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INTRODUCTORY REMARKS TO THE
ENGLISH EDITION

Since ancient times the question of the nature of geometry has been
a decisive problem for any theory of knowledge. The principles of
geometry, e.g., Euclid's axioms, seem to possess two characteristics
which are not easily reconciled. On the one hand, they appear as
immediately evident and therefore to hold with necessity. On the
other hand, their validity is not purely logical but factual; in technical
terms, they are not analytic but synthetic. This is shown by the fact
that, on the basis of certain measurements of angles and lengths of
physical bodies the results of other measurements can be predicted.
Kant boldly accepted the conjunction of both characteristics: from the
apparently necessary validity of the principles of geometry he con-
cluded that their knowledge is a priori (i.e., independent of experience)
although they are synthetic. When mathematicians constructed about
a hundred years ago systems of non-Euclidean geometries, a con-
troversy arose about the method of determining which of the systems,
one Euclidean and infinitely many non-Euclidean, holds for the space
of physics. Gauss was the first to suggest that the determination
should be made by physical measurements. But the great majority
of philosophers throughout the last century maintained the Kantian
doctrine that gecometry is independent of experience.

At the beginning of our century Poincaré pointed out the following
new aspect of the situation. No matter what observational facts are
found, the physicist is free to ascribe to physical space any one of the
mathematically possible geometrical structures, provided he makes
suitable adjustments in the laws of mechanics and optics and con-
sequently in the rules for measuring length. This was an important
insight. But Poincaré went further and asserted that physicists
would always choose the Euclidean structure because of its simplicity.
History refuted this prediction only a few years later, when Einstein
used a certain non-Euclidean geometry in his general theory of
relativity. Hereby he obtained a considerable gain in simplicity for
the total system of physics in spite of the loss in simplicity for geometry.
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Introductory Remarks to the English Edition

Through this development it has become clear that the situation
concerning the nature of geometry is as follows. It is necessary to
distinguish between pure or mathematical geometry and physical
geometry. The statements of pure geometry hold logically, but they
deal only with abstract structures and say nothing about physical
space. Physical geometry describes the structure of physical space;
it is a part of physics. The validity of its statements is to be estab-
lished empirically—as it has to be in any other part of physics—after
rules for measuring the magnitudes involved, especially length, have
been stated. (In Kantian terminology, mathematical geometry holds
indeed a priori, as Kant asserted, but only because it is analytic.
Physical geometry is indeed synthetic; but it is based on experience and
hence does not hold a priori. In neither of the two branches of science
which are called *geometry” do synthetic judgments a priori occur.
Thus Kant’s doctrine must be abandoned.)

In physical geometry, there are two possible procedures for estab-
lishing a theory of physical space. First, the physicist may freely
choose the rules for measuring length.  After this choice is made, the
question of the geometrical structure of physical space becomes
cmpirical; it is to be answered on the basis of the results of experiments.
Alternatively, the physicist may freely choose the structure of physical
space; but then he must adjust the rules of measurement in view of the
observational facts. (Although Poincaré emphasized the second way,
he also saw the first clearly. This point seems to be overlooked by those
philosophers, among them Reichenbach, who regard Poincaré’s view
on geometry as non-empiricist and purely conventionalist.)

The view just outlined concerning the nature of geometry in physics
stresses, on the one hand, the empirical character of physical geometry
and, on the other hand, recognizes the important function of con-
ventions. This view was developed in the twenties of our century
by those philosophers who studied the logical and methodological
problems connected with the theory of relativity, among them Schlick,
Reichenbach, and myself. The first comprehensive and systematic
representation of this conception was given by Reichenbach in 1928
in his Philosophie der Raum-Zeil-Lehre (the original of the present
translation). This werk was an important landmark in the develop-
ment of the empiricist conception of geometry. In my judgment it is
still the best book in the field. Therefore the appearance of an English
edition is to be highly welcomed; it satisfies a definite need, all the more
since the German original is out of print.
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Introductory Remarks to the English Edition

The book deals with the problems of the foundations of geometry—
and also of the theory of time, closely connected with that of space
by Einstein's conception—in all their various aspects, e.g., the relations
between theory and observations, connected by coordinative definitions,
the relations between topological and metrical properties of space, and
also the psvchological problem of the possibility of a visual intuition
of non-Luclidean structures.

Of the many fruitful ideas which Reichenbach contributed to the
development of this philosophical theory, I will mention only one,
which seems to me of great interest for the methodology of physics
but which has so far not found the attention it deserves. This is the
principle of the elimination of universal forces. Reichenbach calls
those physical forces universal which affect all substances in the same
way and against which no isolating walls can be built, Let T be the
form of Einstein's theory which uses that particular non-Euclidean
structure of space which Einstein proposes; in 7" there are no universal
forces. According to our above discussion, 7" can be transformed into
another form 7 which is physically equivalent with 7 in the sense
of yielding the same observable results, but uses a different geometrical
structure. Reichenbach shows that any such theory 7" has to assume
that our measuring rods undergo contractions or expansions depending
merely upon their positions in space, and hence has to introduce
universal forces to account for these changes. Reichenbach proposes
to accept as a general methodological principle that we choose that
form of a theory among physically equivalent forms (or, in other words,
that definition of “rigid body” or ““measuring standard ") with respect
to which all universal forces disappear. If this principle is accepted,
the arbitrariness in the choice of a measuring procedure is avoided and
the question of the geometrical structure of physical space has a
unique answer, to be determined by physical measurements.

Even more outstanding than the contributions of detail in this book
is the spirit in which it was written.  The constant careful attention
to scientifically established facts and to the content of the scientific
hypotheses to be analyzed and logically reconstructed, the exact
formulation of the philosophical results, and the clear and cogent
presentation of the arguments supporting them, make this work a
model of scientific thinking in philosophy.

RupoLr CARNAP
University of California
al Los Angeles

July, 1956
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INTRODUCTION

T1 the philosophical method of our time is compared with the method
of the great system builders of the 17th and 18th centuries, a funda-
mental difference in the respective attitndes to the natural sciences
becomes evident. The classical philosophers had a close connection
with the science of their times; some of them, such as Descartes
and Leibniz, were leading mathematicians and physicists themselves.
More recently philosophy and science have become estranged, a
situation which has led to an unproductive tension between the two
groups. The philosophers, whose professional training has usually been
acquired in the pursuit of historical and philological studies, accuse the
scientist of too much specialization and turn instead to metaphysical
problems; the scientists, on the other hand, miss in philosophy the
treatment of epistemological problems, which, though solved by a
Leibniz or Kant within the framework of the science of their time,
demand a fresh analysis within the framework of contemporary science.
This alienation is expressed in mutual contempt in which each mis-
understands the purposes of the other’s endeavors.

Looking back into history one can trace the roots of this division
throughout the past century. For Kant, knowledge as realized in
mathematical physics was still the starting point of epistemology;
although this basis constitutes a certain one-sidedness of his system, it
also accounts for the strength of his epistemological position to which
his philosophy owes its great influence. It is surprising, however, how
little use Kant made of particular scientific results in the elaboration
of his system, how little scientific material he employed in his main
epistemological works, even in the form of examples. He must have
seen the scientific conception of knowledge as a whole and created his
system out of this experience, which produced, as the result of an
analysis of pure reason, the very conception of knowledge of the

xi



Introduction

mathematical physics of his time. How well he must have explicated
this conception of knowledge can be inferred from the vivid interest
expressed by the natural scientists. Whether they were adversaries
or adherents, a clarification of their position with respect to that of
Kant seemed to be natural and necessary to them, and they gradually
identified Kant's doctrine with philosophy as such. But Kant's
solution of the epistemological problem was at the same time the last
one in which science played a role. Later philosophical systems had
no longer any connection with the science of their time; and though
some of them, such as Schelling’s and Hegel's natural philosophy,
treated scientific material to a larger extent than Kant, their philosophy
of nature is a naive evaluation of scientific results rather than a true
understanding of the spirit of scientific research. Since then science
and philosophy have remained separated. The speculative and the
rationalist-analytic components of Kant's system were preserved, while
the relation to science was renounced. The philosopher allied himself
with the humanities; so far as science interested him at all, he surmised
that the problem of science had been solved since Kant and that a
further development of science consisted only in filling out Kant's
program, a conception which even in the more flexible form of the
Neo-Kantian school could not be prevented from coming into conflict
with the actual development of science. Science, in the meantime,
went its own way. Certainly, one cannot reproach Kant for not
anticipating this development, but neither can one expect the modern
scientist to acknowledge Kant's philosophy as the basis of his own
epistemology. Neither in Kant nor in the prevailing schools of philo-
sophy does he find an epistemology that enables him to understand his
own scientific activity. Philosophy still acts like a stranger toward
the gigantic complex of natural science, even to the point of rejecting it.

In the course of the last century the scientists themselves elaborated
the epistemological foundations as well as the content of scientific
theories. Of course, only a few outstanding men were conscious of the
philosophical character of their methodology; most of the results were
achieved inadvertently without intending philosophical solutions, in
the pursuit of specific scientific interests which, however, were bound to
lead to philosophical inquiries. Thus we are faced with the strange
result that during the last century an exact theory of knowledge was
constructed, not by philosophers, but by scientists, and that in the
pursuit of particular scientific investigations more epistemology was
produced than in the process of philosophical speculation. And the
xii
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problems thus solved were truly epistemological problems. If the
speculatively oriented philosophy of our time denies to contemporary
science its philosophical character, if it calls contributions such as the
theory of relativity or the theory of sets unphilosophical and belonging
in the special sciences, this judgment cxpresses only the inability to
perceive the philosophical content of modern scientific thought.
Today mathematical physics, by means of its infinitely refined mathe-
matical and experimental methods, treats the same problems that
constituted the foundation of the epistemology of Descartes, Leibniz
and Kant. Yet an adequate insight into the techniques of scientific
inquiry is necessary in order to understand what a powerful instrument
for the analysis of basic philosophical questions has been created and
what potentialities for philosophical exploitation it contains.

Gradually, however, the situation has become toe complicated for the
scientist. He can no longer work out the actual philosophical implica-
tions, for the simple reason that one individual is not capable of carrying
on scientific and philosophical work at the same time. A division of
labor seems inevitable, since empirical as well as epistemological
research demands an amount of detailed work that surpasses the
capacity of one individual. It should also be mentioned that the
philosophical and scientific goals, though in general depending upon
cach other, oppose each other within the mentality of the individual
scholar. The philosophic analysis of the meaning and significance of
scientific statements can almost hinder the processes of scientific
research and paralyze the pioneering spirit, which would lack the
courage to walk new paths without a certain amount of irresponsibility.
The style of modern science has gradually adopted the hurried
pace of technology induced by competition; one might regret this
mechanistic trend, but it seems to be the necessary form of modern
productivity. We cannot counteract this tendency by a competition
with less technical means, but solely by means of a philosophical
analysis of the process of knowledge itself; it is the discovery of the
significance of this machine age knowledge which, in the minds of many
people, will remain mere technology, but which, in its system as a
whole, reveals a depth of insight that can only be reached through
the teamwork of an organized group of individual scholars.

To carry out such a philosophy of nature must therefore remain the
prerogative of a special group of individual scholars such as has recently
emerged, of a group that on the one hand masters the technique of
mathematical science, and on the other hand is not weighed down by it

xili
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to such an extent as to lose its philosophic perspective over details.
For in the same way as philosophic contemplation can inhibit the
daring step of the scientific investigator, specialized research can limit
the ability for philosophic interpretation. The reproach by philo-
sophers that scientists lack an understanding of philosophical problems
is no less justified than the one voiced by the other side charging a lack
of understanding of scientific problems.

From this circumstance one should not draw the conclusion, however,
that one ought to carry on philosophy in a speculative vein, apart
from the sciences.  On the contrary, one should approach science from
a philesophical point of view and try to construct with its sharpened
tools the philosophy of this technically refined knowledge.

From this point of view, the author has carried through a number of
investigations exploring the complex of mathematical physics from
various directions. The natural organization of this basic science led
to the decision to present the investigations concerning the problems
of time and space as a separate unit; an exposition of further studies
will follow. For the theory of space and time comprehensive material
was available, arising on the one hand from the mathematical analysis
of geometry, on the other hand from Einstein's theory of relativity.
This theory provides a vivid example of the fruitfulness of physical
questions for philosophical explication. Thus a philosophy of space
and time is nowadays always a philosophy of relativity—this duality
probably characterizes best the method of scientific analysis which is
the basis of such a philosophy.

It seemed necessary to include an exposition of the material in our
presentation. A mere reference to mathematico-physical publications
of the material would be inadequate, because all these books are
geared too much to a mathematico-physical interpretation and neglect
the philosophical foundations. On the other hand, it scemed to be
out of the question to enter into a philosophical evaluation of this
material without keeping it clearly in mind at cvery moment. Modern
philosophy of nature will have to develop in as close a connection with
the actual natural and mathematical sciences as has been taken for
granted for cultural philosophy and its historical subject matter. And
if we permit historians of philosophy to quote repeatedly, in their
presentations, parts of the original historical text whose content cannot
be completely exhausted by being paraphrased or translated, we should
not be surprised that in his philosophical investigations of nature the
philosopher will go back to the original mathematical language in
xiv
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which the “book of nature’ is written, since mathematical language
can even less be exhausted by being paraphrased or translated. A
considerable part of the necessary mathematical work was completed
in the author's Axiomatik der relativistischen Rawm-Zeit-Leiret and
detailed mathematical computations could therefore be omitted from
this book. The philosophical interpretation of the theory of space and
time presupposes the earlier work to which I have to refer the reader
for rigorous proofs of many statements in the present book. But the
occasional use of a mathematical formula occurring in the text will
throw even more light upon the epistemological foundation.

The path of the present philosophical work led therefore through the
natural sciences, yet the wealth of mathematical and physical material
did not appear as an obstacle, but rather as an inexhaustible source of
further philosophical insights. It is hoped, in this manner, to give an
example of the superiority of a philosophical method closely connected
with the results of empirical science. All the detailed mathematical
work achieved by outstanding men is at its disposal and becomes
systematically integrated from the viewpoint of the philosopher.
Formulations whose universality would not mean anything in isolation
acquire the utmost significance, if they are supported by a detailed
analysis of particular instances which they generalize. Modern
scientific epistemology therefore justifies discoveries of such far-
reaching consequences as would, in former times, have been merely
empty speculation, phantasies without empirical foundation. It is
characteristic of this emerging scientific trend in philosophy to empha-
size the combination of detailed work with an overall comprehensiveness
of the problem; whoever charges it with narrow-mindedness or sterility
shows only that he confuses rigor of method with narrowness of aim.

This book has been written in the knowledge that solutions are
attainable. It is intended, at the same time, to present in a compre-
hensive fashion the treasure of philosophical results that has become
the common property of scientific philosophy, constituting already a
certain common tradition, and also to go beyond it on new paths that
were opened to the author through a persistent analysis of mathematical
physics. If in this survey, therefore, ideas are not always traced back
to their authors, this will best be understood by a person who is a
collaborator in this ficld and who knows how frequently ideas are
oscillating today between various thinkers until they find their ultimate

1 Braunschweig 1924, Friedrich Vieweg and Son, A.G. (in the following referred
to as A.).
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formulation as a product of teamwork. This accumulation of common
knowledge is the characteristic mark of the new philosophical orienta-
tion, which, due to its origin in the empirical sciences, stands even
methodologically in contrast to the isolated systems of the speculative
philosophers and gains its superiority from this source. Philosophy of
science is not intended to be one of those systems that originate in the
mind of a lonely thinker and stand like marble monuments before the
Baze of generations, but should be considered a science like the other
sciences, a fund of cooperatively discovered propesitions whose accept-
ance, independent of the framework of a system, can be required from
anybody interested in these matters. The meaning of concepts may
vary, of course, depending upon the context in which they are used;
but this kind of ambiguity can be avoided by making language more
precise and need not lead to a renunciation of objective philosophical
knowledge altogether. If the effect of the philosophy of systems was
to destroy the concept of philosophical truth and replace it by the
concept of consistency within the system, one may see as the noblest
aim of scientific philosophy the establishment of the concept of objective
truth as the ultimate criterion of all philosophical knowledge.
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CHAPTER 1. SPACE

§ 1. THE AXIOM OF THE PARALLELS AND
NON-EUCLIDEAN GEOMETRY

In Euclid"s work, the geometrical achievements of the ancients
reached their final form: geometry was established as a closed and
complete system. The basis of the system was given by the geo-
metrical axioms!, from which all theorems were derived. The great
practical significance of this construction consisted in the fact that it
cendowed geometry with a certainty never previously attained by any
other science. The small number of axioms forming the foundation
of the system were so self-evident that their truth was accepted without
reservation. The entire construction of geometry was carried through
by a skillful combination of the axioms alone, without any addition of
further assumptions; the reliability of the logical inferences used in the
proofs was so great that the derived theorems, which were sometimes
quite involved, could be regarded as certain as the axioms. Geometry
thus became the prototype of a demonstrable science, the first instance
of a scientific rigor which, since that time, has been the ideal of every
science. In particular, the philosophers of all ages have regarded it
as their highest aim to prove their conclusions by the geometrical
method.”

Euclid’s axiomatic construction was also important in another
respect. The problem of demonstrability of a science was solved by
Euclid in so far as he had reduced the science to a system of axioms.
But now arose the epistemological question how to justify the truth of
those first assumptions. If the certainty of the axioms was transferred

1 Euclid distinguished between axioms, postulates and definitions.  We may
be allowed for our present purpose to include all these concepts under the name of
axioms.
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Chapter 1. Space

to the derived theorems by means of the system of logical concatena-
tions, the problem of the truth of this involved construction was
transferred, conversely, to the axioms. It is precisely the assertion
of the truth of the axioms which epitomizes the problem of scientific
knowledge, once the connection between axioms and thcorems has
been carried through. In other words: the smplicational character of
mathematical demonstrability was recognized, i.e., the undeniable fact
that only the implication *'if a, then 4" is accessible to logical proof.
The problem of the categorical assertion ‘a is true b is true”, which is
no longer tied to the ““if”’, calls for an independent solution. The truth
of the axioms, in fact, represents the intrinsic problem of every science.
The axiomatic method has not been able to establish knowledge with
absolute certainty; it could only reduce the question of such know-
ledge to a precise thesis and thus present it for philosophical discussion.

