In * Logical Investigations*, Husserl called his theory of complete manifolds the key to the only possible solution to how in the realm of numbers impossible, non-existent, meaningless concepts might be dealt with as real ones. In Ideas, he wrote that his chief purpose in developing his theory of manifolds had been to find a theoretical solution to the problem of imaginary quantities (

*).*

**Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy**Husserl saw how questions regarding imaginary numbers come up in mathematical contexts in which formalization yields constructions which arithmetically speaking are nonsense, but can be used in calculations. When formal reasoning is carried out mechanically as if these symbols have meaning, if the ordinary rules are observed, and the results do not contain any imaginary components, these symbols might be legitimately used. And this could be empirically verified (* Philosophy of Arithmetic_ Psychological and Logical Investigations with Supplementary Texts*).

In a letter to Carl Stumpf in the early 1890s, Husserl explained how, in trying to understand how operating with contradictory concepts could lead to correct theorems, he had found that for imaginary numbers like √2 and √-1, it was not a matter of the possibility or impossibility of concepts. Through the calculation itself and its rules, as defined for those fictive numbers, the impossible fell away, and a genuine equation remained. One could calculate again with the same signs, but referring to valid concepts, and the result was again correct. Even if one mistakenly imagined that what was contradictory existed, or held the most absurd theories about the content of the corresponding concepts of number, the calculation remained correct if it followed the rules. He concluded that this must be a result of the signs and their rules (* Early Writings in the Philosophy of Logic and Mathematics*). The fact that one can generalize, produce variations of formal arithmetic that lead outside the quantitative domain without essentially altering formal arithmetic’s theoretical nature and calculational methods brought Husserl to realize that there was more to the mathematical or formal sciences, or the mathematical method of calculation than could be captured in purely quantitative analyses.

Understanding the nature of theory forms, shows how reference to impossible objects can be justified. According to his theory of manifolds, one could operate freely within a manifold with imaginary concepts and be sure that what one deduced was correct when the axiomatic system completely and unequivocally determined the body of all the configurations possible in a domain by a purely analytical procedure. It was the completeness of the axiomatic system that gave one the right to operate in that free way. A domain was complete when each grammatically constructed proposition exclusively using the language of the domain was determined from the outset to be true or false in virtue of the axioms, i.e., necessarily followed from the axioms or did not. In that case, calculating with expressions without reference could never lead to contradictions. Complete manifolds have the

distinctive feature that a finite number of concepts and propositions – to be drawn as occasion requires from the essential nature of the domain under consideration – determines completely and unambiguously on the lines of pure logical necessity the totality of all possible formations in the domain, so that in principle, therefore, nothing further remains open within it.

In such complete manifolds, he stressed, “the concepts true and formal implication of the axioms are equivalent (Ideas).

Husserl pointed out that there may be two valid discipline forms that stand in relation to one another in such a way that the axiom system of one may be a formal limitation of that of the other. It is then clear that everything deducible in the narrower axiom system is included in what is deducible in the expanded system, he explained. In the arithmetic of cardinal numbers, Husserl explained, there are no negative numbers, for the meaning of the axioms is so restrictive as to make subtracting 4 from 3 nonsense. Fractions are meaningless there. So are irrational numbers, √–1, and so on. Yet in practice, all the calculations of the arithmetic of cardinal numbers can be carried out as if the rules governing the operations are unrestrictedly valid and meaningful. One can disregard the limitations imposed in a narrower domain of deduction and act as if the axiom system were a more extended one. We cannot arbitrarily expand the concept of cardinal number, Husserl reasoned. But we can abandon it and define a new, pure formal concept of positive whole number with the formal system of definitions and operations valid for cardinal numbers. And, as set out in our definition, this formal concept of positive numbers can be expanded by new definitions while remaining free of contradiction. Fractions do not acquire any genuine meaning through our holding onto the concept of cardinal number and assuming that units are divisible, he theorized, but rather through our abandonment of the concept of cardinal number and our reliance on a new concept, that of divisible quantities. That leads to a system that partially coincides with that of cardinal numbers, but part of which is larger, meaning that it includes additional basic elements and axioms. And so in this way, with each new quantity, one also changes arithmetics. The different arithmetics do not have parts in common. They have totally different domains, but an analogous structure. They have forms of operation that are in part alike, but different concepts of operation.

For Husserl, formal constraints banning meaningless expressions, meaningless imaginary concepts, reference to non-existent and impossible objects restrict us in our theoretical, deductive work, but that resorting to the infinity of pure forms and transformations of forms frees us from such conditions and explains why having used imaginaries, what is meaningless, must lead, not to meaningless, but to true results.