The Semiotic Theory of Autopoiesis, OR, New Level Emergentism

higher-consciousness

The dynamics of all the life-cycle meaning processes can be described in terms of basic semiotic components, algebraic constructions of the following forms:

Pnn:fnn] → Ξn+1)

where Ξn is a sign system corresponding to a representation of a (design) problem at time t1, Ξn+1 is a sign system corresponding to a representation of the problem at time t2, t2 > t1, fn is a composition of semiotic morphisms that specifies the interaction of variation and selection under the condition of information closure, which requires no external elements be added to the current sign system; мn is a semiotic morphism, and Pn is the probability associated with мn, ΣPn = 1, n=1,…,M, where M is the number of the meaningful transformations of the resultant sign system after fn. There is a partial ranking – importance ordering – on the constraints of A in every Ξn, such that lower ranked constraints can be violated in order for higher ranked constraints to be satisfied. The morphisms of fn preserve the ranking.

The Semiotic Theory of Self-Organizing Systems postulates that in the scale hierarchy of dynamical organization, a new level emerges if and only if a new level in the hierarchy of semiotic interpretance emerges. As the development of a new product always and naturally causes the emergence of a new meaning, the above-cited Principle of Emergence directly leads us to the formulation of the first law of life-cycle semiosis as follows:

I. The semiosis of a product life cycle is represented by a sequence of basic semiotic components, such that at least one of the components is well defined in the sense that not all of its morphisms of м and f are isomorphisms, and at least one м in the sequence is not level-preserving in the sense that it does not preserve the original partial ordering on levels.

For the present (i.e. for an on-going process), there exists a probability distribution over the possible мn for every component in the sequence. For the past (i.e. retrospectively), each of the distributions collapses to a single mapping with Pn = 1, while the sequence of basic semiotic components is degenerated to a sequence of functions. For the future, the life-cycle meaning-making

Industrial Semiosis. Note Quote.

rUNdh

The concept of Industrial Semiosis categorizes the product life-cycle processes along three semiotic levels of meaning emergence: 1) the ontogenic level that deals with the life history data and future expectations about a single occurrence of a product; 2) the typogenic level that holds the processes related to a product type or generation; and 3) the phylogenic level that embraces the meaning-affecting processes common to all of the past and current types and occurrences of a product. The three levels naturally differ by the characteristic durational times of the grouped semiosis processes: as one moves from the lowest, ontogenic level to the higher levels, the objects become larger and more complicated and have slower dynamics in both original interpretation and meaning change. The semantics of industrial semiosis in industry investigates the relationships that hold between the syntactical elements — the signs in language, models, data — and the objects that matter in industry, such as customers, suppliers, work-pieces, products, processes, resources, tools, time, space, investments, costs, etc. The pragmatics of industrial semiosis deals with the expression and appeal functions of all kinds of languages, data and models and their interpretations in the setting of any possible enterprise context, as part of the enterprise realising its mission by enterprising, engineering, manufacturing, servicing, re-engineering, competing, etc. The relevance of the presented definitions for infor- mation systems engineering is still limited and vague: the definitions are very general and hardly reflect any knowledge about the industrial domain and its objects, nor do they reflect knowledge about the ubiquitous information infrastructure and the sign systems it accommodates.

A product (as concept) starts its development with initially coinciding onto-, typo-, and phylogenesis processes but distinct and pre-existing semiotic levels of interpretation. The concept is evolved, and typogenesis works to reorganize the relationships between the onto- and phylogenesis processes, as the variety of objects involved in product development increases. Product types and their interactions mediate – filter and buffer – between the levels above and below: not all variety of distinctions remains available for re-organization as phylos, nor every lowest-level object have a material relevance there. The phylogenic level is buffered against variations at the ontogenic level by the stabilizing mediations at the typogenic level.

The dynamics of the interactions between the semiotic levels can well be described in terms of the basic processes of variation and selection. In complex system evolution, variation stands for the generation of a variety of simultaneously present, distinct entities (synchronic variety), or of subsequent, distinct states of the same entity (diachronic variety). Variation makes variety increase and produces more distinctions. Selection means, in essence, the elimination of certain distinct entities and/or states, and it reduces the number of remaining entities and/or states.

From a semiotic point of view, the variety of a product intended to operate in an environment is determined by the devised product structure (i.e. the relations established between product parts – its synchronic variety) and the possible relations between the product and the anticipated environment (i.e. the product feasible states – its potential diachronic variety), which together aggregate the product possible configurations. The variety is defined on the ontogenic level that includes elements for description of both the structure and environment. The ontogenesis is driven by variation that goes through different configurations of the product and eventually discovers (by distinction selection at every stage of the product life cycle) configurations, which are stable on one or another time-scale. A constraint on the configurations is then imposed, resulting in the selective retention – emergence of a new meaning for a (not necessarily new) sign – at the typogenic level. The latter decreases the variety but specializes the ontogenic level so that only those distinctions ultimately remain, which fit to the environment (i.e. only dynamically stable relation patterns are preserved). Analogously but at a slower time- scale, the typogenesis results in the emergence of a new meaning on the phylogenic level that consecutively specializes the lower levels. Thus, the main semiotic principle of product development is such that the dynamics of the meaning-making processes always seeks to decrease the number of possible relations between the product and its environment and hence, the semiosis of product life cycle is naturally simplified. At the same time, however, the ‘natural’ dynamics is such that augments the evolutive potential of the product concept for increasing its organizational richness: the emergence of new signs (that may lead to the emergence of new levels of interpretation) requires a new kind of information and new descriptive categories must be given to deal with the still same product.