This effect of the axiomatic construction, however, was not recog-
nized until Jong after Euclid’s time. Precise epistemological formula-
tions could not be expected from a naive epoch, in which philosophy
was not yet based upon well-developed special sciences, and thinkers
concerned themselves with cruder things than the truth of simple and
apparently self-evident axioms. Unless one was a skeptic, one was
content with the fact that certain assumptions had to be believed
axiomatically; analytical philosophy has learned mainly through Kant's
critical philosophy to discover genuine problems in questions previously
utilized only by skeptics in order to deny the possibility of knowledge.
These questions became the central problems of epistemology. For
two thousand years the criticism of the axiomatic construction has
remained within the frame of mathematical questions, the elaboration
of which, however, led to peculiar discoveries, and eventually called
for a return to philosophical investigations.

The mathematical question concerned the reducibility of the axio-
matic system, i.c., the problem whether Euclid’s axioms represented
ultimate propositions or whether there was a possibility of reducing
them to still simpler and more self-evident statements. Since the
individual axioms were quite different in character with respect to their
immediacy, the question arose whether some of the more complicated
axioms might be conceived as consequences of the simpler ones, i.e.,
whether they could be included among the theorems. In particular,
the demonstrability of the axiom of the parallels was investigated.
This axiom states that through a given point there is one and only one

parallel to a given straight line (which does not go through the given
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§ 1. The Axiom of the Parallels and Non-Euclidean Geometry

point), i.e., one straight line which lies in the same plane with the first
one and does not intersect it. At first glance this axiom appears to be
self-evident. There is, however, something unsatisfactory about it,
because it contains a statement about infinity; the assertion that the
two lines do not intersect within a finite distance transcends all possible
experience. The demonstrability of this axiom would have enhanced
the certainty of geometry to a great extent, and the history of mathe-
matics tells us that excellent mathematicians from Proclus to Gauss
have tried in vain to solve the problem.

A new turn was given to the question through the discovery that it
was possible to do without the axiom of parallels altogether. Instead
of proving its truth the opposite method was employed: it was demon-
strated that this axiom could be dispensed with. Although the exist-
ence of several parallels to a given line through one point contradicts
the human power of visualization, this assumption could be introduced
as an axiom, and a consistent geometry could be developed in com-
bination with Euclid’s other axioms. This discovery was made almost
simultaneously in the twenties of the last century by the Hungarian,
Bolyai, and the Russian, Lobatschewsky; Gauss is said to have con-
ceived the idea somewhat earlier without publishing it.

But what can we make of a geometry that assumes the opposite of
the axiom of the parallels? In order to understand the possibility
of a non-Euclidean geometry, it must be remembered that the axio-
matic construction furnishes the proof of a statement in terms of logical
derivations from the axioms alone. The drawing of a figure is only a
means to assist visualization, but is never used as a factor in the proof;
we know that a proof is also possible by the help of “badly-drawn™
figures in which so-called congruent triangles have sides obviously
different in length. It is not the immediate picture of the figure, but
a concatenation of logical relations that compels us to aceept the proof.
This consideration holds equally well for non-Euclidean geometry;
although the drawing looks like a ** badly-drawn " figure, we can with its
help discover whether the logical requirements have been satisfied, just as
we can do in Euclidean geometry. This is why non-Euclidean geometry
has been developed from its inception in an axiomatic construction; in
contradistinction to Euclidean geometry where the theorems were known
first and the axiomatic foundation was developed later, the axiomatic
construction was the instrument of discovery in non-Euclidean geometry.

With this consideration, which was meant only to make non-
Euclidean geometry plausible, we touch upon the problem of the
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Chapter I. Space

visualization of geomelry. Since this question will be treated at
greater length in a later section, the remark about “badly-drawn’
figures should be taken as a passing comment. What was intended
was to stress the fact that the essence of a geometrical proof is contained
in the logic of its derivations, not in the proportions of the figures.
Non-Euclidean geometry is a logically constructible system—this was
the first and most important result established by its inventors.

It is true that a strict proof was still missing. No contradictions
were encountered—yet did this mean that none would be encountered
in the future? This question constitutes the fundamental problem
concerning an axiomatically constructed logical system. It is to be
expected that non-Euclidean statements directly contradict those of
Euclidean geometry; one must not be surprised if, for instance, the
sum of the angles of a triangle is found to be smaller than two right
angles. This contradiction follows necessarily from the reformulation
of the axiom of the parallels. What is to be required is that the new
geometrical system be self-consistent. The possibility can be imagined
that a statement a, proved within the non-Euclidean axiomatic system,
is not tenable in a later development, i.e., that the statement »of-a
as well as the statement a is provable in the axiomatic system. It was
incumbent upon the early adherents of non-Euclidean geometry,
therefore, to prove that such a contradiction could never happen.

The proof was furnished to a certain extent by Klein’s! Euclidean
model of non-Euclidean geometry. Klein succeeded in coordinating
the concepts of Euclidean geometry, its points, straight lines, and
planes, its concept of congruence, etc., to the corresponding concepts
of non-Euclidean geometry, so that every statement of one geometry
corresponds to a statement of the other. If in non-Euclidean geo-
metry a statement 4 and also a statement #of-a could be proved, the
same would hold for the coordinated statements a' and not-a’ of
Euclidean geometry; a contradiction in non-Euclidean geometry
would entail a corresponding contradiction in Euclidean geometry.
The result was a proof of consistency, the first in the history of mathe-
matics: it proceeds by reducing a new system of statements to an
earlier one, the consistency of which is regarded as virtually certain.2

After these investigations by Klein the mathematical significance of

! For 2 more detailed presentation see § 11.

2 Hilbert later proved the consistency of Euclidean geometry by a reduction
to arithmetic. The consistency of arithmetic, which can no longer be proved
by reduction, needs a separate proof; this most important problem, which has
found an claborate treatment by Hilbert and his school, is still under discussion.
4



§ 1. The Axiom of the Parallels and Non-Euclidean Geometry

non-Euclidean geometry was recognized.!  Compared with the natural
geometry of Euclid, that of Bolyai and Lobatschewsky appeared
strange and artificial; but its mathematical legitimacy was beyond
question. It turned out later that another kind of non-Euclidean
geomelry was possible, The axiom of the parallels in Luclidean
geometry asserts that to a given straight line through a given point
there exists exactly one parallel; apart from the device used by Bolyai
and Lobatschewsky to deny this axiom by assuming the existence of
several parallels, there was a third possibility, that of denying the
existence of any parallel. However, in order to carry through this
assumption consistently,? a certain change in a number of Luclid’s
other axioms referring to the infinity of a straight line was required.
By the help of these changes it became possible to carry through this
new type of non-Euclidean geometry.

As a result of these developments there exists not one geometry but
a plurality of geometrics. With this mathematical discovery, the
epistemological problem of the axioms was given a new solution. If
mathematics is not required to use certain systems of axioms, but is in
a position to employ the axiom nof-a as well as the axiom «a, then the
assertion 4 does not belong in mathematics, and mathematics is solely
the science of implication, i.c., of relations of the form “if ., . then"’;
consequently, for geometry as a mathematical science, there is no prob-
lem concerning the truth of the axioms. This apparently unselvable
problem turns out to be a pseudo-problem. The axioms are not true
or false, but arbitrary statements. It was soon discovered that the
other axioms could be treated in the same way as the axiom of the
paraliels. “Non-Archimedian,” ‘‘non-Pascalian,” etc., geometrics
were constructed; a more detailed exposition will be found in § 14,

These considerations leave us with the problem into which discipline
the question of the truth of the assertion a should be incorporated.

1 Klein did not start his investigations with the avowed purpose of establishing
a proof of consistency; the proof came about inadvertently, so to speak, as a
result of the construction of the mwlel carried out with purely mathematical
intentions. L. Bichberbach has shown recently that the recognition of the
significance of non-Euclidean geometry was the result of long years of struggle.
Berl. Akademicber. 1925, phys.-math. Klasse, p. 381. Sce Bonola-Liecbmann,
Nichtewklidische Geometrie, Leipzig 1921 and Engel-Stackel, Theorie der Parallel-
tinien von Euklid bis Gauss, Leipzig 1895, for the carlier history of the axiom of
the parallels.

2 The axiom of the parallels is independent of the other axioms of Euclid only
in so far as it asserts the existence of at most onc parallel; that there exists at
least one parallel can be demonstrated in terms of the other axioms. This fact
is stated with masterful precision in Euclid’s work.
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Chapter 1. Space

Nobody can deny that we regard this statement as meaningful; com-
mon sense is convinced that real space, the space in which we live and
move around, corresponds to the axioms of Euclid and that with
respect to this space a is true, while not-a is false. The discussion of
this statement leads away from mathematics; as a question about a
property of the physical world, it is a physical question, not a mathe-
matical one. This distinction, which grew out of the discovery of
non-Euclidean geometry, has a fundamental significance: it divides the
problem of space into two parts; the problem of mathematical space is
recognized as different from the problem of physical space.

It will be readily understood that the philosophical insight into the
twofold nature of space became possible only after mathematics had
made the step from Euclid’s geometry to non-Euclidean geometries.
Up to that time physics had assumed the axioms of geometry as the
self-evident basis of its description of nature. If several kinds of
geometries were regarded as mathematically equivalent, the question
arose which of these geometries was applicable to physical reality;
there is no necessity to single out Euclidean geometry for this purpose.
Mathematics shows a variety of possible forms of relations among
which physics selects the real one by means of observations and experi-
ments. Mathematics, for instance, teaches how the planets would
move if the force of attraction of the sun should decrease with the
second or third or nth power of the distance; physics decides that the
second power holds in the real world. With respect to geometry there
had been a difference; only one kind of geometry had been developed
and the problem of choice among geometries had not existed. After
the discoveries of non-Euclidean geometries the duality of physical and
possible space was recognized. Mathematics reveals the possible spaces;
physics decides which among them corresponds to physical space. In
contrast to all earlier conceptions, in particular to the philosophy
of Kant, it becomes now a task of physics to determine the geometry of
physical space, just as physics determines the shape of the earth or the
motions of the planets, by means of observations and experiments.

But what methods should physics employ in order to come to a
decision? The answer to this question will at the same time supply
an answer to the question why we are justified in speaking of a specific
physical space. Before this problem can be investigated more closely,
another aspect of geometry will have to be discussed. For physics
the analytic treatment of gecometry became even more fruitful than the
axiomatic one.

6



§ 2. Riemannian Geometry

§ 2. RIEMANNIAN GEOMETRY

Riemann’s extension of the concept of space did not start from the
axiom of the parallels, but centered around the concept of metric.

Riemann developed further a discovery by Gauss according to which
the shape of a curved surface can be characterized by the gecometry
within the surface. Let us illustrate Gauss’ idea as follows. We
usually characterize the curvature of the surface of a sphere by its
deviation from the plane; if we hold a plane against the sphere it touches
only at one point; at all other points the distances between plane and
sphere become larger and larger. This description characterizes the
curvature of the surface of the sphere * from the outside’; the distapces

Fig. 1. Circumference and diameter of a circle on the surface
of a sphere.

between the plane and the surface of the sphere lie outside the surface
and the decision about the curvature has to make use of the third
dimension, which alone establishes the difference between curved and
straight. Is it possible to determine the curvature of the surface of
the sphere without taking outside measurements? Is it meaningful
to distinguish the curved surface from the plane within two dimensions?
Gauss showed that such a distinction is indeed possible. If we were to
pursue “ practical geometry " on the sphere, by surveying, for instance,
with small measuring rods, we should find out very soon that we were
living on a curved surface. For the ratio of circumference u and dia-
meter d of a circle we would obtain a number smaller than = = 3.14...
as is shown in Fig. 1. Since we stay on the surface all the time, we
would not measure the ““real diameter” which cuts through the inner
part of the sphere, but the “curved diameter” which lies on the surface
of the sphere and is longer. This diameter divided into the circum-
ference results in a number smaller than . Nevertheless, it is mean-
ingful to call the point M ‘‘the center of the circle on the surface of the
sphere’’ because it has the same distance from every point of the circle;
that we find ourselves on a sphere is noticed by means of the deviation

of the ratio from #. In this way we obtain a geomelry of a
7



Chapter I. Space

spherical surface which is distinguished from the ordinary geometry
by the fact that different metrical relations hold for this kind of
geometry. In addition to the change in the ratio between circumference
and diameter of a circle, an especially important feature is that the sum
of the angles of a triangle on a sphere is greater than 180°.

It is remarkable that this generalization of plane geometry to surface
geometry is identical with that generalization of geometry which
originated from the analysis of the axiom of the parallels. The leading
role which has been ascribed to the axiom of the parallels in the course
of the development of geometrical axiomatics cannot be justified from
a purely axiomatic point of view; the construction of non-Euclidean
geometries could have been based equally well upon the elimination of
other axioms. It was perhaps due to an intuitive fecling for theoretical
fruitfulness that the criticisin always centered around the axiom of the
parallels. For in this way the axiomatic basis was created for that
extension of geometry in which the metric appears as an independent
variable.! Once the significance of the metric as the characteristic
feature of the plane has been recognized from the viewpoint of Gauss’
plane theory, it is easy to point out, conversely, its connection with the
axiom of the parallels. The property of the straight line of being the
shortest connection between two points can be transferred to curved
surfaces, and leads to the concept of sirasghtest line; on the surface of
the sphere the great circles play the role of the shortest line of con-
nection, and on this surface their significance is analogous to that of
the straight lines on the plane. Yet while the great circles as “straight
lines™ share their most important property with those of the plane,
they are distinct from the latter with respect to the axiom of the
parallels: all great circles of the sphere intersect and therefore there
are no parallels among these **straight lines”. Here we encounter the
second possibility of a denial (cf. § 1) of the axiom of the parallels
which excludes the existence of parallels. If this idea is carried
through, and all axioms are formulated on the understanding that by
“straight lines” are meant the great circles of the sphere and by
“plane” is meant the surface of the sphere, it turns out that this
system of clements satisfies a system of axioms within two dimensions
which is nearly identical in all of its statements with the axiomatic
system of Euclidean geometry; the only exception is the formulation of
the axiom of the parallels.!  The geometry of the spherical surface can

1 Cf. p. 1481 about the connection of the axiom of the parallels with the metric.
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§ 2. Riemannian Geometry

be viewed as the realization of a two-dimensional non-Euclidean
geometry: fhe denial of the axiom of the parallels singles out thal
generalization of geometry which occurs in the transition from the plane
to the curved surface.

Once this result has been recognized for two-dimensional structures,
a new kind of insight is gained into the corresponding problem of
several dimensions by means of a combination of the two different
points of departure. The axiomatic development of non-Euclidean
geometry had already been achieved for three-dimensional structures
and therefore constituted an extension of three-dimensional space
analogous to the relation of the plane to the curved surface.
Although Euclidean space contains curved surfaces, it does not embody
the degree of logical generalization that characterizes the surfaces; it
can realize only the Euclidean axiom of the parallels, not the axioms
contradicting the latter. This fact suggests a concept of space which
contains thie plane Euclidean space as a special case, but includes all
non-Euclidean spaces toco. Such a concept of space in three dimensions
is analogous to the concept of surface in two dimensions; it has the
same relation to Euclidean space as a surface has to the plane.

On the basis of these ideas Riemann could give so generalized a
definition to the concept of space that it includes not only Euclidean
space but also Lobatschewsky's space as special cases. According
to Riemann, space is merely a three-dimensional manifold; the
question is left open which axiomatic systems will hold forit. Riemann
showed that it is not necessary to develop an axiomatic system in order
to find the different types of space; it is more convenient to use an
analytic procedure analogous to the method developed by Gauss for
the theory of surfaces. The geometry of space is established in terms
of six functions, the metrical coefficients of the line element, which must
be given 2 as a function of the coordinates; the manipulation of these
functions replaces geometrical considerations, and all properties of
geometry can be expressed analytically. This procedure can be

! It is evident, in considering the spherical surface, that two great circles will
intersect in two points; hence, the denial of the axiom that two straight lines can
intersect in only one point is involved. For if all of the axioms of Euclidean
geometry except the parallel axiom are unchanged it is possible to prove there
is at lcast one parallel. In the treatment of the spherical surface, however, we
have seen that this theorem does not hold. This theorem depends upon the

axiom that straight lines intersect in only one point; hence its denial removes the
inconsistency.

2 Cf. the more detailed presentation in § 39.
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likened to the method in elementary analytic geometry which estab-
lishes an equivalence between a formula with two or three variables
and a curve or a surface. The imagination is thus given conceptual
support that carries it to new discoveries. In analogy to the auxiliary
concept of the curvature of a surface, which is measured by the
reciprocal product of the main radii of curvature, Riemann introduced
the auxiliary concept of curvature of space, which is a much more
complicated mathematical structure. Euclidean space, then, has a
curvature of degree zero in analogy to the plane, which is a surface
of zero curvature. Euclidean space occupies the middle ground
between the spaces of positive and negative curvatures: it can be shown
that this classification corresponds to the three possible forms of the
axiom of the parallels. In the space of positive curvature no parallel
to a given straight line exists; in the space of zero curvature one parallel
exists; in the space of negative curvature sore than one parallel exists.
In general, the curvature of space may vary from point to point in a
manner similar to the point to point variation in the curvature of a
surface; but the spaces of constant curvature have a special significance.
The space of constant negative curvature is that of Bolyai-Lobat-
schewsky; the space of constant zero curvature is the Euclidean space;
the space of constant positive curvature is called spherical, because it is
the three-dimensional analogue to the surface of the sphere. The
analytical method of Riemann has led to the discovery of more types
of space than the synthetic method of Bolyai and Lobatschewsky,
which led only to certain spaces of constant curvature. Modern
mathematics treats all these types of space on equal terms and develops
and manipulates their propertics as easily as those of Euclidean
geometry.

