories are actually related via a network of “dualities.” T-dualities relate two different string theories by interchanging winding modes and Kaluza-Klein states, via R → α′/R. For example, Type IIA string theory compactified on a circle of radius R is equivalent to Type IIB string theory compactified on a circle of radius 1/R. We have a similar relation between E8 × E8 and SO(32) heterotic string theories. While T-dualities remain manifest at weak-coupling, S-dualities are less well-established strong/weak-coupling relationships. For example, the SO(32) heterotic string is believed to be S-dual to the SO(32) Type I string, while the Type IIB string is self-S-dual. There is a duality of dualities, in which the T-dual of one theory is the S-dual of another. Compactification on various manifolds often leads to dualities. The heterotic string compactified on a six-dimensional torus T6 is believed to be self-S-dual. Also, the heterotic string on T4 is dual to the type II string on four-dimensional K3. The heterotic string on T6 is dual to the Type II string on a Calabi-Yau manifold. The Type IIA string on a Calabi-Yau manifold is dual to the Type IIB string on the mirror Calabi-Yau manifold.

This led to the discovery that all five string theories are actually different sectors of an eleven-dimensional non-perturbative theory, known as M-theory. When M-theory is compactified on a circle S1 of radius R11, it leads to the Type IIA string, with string coupling constant gs = R3/211. Thus, the illusion that this string theory is ten-dimensional is a remnant of weak-coupling perturbative methods. Similarly, if M-theory is compactified on a line segment S1/Z2, then the E8 × E8 heterotic string is recovered.

Just as a given string theory has a corresponding supergravity in its low-energy limit, eleven-dimensional supergravity is the low-energy limit of M-theory. Since we do not yet know what the full M-theory actually is, many different names have been attributed to the “M,” including Magical, Mystery, Matrix, and Membrane! Whenever we refer to “M-theory,” we mean the theory which subsumes all five string theories and whose low-energy limit is eleven-dimensional supergravity. We now have an adequate framework with which to understand a wealth of non-perturbative phenomena. For example, electric-magnetic duality in D = 4 is a consequence of string-string duality in D = 6, which in turn is the result of membrane-fivebrane duality in D = 11. Furthermore, the exact electric-magnetic duality has been extended to an effective duality of non-conformal N = 2 Seiberg-Witten theory, which can be derived from M-theory. In fact, it seems that all supersymmetric quantum field theories with any gauge group could have a geometrical interpretation through M-theory, as worldvolume fields propagating on a common intersection of stacks of p-branes wrapped around various cycles of compactified manifolds.

In addition, while perturbative string theory has vacuum degeneracy problems due to the billions of Calabi-Yau vacua, the non-perturbative effects of M-theory lead to smooth transitions from one Calabi-Yau manifold to another. Now the question to ask is not why do we live in one topology but rather why do we live in a particular corner of the unique topology. M-theory might offer a dynamical explanation of this. While supersymmetry ensures that the high-energy values of the Standard Model coupling constants meet at a common value, which is consistent with the idea of grand unification, the gravitational coupling constant just misses this meeting point. In fact, M-theory may resolve long-standing cosmological and quantum gravitational problems. For example, M-theory accounts for a microscopic description of black holes by supplying the necessary non-perturbative components, namely p-branes. This solves the problem of counting black hole entropy by internal degrees of freedom.