§ 3. THE PROBLEM OF PHYSICAL
GEOMETRY

Let us now return to the question asked at the end of §1. The
geometry of physical space had to be recognized as an empirical
problem; it is the task of physics to single out the acfual space, i.e.,
physical space, among the possible types of space. It can decide this
question only by empirical means: but how should it proceed?

The method for this investigation is given by Riemann’s mathe-
matical procedure: the decision must be brought about by practical
10



§ 3. The Problem of Physical Geometry

measurements in space. In a similar way as the inhabitants of a
spherical surface can find out its spherical character by taking measure-
ments, just as we humans found out about the spherical shape of our
earth which we cannot view from the outside, it must be possible to
find out, by means of measurements, the geometry of the space in
which we live. There is a geodetic method of measuring space analogous
to the method of measuring the surface of the earth. However, it would
be rash to make this assertion without further qualification. For a
clearer understanding of the problem we must once more return to the
example of the plane.
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Fig. 2. Projection of a non-Euclidean geometry on a plane.

Let us imagine (Fig. 2) a big hemisphere made of glass which merges
gradually into a huge glass plane; it looks like a surface G consisting
of a plane with a hump. Human beings climbing around on this
surface would be able to determine its shape by geometrical measure-
ments. They would very scon know that their surface is plane in the
outer domains but that it has a hemispherical hump in the middle; they
would arrive at this knowledge by noting the differences between their
measurements and two-dimensional Euclidean geometry.

An opaque plane E is located below the surface G parallel to its plane
part. Vertical light rays strike it from above, casting shadows of all
objects on the glass surface upon the plane. Every measuring rod
which the G-people are using throws a shadow upon the plane; we would
say that these shadows suffer deformations in the middle area. The
G-people would measure the distances A’B’ and B‘C’ as equal in
length, but the corresponding distances of their shadows A B and BC
would be called unequal.

Let us assume that the plane E is also inhabited by human beings
and let us add another strange assumption. On the plane a mysterious
force varies the length of all measuring rods moved about in that plane,
so that they are always equal in length to the corresponding shadows

11
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projected from the surface G. Not only the measuring rods, however,
but all objects, such as all the other measuring instruments and the
bodies of the people themselves, are affected in the same way; these
people, therefore, cannot directly perceive this change. What kind
of measurements would the E-people obtain? In the outer areas of
the plane nothing would be changed, since the distance P'Q’ would
be projected in equal length on PQ. But the middle area which lies
below the glass hemisphere would not furnish the usual measurements.
Obviously the same results would be obtained as those found in the
middle region by the G-people. Assume that the two worlds do not
know anything about each other, and that there is no outside observer
able to look at the surface E—what would the E-people assert about the
shape of their surface?

They would certainly say the same as the G-people, i.e., that they
live on a plane having a hump in the middle. They would not notice
the deformation of their measuring rods. But why would they not
notice this deformation?

We can easily imagine it to be caused by a physical factor, for
instance by a source of heat under the plane E, the effects of which
are concentrated in the middle arca. It expands the measuring rods
so that they become toco long when they approach A. Geometrical
relations similar to those we assumed would be realized; the distances
CB and BA would be covered by the same measuring rod and heat
would be the mysterious force we imagined.

But could the E-people discover this force? Before we answer this
question we have to formulate it more precisely. If the E-people
knew that their surface is really a plane, they could, of course, notice
the force by the discrepancy between their observed geometry and
Euclidean plane geometry. The question, therefore, should read:
how can the effect of the force be discovered if the nature of the
geometry is not known? Or better still: how can the force be detected
if the nature of the geometry may not be used as an indicator?

If heat were the affecting force, direct indications of its presence
could be found which would not make use of geometry as an indirect
methed. The E-people would discover the heat by means of their
sense of temperature. But they would be able to demonstrate the
heat expansion independently of this sensation, due to the fact that
heat affects different materials in different ways. Thus the E-people
would obtain one geometry when using copper measuring rods and
another when using woeden measuring rods. In this way they would
12
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notice the existence of a force. Indeed, direct evidence for the presence
of heat is based on the fact that it affects different materials in different
ways. The fact that the difference in temperature at the points 4
and C is demonstrable by the help of a thermometer is based on this
phenomenon; if the mercury did not expand more than the glass tube
and the scale of the thermometer, the instrument would show the same
reading at all temperatures. Even the physiological effect of heat
upon the human body depends upon differences in the reactions of
different nerve endings to heat stimuli.

Heat as a force can thus be demonstrated directly. The forces,
however, which we introduced in our example, cannot be demonstrated
directly. They have two properties:

(a) They afiect all materials in the same way.
(b) There are no insulating walls.

We have discussed the first property, but the second one is also neces-
sary if the deformation is to be taken as a purely metrical one; it will
be presented at greater length in § 5.  For the sake of completencss the
definition of the insulating wall may be added here: it is a covering
made of any kind of material which does not act upon the enclosed
object with forces having property a. Let us call the forces which
have the properties a and b universal forces; all other forces are called
differential forces. Then it can be said that only differential forces,
but not universal forces, are directly demonstrable.

After these considerations, what can be stated about the shape of
the surfaces E and G? G has been described as a surface with a hump
and E as a plane which appears to have a hump. By what right do
we make this assertion? The measuring results are the same on both
surfaces. If we restrict ourselves to these results, we may just as well
say that G is the surface with the “illusion” of the hump and £ the
surface with the “real” hump. Or perhaps both surfaces have a hump.
In our example we assumed from the beginning that £ was a plane
and G a surface with a hump. By what right do we distinguish between
E and G? Does E differ in any respect from G?

These considerations raise a strange question. We began by asking
for the actual gcometry of a real surface. We end with the question:
Is it meaningful to assert geometrical differences with respect to real
surfaces? This peculiar indeterminacy of the problem of physical
geometry is an indication that something was omitted in the formulation
of the problem. We forgot that a unique answer can only be found if

13
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the question has been stated exhaustively. Evidently some assump-
tion is missing. Since the determination of geometry depends on the
question whether or not two distances are really equal in length (the
distances A B and BC in Fig. 2), we have to know beforehand what it
means to say that two distances are “really equal.” Is really egual
a meaningful concept? We have seen that it is impossible to settle
this question if we admit universal forces. s it, then, permissible to
ask the question?

Let us therefore inquire into the epistemological assumptions of
measurement. For this purpose an indispensable concept, which has
so far been overlooked by philosophy, must be introduced. The con-
cept of a coordinalive definition is essential for the solution of our
problem.

§ 4. COORDINATIVE DEFINITIONS

Defining usually means reducing a concept to other concepts. In
physics, as in all other fields of inquiry, wide use is made of this pro-
cedure. There is a second kind of definition, however, which is also
employed and which derives from the fact that physics, in contra-
distinction to mathematics, deals with real objects. Physical know-
ledge is characterized by the fact that concepts are not only defined
by other concepts, but are also coordinated to real objects. This
coordination cannot be replaced by an explanation of meanings, it
simply states that Zhis concept is coordinated to this particular thing.
In gencral this coordination is not arbitrary. Since the concepts are
interconnected by testable relations, the coordination may be verified
as true or false, if the requirement of uniqueness is added, i.e., the rule
that the same concept must always denote the same object. The
method of physics consists in establishing the uniqueness of this
coordination, as Schlick ! has clearly shown. But certain preliminary
coordinations must be determined before the method of coordination
can be carried through any further; these first coordinations are there-
fore definitions which we shall call coordinative definitions. They are
arbilrary, like all definitions; on their choice depends the conceptual
system which develops with the progress of science.

Wherever metrical relations are to he established, the use of
coordinative definitions is conspicuous. If a distance is to be measured,

1 M. Schlick, Aligemeine Erkenninislekre, Springer, Berlin 1918, Ziff. 10.
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the unit of length has to be determined beforehand by definition.
This definition is a coordinative definition. Here the duality of
conceptual definition and coordinative definition can easily be seen.
We can define only by means of other concepts what we mean by a
unit; for instance: A unit is a distance which, when transported
along another distance, supplies the measure of this distance.” But this
statement does not say anything about the size of the unit, which can
only be established by reference to a physically given length such as
the standard meter in Paris. The same consideration holds for other
definitions of units, If the definition reads, for instance: “ A meter is
the forty-millionth part of the circumference of the earth,” this
circumference is the physical length to which the definition refers by
means of the inscrtion of some further concepts. And if the wave-
length of cadmium light is chosen as a unit, cadmium light is the
physical phenomenon to which the definition is related. It will be
noticed in this example that the method of coordinating a unit to a
physical object may be very complicated. So far nobody has seen a
wave-length; only certain phenomena have been observed which are
theoretically related to it, such as the light and dark bands resulting
from interference. In principle, a unit of length can be defined in
terms of an observation that does not include any metrical relations,
such as “that wave-length which occurs when light has a certain red-
ness.” In this case a sample of this red color would have to be kept
in Paris in place of the standard meter. The characteristic feature of
this method is the coordination of a concept to a physical object.
These considerations explain the term “coordinative definition.”” If
the definition is used for measurements, as in the case of the unit of
length, it is a metrical coordinative definition.

The philosophical significance of the theory of relativity consists
in the fact that it has demonstrated the necessity for metrical coordina-
tive definitions in several places where empirical relations had pre-
viously been assumed. It is not always as obvious as in the case of the
unit of length that a coordinative definition is required before any
measurements can be made, and pseudo-problems arise if we look for
truth where definitions are needed. The word *relativity " is intended
to express the fact that the results of the measurements depend upon
the choice of the coordinative definitions. It will be shown presently
how this idea affects the solution of the problem of geometry.

After this solution of the problem of the unit of length, the next step
leads to the comparison of two units of lengths at different locations.
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Chapter 1. Space

If the measuring rod is laid down, its length is compared only to that
part of a body, say a wall, which it covers at the moment. If two
separate parts of the wall are to be compared, the measuring rod will
have to be transported. It is assumed that the measuring rod does
not change during the transport. It is fundamentally impossible,
however, to detect such a change if it is produced by universal forces.
Assume two measuring rods which are equal in length. They are
transported by different paths to a distant place; there again they are
aid down side by side and found equal in length. Does this procedure
prove that they did not change on the way? Such an assumption
would be incorrect.  The only observable fact is that the two measur-
ing rods are always equal in length at the place where they are compared
to each other. But it is impossible to know whether on the way the
two rods expand or contract. An expansion that affects all bodies in
the same way is not observable because a direct comparison of measur-
ing rods at different places is impossible.

An optical comparison, for instance by measuring the angular
perspective of ecach rod with a theodolite, cannot help either. The
experiment makes use of light rays and the interpretation of the
measurement of the lengths depends on assumptions about the
propagation of light.

The problem does not concern a matter of cognition but of definition.
There is no way of knowing whether a measuring rod retains its length
when it is transported to another place; a statement of this kind can
only be introduced by a definition. For this purpose a coordinative
definition is to be used, because two physical objects distant from each
other are defined as equal in length. It is not the concept equality
of length which is to be defined, but a real object corresponding to it is
to be pointed out. A physical structure is coordinated to the concept
equality of length, just as the standard meter is coordinated to the
concept unit of length.

This analysis reveals how definitions and empirical statements are
interconnected. As explained above, it is an observational fact,
formulated in an empirical statement, that two measuring rods which
are shown to be equal in length by local comparison made at a certain
space point will be found equal in length by local comparison at cvery
other space point, whether they have been transported along the same
or different paths. When we add to this empirical fact the definition
that the rods shall be called equal in length when they aie at different
places, we do not make an inference from the observed fact; the addition
16
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constitutes an independent convention. There is, however, a certain
relation between the two. The physical fact makes the convention
unique, i.e., independent of the path of transportation. The statement
about the uniqueness of the convention is therefore empirically verifi-
able and not a matter of choice. One can say that the factual relations
holding for a local comparison of rods, though they do not require the
definition of congruence in terms of transported rods, make this
definition admissible. Definitions that are not unique are inadmissible
in a scientific system.

This consideration can only mean that the factual relations may be
used for the simple definition of congruence where any rigid measuring
rod establishes the congruence. If the factual relations did not hold,
a special definition of the unit of length would have to be given for
every space point. Not only at Paris, but also at every other place a
rod having the length of a “‘meter” would have to be displayed, and
all these arbitrarily chosen rods would be called equal in length by
definition. The requirement of uniformity would be satisfied by
carrying around a measuring rod selected at random for the purpose of
making copies and displaying these as the unit. If two of these copies
were transported and compared locally, they would be different in
length, but this fact would not *“ falsify " the definition. Insucha world
it would become very obvious that the concept of congruence is a
definition; but we, in our simple world, are also permitted to choose a
definition of congruence that does not correspond to the actual
behavior of rigid rods. Thus we could arrange measuring rods, which
in the ordinary sense are called equal in length, and, laying them end to
end, call the second rod half as long as the first, the third one a third,
etc. Such a definition would complicate all measurements, but
epistemologically it is equivalent to the ordinary definition, which
calls the rods equal in length. In this statement we make use of the
fact that the definition of a unit at only one space point does not render
general measurements possible. For the general case the definition of
the unit has to be given in advance as a function of the place (and also
of the time).l It is agatn a mailer of fact that our world admils of a
simple definttion of congruence because of the factual relations holding for
the behavior of rigid rods; but this fact does not deprive the simple defiriition
of its definitional character.

The great significance of the realization that congruence is a matter
of definition lies in the fact that by its help the epistemological problem

1¢f. §39 and § 46.
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of geometry is solved. The determination of the geometry of a certain
structure depends on the definition of congruence. In the example of
the surface E the question arose whether or not the distances A B and
BC are equal; in the first case the surface E will have the same geo-
metrical form as the surface G, in the second case it will be a plane.
The answer to this question can now be given in terms of the foregoing
analysis: whether 4B = BC is not a matter of cognition but of
definition. If in E the congruence of widely separated distances
is defined in such a way that AB = BC, E will bea surface with
a hump in the middle; if the definition reads differently, £ will be a
plane.  The geomelrical form of a body s no absolute datum of experience,
but depends on a preceding coordinalive definition; depending on_the
definition, the same structure may he called a plane, or a sphere, or a
curvcd surface. Just as the measure of the height of a tower does not
constitute an absolute number, but depends on the choice of the unit
of length, or as the height of a mountain is only defined when the zero
level above which the measurements are to be taken is indicated,
geometrical shape is determined only after a preceding definition.
This requirement holds for the three-dimensional domain in the same
way as it does for the two-dimensional. While in the two-dimensional
case the observed non-Euclidean geometry can be interpreted as the
geometry of a curved surface in a Euclidean three-dimensional space,
we arrive at a three-dimensional non-Euclidean geometry when we
measure a three-dimensional structure. A simple consideration will
clarify this point. Let us choose as our coordinative definition that of
practical surveying, i.e., let us define rigid measuring rods as congruent,
when transported. If under these conditions a large circle, say with
a radius of 100 meters, is measured on the surface of the earth, a very
exact measurement will furnish a number smaller than = = 3.14... for
the relation of circumference and diameter. This result is due to the
curvature of the surface of the earth, which prevents us from measuring
the real diameter going through the carth below the curved surface.
In this case it would be possible to use the third dimension. If we add
the third dimension, however, the situation becomes different.
Imagine a large sphere made of tin which is supported on the inside by
rigid iron beams; on the sphere and upon the iron scaffold people are
climbing around who are measuring circumference and diameter at
different points with the same measuring rods they used for the two-
dimensional case. [f this time the measuring result deviates from
we must accept a three-dimensional non-Euclidean geometry which
18
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can no longer be interpreted as the curvature of a surface in three-
dimensional Euclidean space. We obtain this result because the
coordinative definition of congruence was chosen as indicated above.
A different geometry would have been obtained, if we had used, for
instance, the coordinative definition of the earlier example, in which
we called the measuring rod half its length after putting it down twice,
a third its length after putting it down three times, etc. The question
of the geometry of real space, therefore, cannot be answered before the
coordinative definition is given which establishes the congruence for
this space.

We are now left with the problem: which coordinative definition
should be used for physical space? Since we need a geometry, a
decision has to be made for a definition of congruence. Although we
must do so, we should never forget that we deal with an arbitrary
decision that is neither true nor false. Thus the geometry of physical
space is not an immediate result of experience, but depends on the
choice of the coordinative definition.

In this connection we shall look for the most adequate definition,
i.c., one which has the advantage of logical simplicity and requires the
least possible change in the results of science. The sciences have
implicitly employed such a coordinative delinition all the time, though
not always consciously; the results based upon this definition will be
developed further in our analysis. It can be assumed that the definition
hitherto employed possesses certain practical advantages justifying its
use. In the discussion about the definition of congruence by means of
rigid rods, this coordinative definition has already been indicated.
The investigation is not complete, however, because an exact definition
of the rigid body is still missing.

§ 5. RIGID BODIES

Experience tells us that physical objects assume different states.
Solid bodies have an advantage over liquid ones because they change
their shape and size only very little when affected by outside forees.
They seem, therefore, to be useful for the definition of congruence.
However, if the result of the previous considerations is kept in mind,
this relative stability is no ground on which to base a preference for
solid bodies. As was explained, the form and size of an object depends
on the coordinative definition of congruence; if the solid body is uscd
for the coordinative definition, the statement that it does not change its
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Chapter 1. Space

shape must not be regarded as a cognitive statement. It can only be
a definition: we define the shape of the solid body as unchangeable.
But how can the solid body be defined? In other words, if the physical
state of befng solid were defined differently, under what conditions
would the solid body be called rigid? If the conservation of shape is
not permissible as a criterion, what criteria may be used?

The problem becomes more complicated because we cannot solve it
by merely pointing to certain real objects. Although the standard
meter in Paris was cited previously as the prototype of such a definition,
this account was a somewhat schematic abstraction. Actually no
object is the perfect realization of the rigid body of physics; it must
be remembered that such an object may be influenced by many
physical forces. Only after several corrections have been made, for
example, for the influence of temperature and elasticity, is the resulting
length of the object regarded as adequate for the coordinative definition
of the comparison of lengths. The standard meter in Paris would not
be accepted as the definition of the unit of length, if it were not pro-
tected from influences of temperature, etc., by being kept in a vault.
If an earthquake should ever throw it out of this vault and deform its
diameter, nobody would want to retain it as the prototype of the
meter; everybody would agree that the standard meter would no longer
be a meter. But what kind of definition is this, if the definition may
some day be called false? Does the concept of coordinative definition
become meaningless?

The answer is: it does not become meaningless, but, as we shall see,
its application is logically very complicated. The restrictions that
affect the arbitrariness of the coordinative definition have two sources.
One restriction lies in the demand that the obtained metric retain
certain older physical results, especially those of the *“ physics of daily
life.,” Nobody could object on logical grounds if the bent rod would
be taken as the definition of the unit of length; but then we must
accept the consequence that our house, our body, the whole world has
become larger. Relative to the coordinative definition it has, indeed,
become larger, but such an interpretation does not correspond to our
habitual thinking. We prefer an interpretation of changes involving an
individual thing on the one side and the rest of the world on the other
side that confines the change to the small object. The theory of motion
uses the same idea; the fly crawling around in the moving train is
called “moving " relative to the train, and the train is called “moving”’
relative to the earth. Provided that we realize that such a description
20
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cannot be justified on logical grounds, we can employ it without hesita-
tion because it is more convenient; yet it must not be regarded as
“more true” than any other description. We must not assume that
a deformation of the standard meter by an earthquake is equivalent
to a change in any absolute sense; actually it is only a change in the
difference in size between the rod and the rest of the world. There is,
of course, no objection to the use of such restrictions on coordinative
definitions, because their only effect is an adaptation of the scientific
definition to those of everyday life.

These restrictions are more numerous than might be anticipated
offthand. Geometrical concepts abound in our daily life. We call
the floor and ceiling plane, the corners of our rooms rectangular, a taut
string straight. It is clear that these terms can only be definitions
and have nothing to do with cognition, as one might at first believe.
But by means of these definitions we have arrived at a very simple
physics of everyday life. It would logically be permissible to define
the taut string as curved, but then we would have to introduce a
complicated field of force which pulls the string to the side and prevents
it from adjusting itself to the shortest line in spite of the elastic tension,
comparable to a stretched chain bending under the influence of gravity;
such a convention would complicate physics unnecessarily. However,
this is the only objection that can be raised against this description;
the statement that a taut string is straight is not empirical but only a
more convenient definition.

On the other hand, these restrictions do not constitute strict rules;
they merely confine coordinative definitions to certain limits.  Direct
observation is inexact and we admit the possibility of small inaccuracies
of observation. Scientifically speaking nobody will deny that the
floor is a little curved, or that a tightened string sags slightly. Such
a statement would mean that science does not really use the floor and
the string but other physical objects as standards for its coordinative
definition, and that, compared to these other things, small deviations
occur.  The physics of everyday life furnishes only limits for
coordinative definitions; it does not intend to establish them strictly.

For evervday physics this strictness is not possible, and the task of
scientific physics is therefore to give a strict formulation of the coordina-
tive definition within these limits. This aim of precision is the reason
for the important role played by correction factors and supplementary
forces in the measurement of lengths. The principle according to
which the strict definition is achieved must now be investigated more

21



Chapter I. Space

closely. What is the rigid body of physics? It must be defined
strictly without the use of the concept of change in size.

For this purpose the concepts rigid and solid must be distinguished.
Solid bodies are bodies having a certain physical state which can be
defined ostensively; it differs from the liquid and gaseous state in a
number of observable ways. The solid body can be defined without the
use of the concept of change in size. Rigid bodies, however, are those
bodies that constitute the physical part in the coordinative definition of
congruence and that by definition do not change their size when
transported. By the use of the concept solid body a definition of the
concept rigid body can be given that does not employ congruence.

Definition: Rigid bodies are solid bodies which are not affected by
differential forces, or concerning which the influence of differential forces
has been eliminated by corrections; universal forces are disregarded.

This definition will be discussed presently. Let us first deal with the
last clause. May we simply neglect universal forces? But we do not
neglect them: we merely set the universal forces equal to zero by
definition. Without such a rule the rigid body cannot be defined.
Since there is no demonstrable difference produced by universal
forces, the conception that the transported measuring red is deformed
by such forces can always be defended. No object is rigid relative to
universal forces.

This idea corresponds to the usual method of physics. All forces
occurring in physics are differential forces in the sense of our definition.
The terms ** physical forces” and * differential forces” will therefore be
used interchangeably in the following sections.

We must still discuss the first part of the definition of the rigid
body. Again we shall use the method of the physicist. However, we
shall avoid the vicious circle of defining the absence of exterior forces
by an absence of change of shape. Since universal forces were
eliminated by definition and exterior forces arc always demonstrable
by differential effects, the conservation of shape is defined inversely
through the lack of exterior forces.

This rule needs an addition. It isnot possible, even by computations,
to eliminate exterior forces completely; small effects evade experi-
mental observation and the definition supplies an ideal limit that can
only be approximated. The method of approximation must therefore
be discussed. Solid bodies possess considerable interior forces or
tensions. According to the usual conception, these forces account for
resistance against change of shape; but conversely, in our episte-
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mological construction we can base the definition of negligible change
of shape upon the occurrence of these interior forces and tensions.
Change of shape is called small if the exterior forces are small relative
to the interior forces. The more nearly this condition is realized, the
more rigid is the body; but only at the unattainable limit where the
exterior forces disappear relative to the interior forces would the rigid
body be realized in the strict sense.

The definition of the rigid body depends on the definition of a closed
system. Here lies the difficulty of the problem. Two critical points
have been evaded by our definition. In the first place, a closed
system can never be strictly realized; therefore, a transition to a limit
must be given that permits us to call a system “closed to a certain
degree of exactness.” This transition to a limit is obtained through
the relation between interior and exterior forces, which can be made
very small by means of technical manipulation. Without the con-
sideration of interior forces, however, the concept of a closed system
could not be determined, because there is always a certain connection
with the environment, and it is necessary to name the other magnitudes
relative to which the exterior forces are small. It is, therefore, a
necessary condition for a closed system to contain interior forces, and
even in the transition to infinitesimal closed systems, exterior forces
must vanish in a higher order than the interior ones. The second
difficulty in the definition of closed systems lies in the possible existence
of forces not demonstrable by differential measurements because they
affect all indicators in the same way. Physical forces in the sense of
our definition can be excluded by adequate protection; but if there
exist forces which penetrate all insulating walls (property &, p. 13)
there are no closed systems. As universal forces they were set equal
to zero by definition and as such eliminated. Without such a rule a
closed system cannot be defined.

This definition of the rigid body is not explicitly given in the
literature of physics, but it is that definition on which the whole system
of physics is based. With a different definition physical laws would
generally change; this follows from the fact that in the dimensions of
the fundamental physical magnitudes, such as force and energy, the
concept of length occurs; thus the values of these magnitudes depend
on the definition of congruence. It must not be argued, however,
that conversely the “truth’ of our definition of congruence can be
inferred from the truth of physical laws. The truth of the physical

laws can only be asserted under the assumption of a definition of
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congruence; the laws are irue relative lo the definttion of congruence by
means of rigid bodies. The following example will illustrate this point:
if a rubber band were used as the definition of congruence without any
indication of its state of tension, the energy of closed systems would in
general not be constant, since the measure of the energy would vary
as a function of the rubber band. The kinetic energy would change,
for instance, because the velocity of the body under consideration would
vary with the changes in the rubber band. The law of conservation
of energy would be replaced by a law stating the dependence of the
energy of closed systems on the state of the rubber band. But this
law would be just as true as the law of the conservation of energy.
The disadvantage would consist only in the fact that the biography of
the rubber band would have to be included in all physical laws. It is
one of the most important facts of natural science that it is possible
to establish physical laws free from such complications; the significance
of the rigid body is based on it.

§ 6. THE DISTINCTION BETWEEN UNIVERSAL
AND DIFFERENTIAL FORCES

Our definition of the rigid body is based mainly upon the distinction
between universal and differential forces. When we used heat as a
differential force in our example above, we could show that a direct
proof of physical forces is possible because of the difference of their
effects on different materials. This idea must be elaborated further.
The thermometer works because mercury and glass do not have the
same coefficient of expansion. But can differences in temperature be
demonstrated only by differences between the reactions of various
materials to heat?

When we recall how the coefficient of expansion of a rod is measured
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Fig. 3. Sketch of an apparatus for the measurement of heat
expansion,

in practice, another possibility suggests itself. TFor this measurement
a device is used as shown in Fig. 3. The distance ED corresponds to

the rod to be measured. The end D is pressed firmly against the
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support; the end E can move freely. Before the rod is heated, its
length is equal to the distance AD. The heat is applied only to ED,
while BC is kept at its initial temperature; thus the interval AD
remains constant, while ED changes its length. £ will move to the
left beyond A. The influence of the heat is observable because 4 and
E no longer coincide. This effect is observable, even if the whole
apparatus consists of the same material. Imagine a copper wire bent
in the rectangular shape of Fig. 3; the two ends of the wire meet in
4 and E. Such a device would be a ** thermometer ', because it would
be possible to observe a change in temperature by the disappearance
of the coincidence between 4 and E.  Here the force is measured by
an indicator made of only one material.

Such a device can serve quite generally to demonstrate the presence
of forces; the indicator of the force will always react when the field
of force is not homogeneous, i.e., if it affects the different parts of the
wire in different ways. The field of force may fill the space con-
tinuously; if a measurement is to be taken in the field of heat, a
complete insulation of the rod DE from the support, i.e., a discontinuity
of the ficld of temperature, is not necessary for the qualitative
demonstration of the expansion.

The indicator can have yet another form that makes its operation
even more obvious. Imagine a circle made of wire with a diameter

Fig. 4. Sketch of an indicator for the geometrical curvature.

of the same material (Fig. 4). At P this diameter is fastened to the
circle, at Q the point S touches the ring, so that there is a coincidence
between Q and S. Such an apparatus will also demonstrate the

existence of higher temperature in the middle of the circle, for then @
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will not coincide with S. The device can be used for other purposes,
too. If it were moved along an egg-shaped surface so that the wire
were everywhere in contact with the surface, ¢ would no longer
coincide with S, The indicator points out directly the curvature of
the surface by comparing circumference and diameter of a circle.
Applied to surfaces of variable curvature, such as an egg-shaped
surface, the indicator will register the curvature.

Here we have an indicator of geometrical relations, and we notice
that evidence of a field of heat is furnished by a geometrical method.
From the change of the geometry we infer the presence of the field of
heat.  We did not exclude the possibility of this inference; we must,
however, analyze the question why, in this case, we go beyond the
observation of the geometry, and infer a deforming force. Again we
answer that the different reactions of the different kinds of material
lead to this inference. In a field of heat the points @ and S on a copper
indicator would be shifted in a different way than on an indicator made
of iron wire; on an egg-shaped surface both would show the same
differences. Thus the only distinguishing characteristic of a field of
heat is the fact that it causes different effects on different materials.
But we could very well imaginc that the coefficients of heat expansion
of all materials might be equal—then no difference would exist between
a field of heat and the geometry of space. It would be permissible to
say that in the neighborhood of a warm body the geometry is changed
just as (according to Einstein) space is curved in the neighborhood of
a large mass. Nothing could prevent us from carrying through this
conception consistently. We do not adopt this procedure because we
would then obtain a special geometry for copper, another one for iron,
etc.; we avoid these complications by means of the definition of the
rigid body.

Although we introduced the differential effects on different materials
as an indication of physical forces, a test for forces is not necessarily
bound to this difference. A field of force can be demonstrated by the
help of one material alone, if the device is large enough to include in-
homogeneities of the field. This method, however, will always provide
indirect evidence only, because the observed change could equally well
be interpreted as a change of geometry. That the change is interpreted
as being due to a force can only be based on the unequal effect of the
force on different materials. This criterion tells us what should be
interpreted as physical deformation and what as geometry of space.
The geometry of space, too, can be demonstrated objectively since its
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physical effects are observable. The distinction between universal and
differential forces merely classifies the phenomena as belonging in
geometry or in physics.

A remark may be added concerning the treatment these questions
receive in the literature. The forces which we called universal are
often characterized as forces preserving coincidences; all objects are
assumed to be deformed in such a way that the spatial relations of
adjacent bodies remain unchanged. In this context belongs the
assumption that overnight all things enlarge to the same extent, or
that the size of transported objects is uniformly affected by their
position. Helmholtz' parable of the spherical mirror comparing the
world outside and inside the mirror is also of this kind; ! if our world
were to be so distorted as to correspond to the geometrical relations
of the mirror images, we would not notice it, because all coincidences
would be preserved. It has been correctly said that such forces are not
demonstrable, and it has been correctly inferred that they have to be
set equal to zero by definition if the question concerning the structure
of space is to be meaningful. It follows from the foregoing con-
siderations that this is a necessary but not a sufficient condition.
Forces destroying coincidences must also be set equal to zero, if they
satisfy the properties of the universal forces mentioned on p. 13; only
then is the problem of geometry uniquely determined. Our concept
of universal force is thus more general and contains the concept of the
coincidence-preserving force as a special case. It should not be said,
therefore, that universal forces are not demonstrable; this holds only
for forces which preserve coincidences. Fig. 4, however, is an example
of an indicator showing universal forces which destroy coincidences
(in this case the coincidence @5).

We can define such forces as equal to zero because a force is no
absolute datum. When does a force exis#? By force we understand
something which is responsible for a geometrical change. 1{ a measuring
rod is shorter at one point than at another, we interpret this con-
traction as the effect of a force. The existence of a force is therefore
dependent on the coordinative definition of geometry. If we say:
actually a geometry G applies, but we measure a geometry G’, we
define at the same time a force F which causes the difference between
Gand G'. The geometry G constitutes the zero point for the magnitude
of a force. 1f we find that there result several geometries G according

L H. v. Helmholtz, Schriften zur Erkenntnistheorie, ed. by Hertz and Schlick,

Springer, Berlin 1921, p. 19.
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as the material of the measuring instrument varies, F is a differential
force; in this case we gauge the effect of F upon the different materials
in such a way that all G’ can be reduced to a common G. If we find,
however, that there is only one G’ for all materials, F is a universal force.
In this case we can renounce the distinction between G and G, i.e., we
can identify the zero point with G’, thus setting F equal to zero. This
is the result that our definition of the rigid body achieves.

§ 7. TECHNICAL IMPOSSIBILITY AND
LOGICAL IMPOSSIBILITY

In the following section a criticism will be discussed which has been
made against our theory of coordinative definitions. It has been
objected that we base the arbitrariness in the choice of the definition
on the impossibility of making measurements. Although it is admitted
that certain differences cannot be verified by measurement, we should
not infer from this fact that they do not exisz. If we had no means of
discovering the shape of surface E in Fig. 2 (p. 11) it would still be
meaningful to ask what shape the surface has; although the possibility
of making measurements is dependent on our human abilitics, the
objective fact is independent of them. Thus we are accused of having
confused subjective inabilily with objective indeterminacy.

There are, indeed, many cases where physics is unable to make
measurements. Does this mean that the magnitude to be measured
does not exist? It is impossible, for instance, to determine exactly
the number of molecules in a cubic centimeter of air; we can say with
a high degree of certainty that we shall never succeed in counting every
individual molecule. But can we infer that this number does not
exist? On the contrary, we must say that there will always be an
integer which denotes this quantity exactly. The mistake of the
theory of relativity is supposed to consist in the fact that it confuses
the smpossibility of making measurements with objective indeterminacy.

Whoever makes this objection overlooks an important distinction.
There is an impossibility of making measurements which is due to the
limitation of our technical means; I shall call it fechnscal impossibilily.
In addition, there is a logical impossibility of measuring. Even if we
had a perfect experimental technique, we should not be able to avoid
this logical impossibility. It is logically impossible to determine
whether the standard meter in Paris is really a meter. The highest

refinement of our geodetic instruments does not teach us anything
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about this problem, because the meter cannot be defined in absolute
terms. This is the reason why the measuring rod in Paris is called the
definition of a meter. It is arbitrarily defined as the unit, and the
question whether it really represents this unit has lost its meaning.
The same considerations hold for a comparison of units at distant
places. Here we are not dealing with technical limitations, but with a
logical impossibility. The impossibility of a determination of the shape
of a surface, if universal forces are admitted, is not due to a deficiency
of our instruments, but is the consequence of an unprecise question.
The question concerning the shape of the surface has no precise
formulation, unless it is preceded by a coordinative definition of
congruence. What is to be understood by ‘the shape of a real sur-
face’’? Whatever experiments and measurements 1 make, they will
never furnish a unique indication of the shape of the surface. If
universal forces are admitted, the measurements may be interpreted in
such a way that many different shapes of surfaces are compatible with
the same observations. There is one definition which closes the logical
gap and tells us which interpretations of our observations must be
eliminated: this task is performed by the coordinative definition. It
gives a precise meaning to the question of the shape of the real surface
and makes a unique answer possible, just as a question about length
has a unique meaning only when the unit of measurement is given.
It is not a technical failure that prevents us from determining the
shape of a surface without a coordinative definition of congruence, but
a logical impossibility that has nothing to do with the limitations of
human abilities.

The situation will be further clarified if we compare the last example
with the case of the indeterminacy of the number of molecules in a
given cubic centimeter of air. This number is precisely defined and
it is only due to human imperfection that we cannot determine it
exactly, But in this case an approximation is possible which will
increase with increasing perfection of our technical instruments.
When we are faced with a logical impossibility there are no approxi-
mations. We cannot decide approximately whether the surface E
of Fig. 2 (p. 11) is a plane, or a surface with a hemispherical hump in
the middle; there is no defined limit which the measurement could
approach. Furthermore, once the coordinative definition is given,
the technical impossibility of an exact measurement remains. LEven
our definition of the rigid body does not permit a strict determination

of the structure of space; all our measurements will still contain some
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degree of inexactness which a progressive technique will gradually
reduce but never overcome.

§ 8. THE RELATIVITY OF GEOMETRY

With regard to the problem of geometry we have come to realize
that the question which geometry holds for physical space must be
decided by measurements, i.e., empirically. Furthermore, this decision
is dependent on the assumption of an arbitrary coordinative definition
of the comparison of length. Against this conception arguments have
been set forth which endeavor to retain Euclidean geometry for
physical space under any circumstances and thus give it a preference
among all other geometries. On the basis of our results we can discuss
these arguments; our analysis will lead to the relativity of geometry.

One of the arguments maintains it is a mistake to believe that the
choice of the coordinative definition is a matter left to our discretion.
The measurements of geometry as carried through in practice pre-
suppose quite complicated measuring instruments such as the theo-
dolite; therefore these measurements cannot be evaluated without a
theory of the measuring instruments. The theory of the measuring
instruments, however, presupposes the validity of Euclidean geometry
and it constitutes a contradiction to infer a non-Euclidean geometry
from the results.

This objection can be met in the following way. Our conception
permits us to start with the assumption that Euclidean geometry holds
for physical space. Under certain conditions, however, we obtain the
result that there exists a universal force F that deforms all measuring
instruments in the same way. However, we can invert the inter-
pretation: we can set I equal to zero by definition and correct in turn
the theory of our measuring instruments. We are able to proceed in
this manner because a transformation of all measurements from one
geometry into another is possible and involves no difficulties. It is
correct to say that all measurements must be preceded by a definition;
we expressed this fact by the indispensability of the coordinative
definition. The mistake of the objection consists in the belief that this
definition cannot be changed afterwards. Just as we can measure the
temperature with a Fahrenheit thermometer and then convert the
results into Celsius, measurements can be started under the assumption
of Euclidean geometry and later converted into non-Euclidean
measurements. There is no logical objection to this procedure.

In practice the method is much simpler. It turns out that the
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non-Euclidean geometry obtained under our coordinative definition
of the rigid body deviates quantitatively only very little from Euclidean
geometry when small areas are concerned. In this connection *“small
area’’ means “‘on the order of the size of the earth’’; deviations from
Euclidean geometry can be noticed only in astronomic dimensions.
In practice, therefore, it is not necessary to correct the theory of the
measuring instruments afterwards, because these corrections lic within
the errors of observation. The following method of inference is
permissible: we can prove by the assumption that Euclidean geometry
holds for small areas that in astronomic dimensions a non-Euclidean
geometry holds which merges infinitesimally into Euclidean geometry.
No logical objection can be advanced against this method, which is
characteristic of the train of thought in modern physics. It is carried
through in practice for astronomic measurements designed to confirm
Einstein’s theory of gravitation.

The objection is connected with the a priors theory of space that goes
back to Kant and today is represented in various forms. Not only
Kantians and Nco-Kantians attempt to maintain the a priori character
of geometry: the tendency is also pronounced in philosophical schools
which in other respects are not Kantian. It is not my intention to
give a critical analysis of Kant’s philosophy in the present book. In
the course of the discussion of the theory of relativity, it has become
cvident that the philosophy of Kant has been subject to so many
interpretations by his disciples that it can no longer serve as a sharply
defined basis for present day epistemological analysis. Such an
analysis would clarify less the epistemological question of the structure
of space than the historical question of the meaning and content of
Kant's system. The author has presented his own views on this
problem in another publication; ! the present investigation is aimed
at philosophical clarification and will not concern itself with historical
questions. Therefore, 1 shall select only those arguments of Kant's
theory of space, the refutation of which will further our understanding
of the problem. Although in my opinion the essential part of Kant's
theory will thereby be covered, I do not claim a historically complete
evaluation of it in this book.

The ideas expressed in the preceding considerations attempted to
establish Euclidean geometry as epistemologically a priori; we found
that this a priori cannot be maintained and that Euclidean geometry

! H. Reichenbach, Relativititstheorie und Evkenntnis a priori, Springer, Berlin,

1920.
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Chapter I. Space

is not an indispensable presupposition of knowledge. We turn now to
the idea of the viswal a priori; this Kantian doctrine bases the pre-
ference for Euclidean geometry upon the existence of a certain manner
in which we visualize space.

The theory contends that an innate property of the human mind,
the ability of visualization, demands that we adhere to Euclidean
geometry. In the same way as a certain self-evidence compels us to
believe the laws of arithmetic, a visual self-evidence compels us to
believe in the validity of Euclidean geometry. It can be shown that
this self-evidence is not based on logical grounds. Since mathematics
furnishes a proof that the construction of non-Euclidean geometries
does not lead to contradictions, no logical self-evidence can be claimed
for Euclidean geometry. This is the reason why the sclf-evidence of
Euclidean geometry has sometimes been derived, in Kantian fashion,
from the human ability of visualization conceived as a source of
knowledge.

Everybody has a more or less clear notion of what is understood by
visualization. If we draw two points on a piece of paper, connect them
by a straight line and add a curved connecting line, we *see’” that the
straight line is shorter than the curved line. We even claim to be cer-
tain that the straight line is shorter than any other line connecting the
two points. We say this without being able to prove it by measure-
ments, because it is impossible for us to draw and measure all the lines.
The power of imagination compelling us to make this assertion is called
the ability of wiswalization. Similarly, the Euclidean axiom of the
parallels seems to be visually necessary. It remains for us to investi-
gate this human quality and its significance for the problem of space.

The analysis will be carried through in two steps. ILet us first
assume it is correct to say that a special ability of visualization exists,
and that Euclidean geometry is distinguished from all other geometries
by the fact that it can easily be visualized. The question arises:
what consequences does this assumption have for physical space?
Only after this question has been answered can the assumption itself
be tested. The second step of our analysis will thercfore consist in
the inquiry whether a special ability of visualization exists (§ 9-§ 11).

Let us turn to the first question, which has to be reformulated in
order to relate it clearly to the epistemological problem.

Mathematics proves that every geometry of the Riemannian kind
can be mapped upon another one of the same kind. In the language
of physics this means the following:
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Theorem 8: ** Given a geometry G’ to which the measuring instruments
conform, we can imagine a universal force F which affects the instru-
ments in such a way that the actual geometry is an arbitrary geometry
G, while the observed deviation from G is due to a universal deformation
of the measuring instruments."!

No epistemological objection can be made against the correctness of
theorem 8. Is the visual a priori compatible with it?

Offhand we must say yes. Since the Euclidean geometry G4 belongs
to the geometries of the Riemannian kind, it follows from theorem 8
that it is always possible to carry through the visually preferred
geometry for physical space. Thus we have proved that we can always
satisfy the requirement of visualization.

But something more is proved by theorem 8 which does not fit very
well into the theory of the visual a priori. The theorem asserts that
Euclidean geometry is not preferable on epistemological grounds.
Theorem @ shows all geometries to be equivalent; it formulates the
principle of the relativity of geomeltry. It follows that it is meaningless
to speak about one geometry as the true geometry. We obtain a
statement about physical reality only if in addition to the geometry G
of the space its universal ficld of force F is specified. Only the
combination

G+F
is a testable statement.

We can now understand the significance of a decision for Euclidean
geometry on the basis of a visual a priori. The decision means only
the choice of a specific coordinative definition. In our definition of
the rigid body we set I = 0; the statement about the resulting G
is then a univocal description of reality. This definition means that in
“G+F" the second factor is zero. The visual a priori, however, sets
G = Go. But then the empirical component in the results of measure-
ments is represented by the determination of F; only through the
combination

Go-+F
are the properties of space exhaustively described.
There is nothing wrong with a coordinative definition established on

1 Generally the force F is a tensor. If g°,, are the metrical coefficients of the
geometry G’ and g,, those of G, the potentials F,, of the force F are given by
Buw+Fur =g pv=1213
The measuring rods furnish directly the g°,,,; the F,, are the “‘correction factors'
by which the g’,, are corrected so that g, results.  The universal force F infiuenc-
ing the measuring rod is usually dependent on the orientation of the measuring
rod. About the mathematical limitation of theorem @ cf. §12.
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the requirement that a certain kind of geometry is to result from the
measurements. We ourselves renounced the simplest form of the
coordinative definition, which consists in pointing to a measuring rod;
instead we chose a much more complicated coordinative definition in
terms of our distinction between universal and differential forces. A
coordinative definition can also be introduced by the prescription
what the result of the measurements is to be. *“The comparison of
length is to be performed in such a way that Euclidean geometry will
be the result "—this stipulation is a possible form of a coordinative
definition. It may be compared to the definition of the meter in
terms of the circumference of the earth: “The unit is to be chosen in
such a way that 40 million times this length will be equal to the
circumference of the earth.”

Although it may be admitted that Euclidean geometry is unique
in that it can be easily visualized, the theory of the visual a priori does
not disprove the theory of the relativity of geometry and of the
necessity for coordinative definitions of the comparison of length.
On the contrary, it is only this theory that can state precisely the
epistemological function of visualization: the possibility of visualization
is a ground for subjective preference of one particular ceordinative
definition. But the occurrence of visualization does not imply
anything about the space of real objects.

In this connection another argument in support of the preference for
Euclidean geometry is frequently adduced. To be sure, this argument
is not related to the problem of visualization, but like the visual
a priori it attributes a specific epistemological position to Euclidean
geometry; therefore we shall consider it here. It is maintained that
Euclidean geometry is the simplest geometry, and hence physics must
choose the coordinative definition G = Gy rather than the coordinative
definition F = 0. This point of view can be answered as follows:
physics is not concerned with the question which geometry is
simpler, but with the question which coordinative definition is simpler.
It seems that the coordinative definition F = 0 is simpler, because
then the expression G+ F reduces to G. But even this result is not
essential, since in this case simplicity is not a criterion for truth.
Simplicity certainly plays an important part in physics, even as a
criterion for choosing between physical hypotheses. The significance
of simplicity as a means to knowledge will have to be carefully examined
in connection with the problem of induction, which does not fall within
the scope of this book.

34



§ 8. The Relativity of Geometry

Geometry is concerned solely with the simplicity of a definition, and
therefore the problem of empirical significance does not arise. It isa
mistake to say that Euclidean geometry is **more true” than Einstein's
geometry or vice versa, because it leads to simpler metrical relations.
We said that Einstein's geometry leads to simpler relations because
init F =0. But we can no more say that Einstein's geometry is
“truer”” than Euclidean geometry, than we can say that the meteris a
“truer” unit of length than the yard. The simpler system is always
preferable; the advantage of meters and centimeters over yards and
feet is only a matter of economy and has no bearing upon reality.
Properties of reality are discovered only by a combination of the results
of measurement with the underlying coordinative definition. Thus it is
a characterization of objective reality that (according to Einstein) a
three-dimensional non-Euclidean geometry results in the neighborhood
of heavenly bodies, if we define the comparison of length by transported
rigid rods. But only the combination of the two statements has objec-
tive significance. The same state of affairs can therefore be described
in different ways. [n our example it could just as well be said that in
the neighborhood of a heavenly body a universal field of force exists
which affects all measuring rods, while the geometry is Euclidean.
Both combinations of statements are equally true, as can be seen from
the fact that one can be transformed into the other. Similarly, it is
just as true to say that the circumference of the carth is 40 million
meters as to say that it is 40 thousand kilometers. The significance
of this simplicity should not be exaggerated; this kind of simplicity,
which we call descriptive simplicily, has nothing to do with truth.

Taken alone, the statement that a certain geometry holds for space
is therefore meaningless. It acquires meaning only if we add the
coordinative definition used in the comparison of widely separated
lengths. The same rule holds for the geometrical shape of bodies,
The sentence ** The carth is a sphere’” is an incomplete statement, and
resembles the statement ** This room is seven units long.””  Both state-
ments say something about objective states of affairs only if the assumed
coordinative definitions are added, and both statements must be
changed if other coordinative definitions are used. These considera-
tions indicate what is meant by relativity of geomelry.

This conception of the problem of geometry is essentially the result
of the work of Riemann, Helmholtz, and Poincaré and is known as
conventionalism. While Riemann prepared the way for an application
of geometry to physical reality by his mathematical formulation of
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the concept of space, Helmholtz laid the philosophical foundations.
In particular, he recognized the connection of the problem of geometry
with that of rigid bodies and interpreted correctly the possibility of a
visual representation of non-Euclidean spaces (cf. p. 63). It is his
merit, furthermore, to have clearly stated that Kant's theory of space
is untenable in view of recent mathematical developments.! Helm-
holtz’ epistemological lectures must therefore be regarded as the
source of medern philosophical knowledge of space.?2 It is Einstein’s
achievement to have applied the theory of the relativity of geometry
to physics. The surprising result was the fact that the world is non-
Euclidean, as the theorists of relativity are wont to say; in our language
this means: if F = 0, the geometry G becomes non-Euclidean. This
outcome had not been anticipated, and Helmholtz and Poincaré still
believed that the geometry obtained could not be proved to be different
from Euclidean geometry. Only Einstein’s theory of gravitation
predicted the non-Euclidean result which was confirmed by astro-
nomical observations. The deviations from Euclidean geometry,
however, are very small and not observable in everyday life.
Unfortunately, the philosophical discussion of conventionalism,
misled by its ill-fitting name, did not always present the epistemological
aspect of the problem with sufficient clarity.® From conventionalism
the consequence was derived that it is impossible to make an objective

! The antithesis Kant-Helmholtz has been interpreted by Neo-Kantians (in
particular by Riehl, Kantstudien 9. p. 2611., less plainly by Gérland, Natorp-
Festschrift, p. 94f) not as a contradiction but as a misunderstanding of Kant by
Helmholtz. The same argument has been advanced by Neo-Kantians recently
with respect to Einstein's theory. This conception is due to an underestimation
of the differences between the points of view, and it would be in the interest of a
general clarification if the patent contradiction between the only possible modern
philosophy of space and Kant were admitted. Such an admission avoids the
danger of an interpretation of Kant's philosophy too vague to retain any concrete
content. The author presented his ideas on the subject in "'Der gegenwirtige
Stand der Relativititsdiskussion,” Logos X, 1922, section III, p. 341. Cf. also
p- 31. (The English translation of this paper will be included in a forthcoming
volume of Selected Essays by Hans Reichenbach, to be published by Routledge
and Kegan Paul, London.)

2 C{. the new edition by Hertz and Schlick, Helmholtz' Evkenntnistheoretische
Schriften, Berlin 1921,

3 This is also true of the expositions by Poincaré, to whom we owe the designa-
tion of the geometrical axioms as conventions (Science and Hypothesis, Dover
Publications, Inc. 1952, p. 50) and whose merit it is to have spread the awareness
of the definitional character of congruence to a wider audience. He overlooks
the possibility of making objective statements about real space in spite of the
relativity of geometry and deems it impossible to **discover in geometric
empiricism a rational meaning*’ {(op. cit., p. 79). Cf. § 44.
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statement about the geometry of physical space, and that we are
dealing with subjective arbitrariness only; the concept of geometry
of real space was called meaningless. This is a misunderstanding.
Although the statement about the geometry is based upon certain
arbitrary definitions, the statement itself does not become arbitrary:
once the definitions have been formulated, it is determined through
objective reality alone which is the actual geometry. Let us usc our
previous example: although we can define the scale of temperature
arbitrarily, the indication of the temperature of a physical object does
not become a subjective matter. By selecting a certain scale we can
stipulate a certain arbitrary number of degrees of heat for the respective
body, but this indication has an objective meaning as soon as the
coordinative definition of the scale is added. On the contrary, it is
the significance of coordinative definitions to lend an objective meaning
to physical measurements. As long as it was not noticed at what
points of the metrical system arbitrary definitions occur, all measuring
results were undetermined; only by discovering the points of arbitrari-
ness, by identifying them as such and by classifying them as definitions
can we obtain objective measuring results in physics. The objective
characler of the physical statement is thus shifted to a statement aboul
relations. A statement about the boiling point of water is no longer
regarded as an absolute statement, but as a statement about a
relation between the boiling water and the length of the column of
mercury. There exists a similar objective statement about the
geometry of real space: #¢ is a slatement about a relation between the
untverse and rigid rods. The geometry chosen to characterize this
relation is only a mode of speech; however, our awareness of the
relativity of geometry enables us to formulate the objective character
of a statement about the geometry of the physical world as a statement
about relations. In this sense we are permitted to speak of physical
geometry.  The description of nature is not stripped of arbitrariness by
naive absolutism, but only by recognition and formulation of the
points of arbitrariness. The only path to objective knowledge leads
through conscious awareness of the role that subjectivity plays in our
methods of research.

§9. THE VISUALIZATION OF EUCLIDEAN
GEOMETRY

With the result of the foregoing section in mind we turn now to the
second question essential to the theory of the visual @ prieri of Euclidean
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geometry: Is it true that Euclidean geometry is the only geometry
which can be visualized? If Euclidean geometry is distinguished by
being easily visualized, this fact does not add anything to our knowledge
of physical space. But does Euclidean geometry have this distinction?
Let us analyze this question.

The investigation will have to proceed in two directions. On the
one hand, we must inquire whether other geometries can be visualized;
this question is usually taken to be the main one. On the other hand
—and this question will be the subject matter of the present section—
we must find out what visualization of Euclidean geometry means, and
to what extent Euclidean geometry can be visualized. The visualiza-
tion of Euclidean geometry should by no means be taken for granted;
on the contrary, we shall carefully examine this assertion that has so
frequently been maintained by philosophers.

At the very start of our investigation we encounter a difficulty.
As soon as we try to give a more precise formulation to the experience
of visualization, we are in the midst of psychological experiments:
we try to analyze geometrical images. As a consequence we have those
philosophers against us who maintain that the problem of visualization
concerns not psychological but philosophical issues. In particular,
this conception is represented by Neo-Kantians who assert that Kant's
pure intuition is not a psychological phenomenon. These objections
must not deter us. It has always turned out that such ‘border
skirmishes" do not help in the study of the problems; sometimes it is
much harder to make a decision about the classification of a problem
than about its solution. e shall therefore disregard the objections
and try to find the right method of analyzing the experience of
geometrical visualization.

Two characteristic features stand out: it is of the nature of visualiza-
tion that it reproduces the particular object in the form of an image.
When we attempt to visualize an object, for instance a triangle, blurred
images emerge in our mind that are obviously connected with previous
perceptions. 'We may imagine a white triangle on a blackboard, or a
triangle drawn by pencil on a white sheet of paper; but the image
always appears somewhat schematic. Individual details occur only
when we concentrate on vivid reproductions of perceived triangles; we
suddenly see that the lines of chalk marking the triangle have a certain
width and that they arc composed of individual particles of chalk.
The schematic triangle, however, is also determined by previous

perceptions. It is not flaming red on a blue background—such
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triangles are rarely seen; the schematic triangle resembles a triangle
drawn by chalk or pencil much more closely than such a product of the
imagination. It is of medium shape and not a degenerate triangle
with rarely-perceived unusual relations between the sides. In this con-
nection a peculiar indeterminateness can be observed: it is difficult for us
to estimate the size of the angle at the top. If we want a more precise
statement, we must concentrate much harder; only then can we repro-
duce the triangle vividly enough in our imagination to estimate the size of
the angle. It is unnecessary to analyze these phenomena more closely,
since they vary greatly with the individual person.  Let us call the func-
tion of visualization described above its image-producing function.
Apart from the image-producing function—and this constitutes the
second characteristic feature of visualization—it has a normative func-
tion. Visualizationisnot completely arbitrary. We use visualization in
order to discover geometrical relations. [ have a triangle and a straight
line intersecting one of the sides of the triangle; if sufficiently prolonged,
will the straight line also intersect another side of the triangle?
Visualization says “‘yes.”” It simply demands this answer and I can do
nothing about it. I try to turn the straight line in my imagination; I
see that the line can be managed to intersect one or the other side of the
triangle, but [ am unable to prevent it from intersecting esther side.
It is simply impossible. This normative function is the philosophically
more important component of visualization; it is the cause of the
philosophical controversies about the epistemological significance of
visualization. Kant's synthetic a priori of pure intuition springs from the
normative function of visualization. It is this function that tends to
single out Euclidean geometry from all the others; it seems to compel
us to regard Euclid’s axiom of the parallels as unquestionably true.
What is the source of the normative function and the compulsion
which it expresses? It seems that the source is the image-producing
function, because the image-producing function is a necessary con-
dition of the cffectiveness of the normative function. Only after we
imagine the triangle and the intersecting line do we ““see” that the
law mentioned above holds. There are cases where we contemplate a
problem for some time without being able to solve it, until we succeed
in producing a clear image; we then read the desired law from the
image. How many diagonals can be drawn from one corner of a
pentagon? We are not able to answer this question immediately; at
first we make some vain efforts and hope to find the answer so to speak
offhand without the use of the image-producing function. We do not
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succeed. We must first mobilize our will; suddenly the pentagon is
visualized with its characteristic asymmetry, one corner at the top,
one side at the bottom. Now we draw two diagonals from the bottom
left corner to the two corners at right; more are evidently impossible.
This vivid image lends certainty to our answer.

The vividness of the picture and the certainty of the judgment are
enhanced if we actually draw the pentagon. We see the result
immediately, and it is no longer necessary to strain our will. But
obviously this facilitation is the only function of the drawing. The
perception of the drawing does not play the role of an empirical
discovery; the situation is not comparable to the performing of an
experiment as a consequence of which we expect perception to supply an
answer. If we combine two unknown salt solutions, we expect the
perception to tell us whether or not a precipitate is the result. The
drawing, however, has a different function. We do not read results
from it, but read them into it. \We also reserve the privilege of
correcting the drawing, because drawings are not always reliable.
Suppose we draw a pentagon with all of its diagonals and try to count
them. If we drawa pentagon very carefully we shall succeed. But it
may easily happen that one corner is drawn too flat, and thus is
overlooked when we draw some of the diagonalsﬁ in this case we must
correct the drawing. Apparently we do not trust our perception but
follow an inner compulsion; the perception of the drawing serves only
to facilitate the image-preducing function. The detour by way of the
drawing makes the final statement more certain.

These considerations suggest that the normative function does not
have its origin in the image-producing function. We correct not only
the drawing but also the images themselves by means of the normative
function. Sometimes the image-producing function provides us with
a false image. I put the problem of the pentagon mentioned above to
a person untrained in mathematics. 1 immediately got the rash
answer “five.” He was evidently in the phase of speaking offhand.
Then followed a *‘no, one moment.” Now the image-producing
function was employed, and after some reflection came the answer
“three.”” Here the image-producing function had evidently furnished
the wrong result. A “no’’ followed and after some moments the correct
answer ““two.”" The normative function had intervened and corrected
the images. It is not the case that we simply wait for images that will
dictate the result to us. On the contrary, the images are subject to a
directive, and if they do not correspond to it, they will not be accépted.
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This directive is stronger than is usually suspected, and it works
even behind the scenes. It not only refers to conditions indicated in
the problem but also adds some tacit conditions. We considered the
theorem that a straight line intersecting one side of a triangle must
also intersect another side of the triangle. Isthis true? By no means;
I can imagine a straight line descending in space and not situated in the
same plane as the triangle; in this case it intersects one side only. This
answer is certainly trivial—but often we do not notice how much we
restrict a problem by tacit assumptions. Some parlor games make
use of this unawareness. Three matches are laid on the table in the
shape of a triangle; the problem is to form four triangles by adding
three more matches. Rarely somebody conceives the idea of arranging
the three matches spatially on top of the triangle lying on the table so
that a tetrahedron results. And in this category belongs the story of
the egg of Columbus: note what conditions you impose upon your
imagination; then many an *‘impossible ” turns out to be an *“impossible
under such and such conditions.”

The humorous aspect of the examples just mentioned is due to the
fact that it would be quite easy to eliminate the tacit assumptions; the
questions, however, are asked in such a way that they suggest them.
Since the matches are put on the table it is suggested that the puzzle
concerns a problem of the plane. Apart from the particular aspect of
this problem, such experiences furnish the key for quite a few difficulties
of geometrical visualization. Rather late in the history of mathe-
matics the analysts situs was discovered, which led to certain peculiari-
ties of visualization. Does there exist a surface having only one side?
Visualization suggests a prompt “‘no.”” But every student of a lecture
on topology has taken a strip of paper, and twisted once around itself,
pasted it together in form of a ring; this paper surface has indeed only
one side. After we have seen such a model, our ability to visualize
has increased. Or again: a closed curve is drawn on a surface; is it
possible to draw on the surface a line of any shape that connects a
point of the surface situated on one side of the curve with a point of
the surface situated on the other side of the curve, without intersecting
the curve? Visualization again answers ‘‘no,” but only because the
image-producing function shows a plane. Therefore, we attempt to
solve the problem in the plane, where it is impossible. Mathematics
has shown that there are surfaces of different topological properties
where not all closed curves divide the surface into separate areas.

We can very well imagine such surfaces; or more precisely: we can direct
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the image-producing function of visualization so that it will furnish
elements for which the desired property holds. If occasionally we are
answered “impossible” by the images of our visualization, we must
first inquire to what extent tacit assumptions are contained in the
elements furnished by the image-producing function; the presence of
these assumptions may prevent us from producing an image of the
problem under consideration. Only if these assumptions are explicitly
stated in the problem is it correctly answered. In the example of the
straight line intersecting the side of a triangle, it must be stated
explicitly that the straight line must lie in the plane of the triangle.
Only then is the problem worded correctly. In this instance it seems
to be easy to add the missing assumption later, but it is not always so
easy. We do not know, either, whether we tacitly add other assump-
tions in the theorem of the triangle given above.

In this very example some further conditions play a part. The
theorem is correct only if it refers to Euclidean straight lines and to a
Euclidean plane. It does not hold for every kind of surface and its
straightest lines; the theorem has exceptions on the torus, for instance,
(Fig. 1, Plate I). It is not a matter of escaping into the third dimension
as above; all lines remain within the same two-dimensional surface.
In order to formulate the theorem strictly, the condition must be added
that by ‘‘straight line” and “planc’ the respective phenomena of
Euclidean geometry are understoed. Only then is it conclusive.

But then there is nothing spectacular about the visual complusion
inherent in the theorem, because the visual compulsion does not furnish
anything different from the logical compulsion inherent in Euclidean
geometry. In the system of Euclidean geometry this theorem is
necessary and we discover this fact by logical analysis of the geometry
whose axioms include this theorem.! Without this theorem the
elements of geometry, such as the straight line and the plane, have
very different properties. The merit of visualization consists only in
the fact that it translates the logical compulsion of Euclidean geometry
into a visual compulsion. The normative function of visualization is
revealed as a correlate of the logical compulsion and achieves the same
resulls by means of the elements furnished by the image-producing function
as the logical inference does by means of the conceptual elemenis of thought.
This is the significance of visualization. It seems to be much easier
to make logical inferences with the help of visual representation than

1 This axiom was first formulated by Pasch. Cf. D. Hilbert, Foundations of
Geometry, The Open Court Publishing Co., Chicago, 1921, p. 6.
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by means of abstract concepts. Proofs which the mathematician has
found only with great effort—as for instance the theorem that a con-
tinuous function assumes every intermediate value between any two
of its values—became immediately obvious through visualization. In
this gift of visual inference our mind possesses one of the most powerful
tools, not only for science but also for everyday life. It is certainly
wonderful that such an achievement of visualization is possible; but
it is not an achievement outside the frame of logic. The manner in
which logical inferences are actually made is strange and obscure and
rarely resembles the formal method of logic.  But this fact is irrelevant
for the problem of the visualization of geometry. We may therefore
take it for granted (not subject to an investigation in this connection)
that visual processes play a role in logical thinking.

The examples from two-dimensional geometry which we selected are
very instructive for our problem. If we speak of a special visual
compulsion, we express the idea that more restrictive laws hold for
visualization than for logical thinking. It is this idea which Kant
meant by his synthetic a priori judgments of visualization, and it is also
the reaction which aprioristic philosophy had all along to the existence
of non-Euclidean geometries: it is possible to construct them
logically, but it is impossible to visualize them. According to this
conception, visualization admits a narrower selection of geometrical
structures than does logic. It turns out that this statement is not true
in the two-dimensional domain. The normative function of visualiza-
tion does not demand more than logic; what is logically consistent can
be visualized as far as it does not surpass the precision attainable by
visual representation—for the two-dimensional realm this is certainly
true. It is not different in the three-dimensional domain. The
images which we habitually use are those of Euclidean geometry. No
wonder that we derive only Euclidean laws from them. It never
happens in the game of chess that the two original bishops belonging to
one player stand on squares of the same color. It is, however, possible
simply to put them upon two white squares. The statement about the
bishops is correct only so long as the rules of the game are adhered to;
the law of the oblique path of the bishop logically implies the necessity
that the color will remain unchanged. The images by which we
visualize geometry are always so adjusted as to correspond to the laws
which we tead from them; these laws are always implied. The
statement that we cannot visualize non-Euclidean geometry must
therefore be reformulated: We cannot visualize non-Euclidean geomelry
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by means of Euclidean elements of visnalization. In this form the result
is trivial; what it denies is a logical impossibility. The question must
be asked differently: Can we change the image-producing elements in
such a way that we can read the laws of non-Euclidean geometry from
the new images? Only in such a manner can we attempt a visualization
of non-Euclidean geometry. The question will be treated in §11.
We shall have to analyze, in particular, at what point tacit assumptions
are smuggled into the images, assumptions that make them Euclidean
and cause the normative function to reject non-Euclidean laws.

§ 10. THE LIMITS OF VISUALIZATION

Before taking up the problem of the visualization of non-Euclidean
geometry we must consider another fact the significance of which is
controversial. It was explained above that the image-producing
function, under the directive of the normative function, furnishes
images from which logical laws can be read by means of visualization.
It must be noticed, however, that there exist limitations for visualiza-
tion that prevent the production of images from going beyond certain
simple relations. We are able to visualize a pentagon but do not
succeed with a decagon without drawing it on a piece of paper. A
polygon of a thousand sides, even if we see it drawn on a piece of paper,
has lost the specific image-character that distinguishes it from a polygon
with one thousand-and-four sides. These are the limitations that
compel the mathematician to renounce visual methods in favor of
analytical ones. Nobody will attempt to count by means of visualiza-
tion the number of diagonals in a polygon with a thousand sides; we
would not even trust the result of counting them in a drawing, but
would always prefer the analytical method, which derives the number
of diagonals from the number of corners by a simple formula. There
are individual differences in the ability of visualizing geometry, but
they are restricted to a certain domain; beyond this domain there
begins for everybody the larger realm of geometrical figures which can
no longer be visualized. [t would be a mistake to say that the entire
Euclidean geometry can be visualized. Only the elementary
geometrical figures can be visualized, that is, realized through images.

Even these elementary geometrical structures can be visualized
only within certain limitations depending on the size of the figures.
We frequently say that we can visualize the terrestial globe; but this
seems to be a mistake. We can visualize a sphere, but not of the
dimensions of the carth. What we visualize, when we speak of the
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possibility of visualizing the earth, is a small sphere which we believe
1o be similar to the terrestrial globe.  We can try to enlarge the image
of this sphere; we may perhaps visualize it as big as a balloon or as a
mountain—but very soon we must admit failure. It may be objected
that there do not exist absolute sizes in our images—but that is not
true. A sphere of the size of a balloon has a visual quality different
from that of a sphere the size of a tennis-ball, and such a sphere has
again a quality different from that of the spherical head of a pin. In
our imagination such structures can be distinguished just as well as a
triangle and a square. The fact that in actual perception size is a
matter of perspective has nothing to do with this ability. If it happens
occasionally that we see a distant balloon as small as a tennis-ball
because it is seen in the same angular perspective as such a ball, it
means only that we transfer the visual quality “tennis ball” to the
physical structure “balloon.” Tt would be a mistake to say that
this transfer is irrelevant to visualization, because the relations in the
large dimensions resemble those in the small dimensions. If small
images are used to visualize large figures, it is an indirect method that
makes use of extraneous pictures. This detour is possible because of
a special property of Euclidean geometry. The system of Euclidean
geometry has theorems of similarity. In non-Euclidean geometry
there are no such theorems; the angular sum of the triangle, and the
relation between circumference and diameter of a circle depend there
upon the absolute size of the figure. In non-Euclidean geometry,
therefore, the indirect method must be modified; the smaller figures
must be imagined as distorted. Such analogies are possible only
within certain limitations implied by the problem; it is dangerous to
look for visual necessitics where there are none. Visualization does
not necessarily presuppose that large figures can visually be replaced
by small figures of the same shape. This is a visual requirement in
Euclidean geometry only, and even in this case the transition to smaller
figures does not have the same effect as is achieved by direct
perception.  The image-producing function is replaced by a conceptual
coordinative method smuggling in extraneous pictures,

The same is true for very small structures. Figures of atomic size
such as the orbit of an electron can no longer be directly visualized.
Here, too, the indirect way of visualizing similar figures in the inter-
mediate dimension is employed.

The limits of exactness of visual images in the intermediate domain
is connected with the impossibility of visualizing very small figures.
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Although we can visualize a right angle, we cannot distinguish it from
an angle of 89° 59’ [f we are dealing with a triangle having such an
angle, there is no other way but to visualize an angle deviating much
more from 90°; only then can we notice the difference from the right
angle. Two straight-line segments which, if continued, intersect on
the sun, are indistinguishable from parallels on the earth. e possess,
therefore, only one visual image for both phenomena. Those who
object to this statement forget that the two non-parallel segments
which they visualize converge too quickly; again an indirect method
has been used by the substitution of an extrancous picture that satisfies
the specified conditions.

Finally, the problem of the infinity of space must be mentioned
among the limitations of visualization. That this question has been
disputed so much and that even antinomies have been constructed in
connection with it is due only to the fact that here the image-producing
function of visualization fails. We cannot visualize Euclidean space
as a whole—this is briefly the meaning of all arguments for or against
the infinity of space. For conceptual constructions it is very easy to
handle the concept of the infinity of space, and in spite of Kant only
that proof is correct which infers the infinity of Euclidean space. We
are able to make theoretical statements about space as a whole, such
as the statement that space is three-dimensional.  But it is impossible
to visualize it as a whole—to take it in at one glance just as we take in
a sphere or a landscape.  Attempts to replace direct visualization by
letting the eyes glide over homogencous domains of space are always
makeshift. The infinity of space contains a property of Luclidean
geometry that cannot be realized by visualization. We shall come
back to this question when dealing with the holistic properties of
non-Euclidean spaces, where we shall find analogous phenomena.

The limits of visualization described above certainly exist, and it is a
mistake often made in philosophical quarters to neglect them as
“purely psychological.” The psychological realization is important;
a logical inference can be realized psychologically in all its strictness,
but the visualization of a right angle or of infinite space is impossible.
We are justified, therefore, in inferring from these psychological
limitations of visualization that it is not the visualization which s
responsible for the rigor of our work, but the logic which we always
think into our images. Badly drawn figures, where homologous sides
of congruent triangles arc evidently different in length, nevertheless

enable us to give a strict geometrical proof; in the same way, inexact
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visual images will permit strict logical inferences, because the logical
conditions of congruence are fulfilled. The inferences are possible
because the compelling factor is not the visualization but the logical
laws implicit in the images.  An analysis of visualization of Euclidean
geometry must therefore stress the limits of this human ability: the
limits prove that the normative character of our images does not spring
from visualization but from logic.

It is but another mistake when mathematicians attempt to base a
visualization of non-Euclidean geometry on just these limits of
visualization.! The deviations of physical geometry from Euclidean
geometry are so small according to the theory of relativity that they
are far below the limit of exactness of visualization, and it would be
convenient to say that Einsteinian space can be visualized just as well
as Euclidean space, since no difference is noticed within the visual field.
Yet this argument begs the question. 1t is not permissible to base a
statement about visualization upon phenomena where visualization
fails; there are certainly noticeable differences of visualization like the
difference between an angle of 90° and one of 45°.  The problem of the
ability to visual non-Euclidean geometry centers around the question
not whether the negative but whether the positive properties of
visualization can be exploited for non-Euclidean geometry. If it is
possible to visualize non-Euclidean geometry, it must be possible for
a space of strong curvature, perceptible, say within the dimensions of
a reom, just as well as for Einstein's weakly curved space—otherwise
it would not make sense to speak of visualization, and one could only
say that we are unable to visualize differences between the two spaces.
It is, therefore, not expedient to take the /imits of visualization as the
point of departure for our attempt to make non-Euclidean geometry
accessible to visualization. Qur only concern with these limits has
been to establish the fact that it is not visualization, but logic, which
dictates the laws read from the images.

In an carlier section (§ 1) non-Euclidean geometry was made plausible
by means of *badly-drawn’’ figures; now we understand the deeper
significance of this device. It is the predominance of logic in visualiza-
tion which is expressed in this method. It will be our task to extend
the method in such a way that we can imagine for non-Euclidean
geometry even the possibility of “well-drawn™ figures. By means of
conceptual thinking, we can pass from visualization to readjusted

1 This conception is suggested by F. Klein, Elementarmathematik vom hikeren
Standpunkte aus, Vol. 11, p. 192f. Springer, Berlin 1925.
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visualization. The human mind has the ability to circumvent visual
images by the use of abstract concepts, as it were. After this achieve-
ment it is able to produce new images. e must not demand that the
new images have the same degree of immediacy as the old ones, and
that they come into focus with as little effort as the images we are
accustomed to. Some constraint and some adjustment of the
imagination is indispensable; and so is careful analysis which reveals
what is actually visual in so-called visual experience.

§ 11. VISUALIZATION OF NON-EUCLIDEAN
GEOMETRY

It has occasionally been maintained by mathematicians who have
worked a great deal in non-Euclidean geometry that they can gradually
visualize it. The proponents of the theory of relativity argue that the
visualization of Euclidean geometry is only the result of habit, and
that we could gradually acquire the ability to visualize non-Euclidean
geometry. One must not forget, however, that very little is gained by
such a statement, because we do not know yet what is to be understood
by “visualization of non-Euclidean geometry.” The mathematician
is inclined to postpone these philosophical questions in favor of the
mathematical elaboration of geometry. Nobody denies that the
mathematician succeeds in getting accustomed to non-Euclidean
concepts that permit fast and effective research for mathematical
purposes; but the question remains whether such an imagining of

Fig. 5. Klein’s model of non-Euclidean geometry.
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non-Euclidean relations can be compared to the phenomenon which
we call “‘visualization” in Euclidean geometry.

The mathematicians have developed a procedure that enables us
to ‘‘visualize” non-Euclidean geometry by means of Euclidean
geometry. This method is based upon the mathematical fact that a
non-Euclidean geometry can be mapped upon Euclidean space. A
well-known example will illustrate this matter. In Fig. 5 a circle is
drawn, the interior of which can be used to visualize the geometry of
Bolyai-Lobatschewsky. The same relations hold between the chords
of this circle as between the straight lines of Lobatschewsky's geometry,
so long as we restrict ourselves to the interior of the circle. Through
the point P a (dotted) chord has been drawn intersecting 4 B; two more
chords have been drawn which do not intersect AB. This drawing
illustrates the axiom of the parallels of Lobatschewsky's geometry;
it means, in the language of this geometry, the existence of several
straight lines through one point which do not intersect a given straight
line. It may be objected that these straight lines, if sufficiently
continued beyond the circle, will intersect the continuation of the
straight line A B; they certainly will, but that does not contradict our
assertion. We said only that the relations between the chords in the
interior of the circle are identical with those of Lobatschewsky. Every
theorem valid for Lobatschewsky’s straight lines is valid for the chords
in the interior of the circle. Mathematics can show, furthermore, that
Lobatschewsky's entire plane can be mapped upon the interior of this
circle. In this mapping, however, the concept of distance between two
points of Lobatschewsky's geometry is not coordinated to the concept
of distance between two points of Fuclidean geometry, but to a
mathematical expression which has a very complicated form in
Euclidean geometry.!  This expression has the consequence that equal
segments on a chord, in non-Euclidean metric, correspond in Euclidean
metric to segments becoming smaller and smaller as we approach the
perimeter of the circle, so that an infinite number of such *‘equal”
segments are situated on a chord. By means of this device a theorem of
Euclidean gecometry is coordinated to every theorem of Lobatschewsky's
geometry. Of course, the corresponding theorems have different
meanings in the two geometrics. For instance, the theorem of
Euclidean geometry " There are several chords through one point which

1 It is the logarithm of the cross-ratio formed by the two points and the points
of intersection of the chord with the circle. Cf. H. Weyl, Space-Time-Matter,
Methuen & Co. Ltd., London, 1922, p. 82.
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do not intersect a given chord in the interior of a circle” corresponds
to Lobatschewsky’s theorem ** There are several straight lines through
one point which do not intersect a given straight line.” A theorem
of Lobatschewsky concerning the congruence of triangles would
correspond to a theorem of Euclidean geometry which states something
about the complicated function that replaces the Euclidean concept of
distance.

Are we now able to visualize non-Euclidean geometry? Certainly
not. In this example only the Euclidean elements of the theorems can
be visualized. Instead of one of Lobatschewsky's theorems, which
cannot be visualized, we visualize one of Euclid's theorems, and by
means of this detour arc enabled to manipulate Lobatschewsky's
geometry with greater case. Lobatschewsky’s concepts become
abbreviations for more complicated Euclidean relationships; we speak
the language of Lobatschewsky but connect with these concepts the
visual meaning of Euclidean relations. It is like making intelligible
a sentence gonsisting of a meaningless chance combination of words
by coordinating to them new meanings; it cannot be said, however,
that thereby the original sentence becomes intelligible.

Philosophers have therefore objected to this method of the mathe-
maticians on the ground that the result is not a visualization of
non-Euclidean geometry but a pointing out of a system of relations
between elements of Euclidean space, a system which is analogous to
the system of non-Euclidean relations. The method was taken to
demonstrate that visualization of non-Euclidean geometry is impossible
and must therefore be replaced by a mapping upon Euclidean space
as the only one that can be visualized. Accordingly, the method of
mapping has merely the logical function of proving the consistency of
non-Euclidean geometry (cf. §1). This important result is in-
disputable, but one refused to regard the method of mapping as a
visual representation of non-Euclidean geometry.

This rejection appears to be justified. Therefore, we shall not
continue our investigations in connection with this mathematical
treatment of the problem, but shall go back to the physical treatment,
where the problem of the geometry of real space and of measurement
is most conspicuous. In this way we shall approach the problem
of visualization more closely, since we are dealing with empirical
perceptions, not with conceptual constructions. We shall later come
back to the method of mapping described above.

It was explained previously under what circumstances a physicist
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.

would decide to call a space “‘non-Euclidean.” He would just keep
to the measuring results of rigid rods and let them determine the
geometry. Let us visualize his experiences: Asst 1e that the observed
geometry is the three-dimensional analogue to Fig. 2 (p. 11). Wedraw
a two-dimensional cross-section (Fig. 6) through space: in the plane

Fig. 6. Cross-section through a non-Luclidean space. In non-

Euclidean relations BB, = CC,, although AB - BC and

ABy = BiC,. The solid line MN is a line of equal distance

from DC, the dotted line MN is a straightest line; they do not
coincide.

of our drawing it looks similar to the projection of surface & upon
surface E of Fig. 2. Fig. 6 may be conceived as the top view of Fig. 2
(cf. however the footnote on p. 52).  Imagine meridians drawn from A’
(Fig. 2) upon G which merge into radial straight lines in the plane part
of G. In E these meridians will appear as straight lines emanating
from A, as Fig. 6 shows. We must only add that we imagine Fig. 6
as a cross-section through a similar space so that from A straight lines
would emanate in all directions.

In order to describe our observations we assume that the physicist
retains Euclidean geometry. He then observes the following. By
means of his measuring rod he made AB = BC = ABy, — BiCy. The
distance BBy is as long as a solid rod which he laid down. He now
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places this rod on the line CC,. He finds that it goes from C to Co,
whereas C»C is shorter than the rod. In Euclidean geometry CC,
must be equal to 2 (BB)); he will say that the rod has grown under
the influence of a field of force . The force has the effect that the rod
becomes longer in tangential position the farther he moves away from
A, whereas it remains unchanged in radial position.! If he moves still
farther away from 4, the expansion increases still more, then decreases,
until it finally disappears and normal relations obtain. The field of
force F is found to be universal, i.e., independent of the material of the
measuring rods.

Corresponding relations were described as the result of measurements
on the surface E of Fig. 2, where they can be explained as a consequence
of the projection. There the transition to non-Euclidean geometry
(i.e., a “defining away” of F) was simpler, because we were concerned
with a two-dimensional problem: we could visualize surface E as
having a hump like surface G. The introduction of non-Euclidean
geometry thus does not cause any visual difficulties in the two-
dimensional domain. The situation is different in the three-dimensional
realm. If Fig. 6 is to represent a cross-section through a space for
which the same cross-sections result in all directions originating from
A, we cannot interpret this cross-section as a hump because it would
conflict with the other cross-sections. The cross-section must therefore
remain plane and yet show the geometry of the sphere—this is the
requirement contradicting visualization that stops us when we wish to
introduce non-Euclidean space. Can we get rid of the contradiction?

We must analyze, therefore, in what respect the interpretation in
terms of a hump constitutes a solution for the two-dimensional problem,

! He could also say that a contraction occurs in radial position, whereas there
is no change in tangential position; the two descriptions would be equivalent.
The second one would correspond to the relations of the projection of Fig. 2.
We choose the first one because it facilitates the following presentation. In
Fig. 6, therefore, the distances A 13 and BC are equal in length, whereas in Fig. 2,
BC is shorter. Fig. 6 is not obtained from the surface G of Fig. 2 by parallel
projection but by a projection that preserves the lengths of the meridians, yet
expands the parallel circles. In dealing with the field of gravitation in the
neighborhood of a mass point, Einstcin chooses the second description and speaks
of a contraction of the radial measuring rod. (Aun. d. Phys. 49, 1916, § 22.)
The resulting relations are similar to those described here; the only difference is
that the contraction increases rather than decreases when the center is
approached. In the center (or even in its vicinity) we find a singularity. It is
the geometry of a paraboloid originating from the rotation of a parabola around
its vertex tangent (or around straight lines outside the parabola and parallel to
the tangent). Cf. L. Flamm, Physikal Zeitschrift 17, 1916, p. 438.
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How is the curvature of a surface visualized?> What we see are usually
the differences relative to three-dimensional space rather than the
geometrical relations within the surface. The distance between a
curved surface and an adjacent plane varies; that is the criterion by
which a curvature is visualized. We thus make use of the third
dimension in order to visualize the curvature of the two-dimensional
manifold. Let us call this kind of curvature the exterior curvature.
It is well-known that the exterior curvature of a surface can change
without a change of the inlerior curvature, i.c., of the geometry of its
surface. The zone of a sphere of elastic sheet metal, for instance, can
be twisted without being expanded, so that the metal shows a different
shape while retaining its inner spherical geometry. (This is not true for
the sphere as a whole.)  If a piece of paper is tashioned into a cylinder,
it will have an exterior curvature, but not an interior curvature,
because the rolling does not involve an expansion; the surface of a
cylinder has thercfore the geometry of the Euclidean plane. What
we usually visualize as the curvature of a surface is its exterior
curvature. If we were to attempt a similar visualization for a three-
dimensional manifold, we would have to imbed it in (at least) a
four-dimensional space. Here lies the difficulty of the problem. [t
seems to be very difficult to impose a new dimension upon visualization.
Physically this new dimension would not even be justified, because
all physical happenings are confined to the three-dimensional realm.
Later we shall investigate more precisely in what sense the number of
dimensions is determined by physical occurrences; it is evident,
however, that the introduction of a new dimension is useless for our
problem, because we cannot make any measurements in the fourth
dimension and therefore no criterion analogous to “the distances of
the curved surface from a plane’” exists. The problem must be solved
in the three-dimensional domain, i.c., we must try to visualize the
fnterior curvature of the space.

There is another rcason why we must stay in three dimensions.
Euclidean space can be visualized only in three dimensions. Justasa
curved surface can be characterized by its relations to three-dimensional
space, a plane can be described in terms of three dimensions. For
instance: planes are structures the intersections of which are straight
lines. In the same sense in which we speak of the existence of an
exterior and an interior curvature, we may speak of the absence of an
exterior and interior curvature. If we attempted to describe non-
Euclidean space as imbedded in a higher manifold, we could demand
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the same for Euclidean space. But since we restrict ourselves to a
visualization of the absence of the interior curvature, we may also
restrict ourselves to a visualization of the interior curvature greater
than zero. We wanted to compare our ability to visualize one or the
other; therefore we must try to visualize non-Euclidean space in the same
manner as Euclidean space, i.e., within the three-dimensional domain.

This insight constitutes the first step on the path to a visualization
of non-Euclidean space. We must not demand of an image of non-
Euclidean space properties of an image of a surface in three-dimensional
space, but should look only for analogues to properties of a surface
visualized in two-dimensions, i.c., to the interior curvature of a surface.

What visual experiences in the two-dimensional domain induce us
to say that a surface is curved?> Only one feature represents the
curvature visually. If we look at Fig. 6, the distance CC, appears
longer than BB;. If we look at the same measuring rods on the
surface G, however, CCy appears equal in length to BB,. The visual
experience of the curvature in two dimensions consists in the fact that
we judge the relations of congruence differently. It does not matter
that the distance CC; does not become twice as long as BB, in spite
of the equality of the sections on the radial lines: we project the
congruence differently upon the plane. This insight is the second step
on our path to visualize curved space.

We can carry through the same procedure for three dimensions. We
can adjust our visualization in such a way that we see the distances
BB and CC; equal in length. We do not need a hump in the surface;
we need only to adjust our conception of congruence. Such an adjust-
ment is permissible because congruence is a matter of definition.
Even Euclidean congruence, which we often tacitly presuppose, is
based on a definition. This definition too is projected by us into space,
not discovered init. The adjustment necessary for a visualization of a
curved space consists in projecting congruence differently into
three-dimensional space.

We have such a strong visual perception of Euclidean geometry
because all our experience with rigid rods constantly teaches us
Euclidean congruence. Let us recall the description of the image-
producing function of visualization in the foregoing section, where we
explained that the manner of visualization is mainly conditioned by
previous perceptions. If we wish to change our reaction to Euclidean
congruence, we shall have to strain the normative function consider-
ably. It would be different if in daily life we dealt occasionally with
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rigid bodies that adjusted themselves to non-Euclidecan geometry.
We can imagine what our experiences would be if we suddenly worked
with measuring rods that behaved according to Fig. 6. At first we
would have the feeling that objects changed when transported, and we
would apply the formula Go+-F.  After some time we would lose this
feeling and no longer pereeive any change of the objects when they are
transported. Now we would have adjusted our visualization to a
geometry G for which ¥ — 0. When a near-sighted person puts on
glasses for the first time, he seces all objects distinctly, but they seem
to move as soon as he moves,  After a while this feeling wanes, and
he has become accustomed to the new way of seeing.  We would have
the corresponding experience in a non-Euclidean world; the moment
we no longer see any change in the transported objects, we have
accomplished a visual adjustment.

Let us point to another example of such an adjustment. Auto-
mobiles are frequently equipped on the driver's side with a convex
mirror showing the lanes in the rear. The untrained person sees the
picture in the mirror in a distorted way; moving objects seem to change
in shape; but the driver accustomed to the picture no longer has the
impression of distortion and change of shape. A corresponding adjust-
ment is made to the many strange perspective relations of our Euclidean
environment; children often do not have static pictures: they see a
moving train in the size of a toy train and have the impression that the
departing train becomes objectively smaller.  Neither are they able to
identify the static picture of distant congruences with the picture of
nearby congruences. Children see the parallel lines of a street as
objectively converging, and when they arrive at the end of the street,
they cannot understand that this is the same spot which they saw from
a distance. Any adjustment 10 congruence ts a product of habit; the
adjustment is made when, during the motion of the objects or of the observer,
the change of the picture is experienced as a change in perspective, not as
a change tn the shape of the objects.

Whoever has successfully adjusted himself to a different congruence
is able to visualize non-Euclidean structures as casily as Euclidean
structures and to make inferences concerning them. 1 should like to
use the problem of the parallels as an illustration. There are no
parallels in Riemannian space; let us try to visualize this feature. In
Fig. 6 the solid line MA is drawn in such a way that it has everywhere
a constant distance from the “straightest line” /C. In Euclidean
language: MN is curved so that it approaches DC more closely in the
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middle; a rigid rod put between the lines as a measure of their distance
would have a radial direction in the middle of the figure and would
not contract, whereas at the sides it would come into a tangential
position and would expand. If we adjust our eyes to the other
congruence we can very well “see” the distance of the two lines as
being the same everywhere. We have to realize only that Euclidean
congruence, in spite of its obtrusiveness, is likewise merely a definition
which we “see into’ the plane of drawing. Furthermore, the solid
line MN is no straightest line. The dotted line MN is the shorter
connection between M and N. In Euclidean geometry this means:
a measuring rod transported along the dotted line passes in the middle
through zones farther removed from A and is therefore longer in these
areas; thus it can be laid down less often on the dotted line. If we
readjust our eyes to the other congruence, we see clearly that the rod
can be laid down less often along the dotted line. Consequently: there
are no parallels in this instance; the two descriptions “line of equal
distance from a given straight line”’ and ‘“‘straightest line” do not
apply to the same thing. This is the meaning of the statement that
there are no parallels.

In order to explain the drawing of IYig. 6 we have so far used the
Euclidean language. This usage, however, is necessary only in the
beginning of attempts at such an adjustment. Statements like ““the
rod is longer here than there’ are eventually replaced by statements
like “the rod covers here this distance and there this distance,” and
the corresponding distances are then visualized. Eventually one can
forget that from the viewpoint of Euclidean geometry these distances
are different in length. We have similar experiences when we learn
a new language: in the beginning we can only translate from our
native language, and even when we talk, the new words acquire a
meaning only because the translation is always present in our mind.
Gradually we learn to associate a meaning immediately with the new
words, to think in the new language and to express ourselves without
the detour through the native language. A similar emancipation from
the ““native geometry” is experienced with regard to the visualization
of non-Euclidean relations.

It is indeed possible to visualize non-Euclidean space by an adjust-
ment of visualization to a different congruence. Euclidean space has
thus lost its privileged status. It should not be objected that even
this method constitutes a mapping of non-Euclidean relations upon
Euclidean space. Space as such is neither Enclidean nor non-
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Euélidean, but only a continuous three-dimensional manifold. It
becomes Euclidean if a certain definition of congruence is assumed for
it; this congruence is mathematically characterized by the fact that
the concepts of line of equal distance from a given straight line and
of straightest line are coextensive. As long as we adjust our eyes to
this congruence, we visualize Euclidean space. If a different definition
of congruence is introduced for which the above-mentioned mathe-
matical condition does not hold, space becomes non-Euclidean. We
are unable to visualize it so long as we cannot emancipate ourselves
from Euclidean congruence; with this restriction non-Euclidean rela-
tions can only be mapped upon the visualized Euclidean space. Space
will be visualized as non-Euclidean if we succeed in visualizing the
new definition of congruence as congruence, i.c., in adjusting our eyes
to it. It is, in fact, the result of training the eyes to adjust to the
behavior of solid bodics seen in different angular perspectives that
cnables us to visualize Euclidean congruence.  If we readjust the eyes
we can similarly visualize non-Euclidean congruence. With this step
we have succeeded in visualizing all that can possibly be visualized in
Euclidean or non-Euclidean spaces within the three-dimensional
domain. We have visualized the interior curvature, since interior
curvature is nothing but the deviation from Euclidean congruence.
We can now come back to Klein's method of mapping the Bolyai-
Lobatschewsky geometry upon the interior of a circle. The procedure
was based on a coordination of non-Euclidean concepts to Euclidean
ones. This method, too, reveals itself as a redefinition of congruence
and can be visualized by a readjustment to a different congruence.
The definition of non-Euclidean congruence is formulated in terms of
Euclidean congruence; this kind of definition results from the nature
of the model, which is intended to establish a correspondence between
the two geometries. The procedure represents the indirect method
described above: Euclidean geometry is inserted as an intermediate
step for the purpose of rendering possible a visualization of the defined
congruence. It is somewhat difficult to forget this detour, but it is
possible to conceive the definition ol congruence as given directly by
the statement *this distance is congruent to that distance.” Only as
long as Klein’s method is identificd with a mapping process is the
example not a representation of Lobatschewsky's geometry. But it is
possible to adjust to the other congruence, i.e., to sec as congruent
those sections of the chord which, in Euclidean language, become

smaller and smaller as the periphery is approached. In this sense
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Klein's picture is truly a visual representation of Lobatschewsky's
geometry.

Klein's model involves a special difficulty, because Lobatschewsky's infinite
space is mapped upon a finite section of Euclidean space. In order to accomplish
the visualization, we must “forget” everything outside the circle (in the three-
dimensional domain outside the sphere). We must imagine ourselves inside the
circle and remember that the periphery cannot be reached in a finite number of
steps.

The mathematician is thus correct in saying that he has become
accustomed to visualize non-Euclidean geometry by working with it.
But we can now analyze the process by which he changes his visualiza-
tion. He has become accustomed to visnalize actually as congruence
the definition which originally was given as a function of Euclidean
clements, to emancipate himself from the impression of a change,
which in the beginning affects everybody working with such con-
gruences, and to project congruence into space in a manner different
from the one to which he was previously accustomed. If his realization
of the definitional character of congruence is strong enough to direct
the image-producing function of his visualization, he will succeed.
Our previous thesis was that the apparent impossibility of visualizing
non-Euclidean geometry originated from the fact that a contradictory
presupposition was smuggled in which demanded that non-Euclidean
geometry be visualized in terms of Euclidean elements. This pre-
supposition can now be stated more precisely: Euclidean congruence is
the tacit presupposition that influences the image-producing function of
our visnalization when il so stubbornly rejects non-Euclidean geometry.
The refusal is certainly justified, because non-Euclidean relations can-
not be visualized in terms of Euclidean congruence: such a visualization
is logically impossible. Euclidean congruence is the rule presupposed
for the game of chess if certain moves seem to be impossible; an
alternative is possible only when the rule of the game is changed.
After such a change has been achieved, one can read the laws of non-
Euclidean geometry, such as the nonexistence of parallels, from one’s
images in the same way as the untrained person takes Euclidean
axioms for granted in his visual images.

§ 12. SPACES WITH NON-EUCLIDEAN
TOPOLOGICAL PROPERTIES
The concept fopological was mentioned previously; let us add a brief

cxplanation. The surfaces of three-dimensional space are distinguished
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from each other not only by their curvature but also by certain more
general properties. A spherical surface, for instance, differs from a
plane not only by its roundness but also by its finiteness. Finiteness
is a holistic property. The sphere as a whole has a character different
from that of the plane. A spherical surface made [rom rubber, such
as a balloon, can be twisted so that its geometry changes. We can give
it an egg-shaped appearance or press it into the form of a die; but it
cannot be distorted in such a way that it will cover a plane. All
surfaces obtained by distortion of the rubber sphere possess the same
holistic properties; they are closed and finite. The plane as a whole
has the property of being open; its straight lines are not closed.  This
feature is mathematically expressed as follows. Every surface can
be mapped upon another one by the coordination of cach point of one
surface to a point of the other surface, as illustrated by the projection
of a shadow-picture by light rays. For surfaces with the same holistic
properties it is possible to carry through this transformation wuniguely
and continwously in all points. Uniguely means: one and only one
point of one surface corresponds to a given point of the other surface,
and vice versa. Confinuously mecans: neighborhood relations in
infinitesimal domains are preserved; no tearing of the surface or
shifting of relative positions of points occur at any place. For surfaces
with different holistic properties such a transformation can be carried
through locally, but there is no single transformation for the whole
surface. As an illustration let us take the stercographic projection of
the spherical surface (Fig. 9, p. 69). From the north pole P we draw
radial lines to project every point of the surface of the sphere upon the
horizontal plane. In general this transformation is unique and
continuous, although the metrical relations are distorted; for the point
P, however, it shows a singularity. Point P is mapped upon the
infinite; i.e., no finitely located point of the plane corresponds to it.
It can be shown that every transformation possesses a singularity in
at least one point. The surface of the sphere is therefore called
fopologically different from the planc. Only a “sphere without a north
pole”” would be fopologically equivalent to the plane. This would be a
sphere where exactly one mathematical point is excluded, whereas all
adjacent points are preserved; such a sphere has a point-shaped hole
without a boundary and is no longer a closed surface.

Greater topological differences result when surfaces of a different
connectivity are considered. The torus is a doubly-connected surface
(Fig. 11, Plate 1); it has the shape of a doughnut. Its characteristic
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feature is that there exist on it closed curves which cannot be contracted
to a point. There are no such curves on the plane; if we imagine any
closed curve on the plane (Fig. 7), a concentric curve can be drawn
inside it, a smaller one inside the second one, and so forth, until the
curves are contracted to a point. There are such curves on the torus,
but not every curve has this property. The curves drawn in Fig. 11
(Plate 1) cannot be contracted to a point. If we go from curve 1
to the curves 2 and 3, 2 lies between 1 and 3 just as in Fig. 7 the curve 2

Fig. 7. Curves that can be contracted to a point.

lies between the curves 1 and 3. But if the transition to additional
curves is continued on the surface of the torus, we shall finally return
to curve 1, since the curves become larger on the other side of the torus
in contradistinction to the plane, where the curves are contracted to a
point. The statements that 3 lies between 2 and 1, or that 1 lies
between 2 and 3, are equivalent, because the order of betweenness!
does not depend upon the mutual distances of the curves; betweenness
is purely a relation of order. That naive visualization belicves curve 2
to lie necessarily between 1 and 3 demonstrates the confusion of
metrical and order relations and hence the mistake of an uncritical
reliance on results of such visualization. Only a conceptual formulation
reveals the errors of naive visualization and enables us to correct them.
Once the conceptual structure has been understood, visualization
follows suit: the relation of betweenness on the torus is undetermined
for curves that cannot be contracted to a point, i.e., for three of such
curves it is not uniquely determined which of them lies between the
other two. (The relations of betweenness for the ring curves on the
surface of the torus are the same as those of the points on the periphery
of a circle.} This indeterminateness of the betweenness relation has
the consequence that such a curve does not divide the surface of the
torus into two separate domains; between points to the *right” and

! By betweenness we shall understand the relation indicated by the word
** between.””
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Fig. I.  Torus with triangle and intersecting straightest line.

Fig. I1. Non-intersecting closed curves on a torus.

Fig. I11. Relativity of the enclosure of circles on a sphere.

Plate 1.
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“left” of the curve there are connecting lines which remain in the
surface of the torus and yet do not intersect the curve.l

The ring property of the torus finds it conceptual expression in the
existence of such non-separating curves; this is a holistic property
preserved when the torus is uniquely and continuously mapped upon
a different surface. A rubber band, for instance, has the holistic
properties of the torus and preserves them even if it is twisted and
distorted. Due to its other holistic properties the torus cannot be
mapped upon the plane uniquely and continuously, nor upon the
sphere, from which it is also topologically different.

In topology, mathematics deals with the purely qualitative propertics
of geometrical figures (which shows, by the way, that the statement
“mathematics is a purely quantitative science”’ is false). Mathematics
characterizes topological equivalence by the possibility of transforming
uniquely and continuously one surface into the other, i.e., by a trans-
formation that does not involve any metrical considerations. Thus
mathematics, succeeds in formulating analytically those geometrical
properties which are typically visual and seem to defy conceptual
formulation. By means of new concepts mathematics teaches us how
to visualize such propertics. In everyday language we call the torus
a surface with a hole. But the hole is a matter of the third dimension;
the surface of the torus has no hole. When we walk on the surface we
always find ourselves in an uninterrupted environment. Nevertheless,
the phenomenon we called the hole of the torus manifests itself in
experiences on the surface; we formulated these experiences by the
existence of curves which cannot be contracted to a point and among
which obtains an undetermined betweenness relation. Even for the
surface of the torus as a whole we must readjust our visualization in a
way similar to the readjustment which we found necessary in connection
with the relation of betweenness. Such considerations show that,
indeed, *‘ percepts without concepts are blind.”” This striking remark
of Kant's is better illustrated by mathematical analysis than by the
argumentation of his philosophical system.

Considerations of this kind will therefore be our guide in attempting
to transfer topological properties to the three-dimensional domain.
Since we can reconstruct the metrical properties of curved surfaces in

! There are cases in which a curve cannot be contracted to a point, yet it
divides the surface into two separate domains, such as the ring curve on an
infinite cylinder. The corresponding ring curve on the torus, however, has the
same propertics as the curves drawn in Fig. II of the plate.
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the three-dimensional realm, we should also be able to recognize their
topological properties in three-dimensional spaces. The simple
connectivity properties of Euclidean space will be a special case, and
we must analyze spaces with different connectivity properties. In
these considerations we need no longer separate the question of
physical realization from that of visualization. Since we found that
the problem of visualization can be solved in connection with the
construction of perceptual experiences, we shall deal with both questions
at once. We shall follow Helmholtz' method; for * visualize” Helm-
holtz gave the definition: ... that we are able to imagine the series
of perceptions we would have if something like it occurred in an
individual case.””1  We ask therefore: What would we experience if
space had different topological properties? By imagining a torus space
we shall try to answer this question.

For the presentation of the physical facts to be described we shall
use the same method employed successfully in the preceding section.
We assume at first that the space is Euclidean and describe all observa-
tions according to the scheme Go+ . Only later shallwegoto F =0
and G. We wish to construct the three-dimensional analogue to the
nonseparating curves on the surface of the torus.

Iig. 8 is to be conceived three-dimensionally, the circles being
cross-sections of spherical shells in the plane of the drawing. A man
is climbing about on the huge spherical surface 1; by measurements
with rigid rods he recognizes it as a spherical shell, i.c., he finds the
geometry of the surface of a sphere. Since the third dimension is at
his disposal, he goes to spherical shell 2. Does the second shell lie
inside the first one, or does it enclose the first shell? He can answer
this question by measuring 2.  Assume that he finds 2 to be the smaller
surface; he will say that 2 is situated inside of 1. He goes now to 3
and finds that 3 is as large as 1.

How is this possible? Should 3 not be smaller than 2? If the
geometry were Euclidean this would be the case. But this considera-
tion need not influence the observations. The physicist will explain
his measuring results by a contraction of the rod; his rod and also his
body contract so that 3 appears larger than 2. He can avail himself
of this hypothesis.

V Schriften zur Erkenntnistheorie, edited by Hertz and Schlick, Berlin 1921,
p. 5. This formulation by Helmbholtz, in connection with his examples con-
structed according to this principle, has opened the way for the solution of the
problem of the visualization of geometry.
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He goes on to the next shell and finds that 4 is larger than 3, and
thus larger than 1. His rod has further contracted; 5 he again finds
to be as large as 3 and 1.

But here he makes a strange observation. He finds that in §
everything is familiar to him; he even recognizes his own room which
was built into shell I at a certain point. This correspondence manifests
itself in every detail; he sees his own handwriting on the paper upon
the table, and his teacup stands half-empty where he left it. He is
quite dumbfounded since he is certain that he is separated from

12345

Fig. 8. Concentric spherical shells.

surface 1 by the intervening shells. He must assume that two identical
worlds exist, and that every event on surface 1 happens in an identical
manner on surface 5.

It suddenly occurs to him that at this moment his own double sits
in surface 1 puzzling about the same things as he. In order to test
this idea he makes a crucial experiment. He writes down his thoughts
on a sheet of paper, adds a code word, locks the paper in a drawer, puts
the key in his pocket, and leaves shell 5.  He investigates it once more
and finds that it is completely enclosed by shell 4. He then returns to
1, making sure all the time that every shell is situated between two
other shells. Arriving at 1 he finds his rocom, opens the drawer with
the key he put into his pocket, and recognizes on the slip of paper the
same words which he had written down in shell 5.

What kind of a world will he imagine? If he retains Euclidean
geometry he will have to accept the duplication of all happenings
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including his own person. Not only a duplication, however; he would
also find that by wandering from 1 in the “outside" direction or from
5 in the “inside’’ direction he encounters the same things. He can
never reach the center of all the shells because as he approaches it all
objects as well as his own person contract continuously; the center,
for him, has the property of an infinite distance. The world consists
of an infinite number of periodically equivalent spherical shells.
Within each interval, say from 1 to 5, everything happens according
to the usual physical laws, but from there on, the same happenings
recommence. To every point of one interval of shells corresponds a
respective point in all the other intervals; yet there is no boundary, and
all transitions are continuous.

This is a description of experiences in a torus space presented
in Euclidean geometry. We notice that the addition of a universal
force F to Go does not suffice; in addition, a causal anomaly occurs,
consisting in the spatial periodicity of all happenings. The inter-
dependence of all events at corresponding points cannot be interpreted
as ordinary causality, because it does not require time for transference
and does not spread as a continuous effect that must pass consecutively
through the intermediate points. Only within every shell does normal
causality hold; the interdependence of the shells is like some kind of
preestablished harmony. It may be left open whether this pre-
established harmony is to be conceived as an instantaneous coupling
of distant events, l.e., as an action at a distance, spreading without
intermediate effects, or whether it is to be regarded as a parallelism of
events which had ‘“by chance’ the same initial conditions and since
then have been running down like synchronized watches. Such a
distinction is merely a difference in interpretation.! The state of affairs
underlying the two interpretations is essentially different from the
normal laws of nature, and we speak therefore of a causal anomaly.
We may no longer write our formula “Go+ 7" but

Go+F+A
where A stands for the causal anomaly.

On account of this result, physics arrives at a strange situation.
The principle of causality is one of its most important laws, which it
will not abandon lightly; preestablished harmony, however, is incom-
patible with this law. In physics the transition to the geometry of the

1 The latter interpretation is possible only from the standpoint of determinism,
for otherwise the permanence of the strict parallelism would be infinitely

improbable.
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torus will thus be preferred. In this conception the shells 1 and 5
are fdentical, and the world does not exist in periodic sections in space,
but only once, in the shape of a torus. With the transition from Go
to G not only the universal field of force F but also the anomaly A4
disappears, a consequence which is a strong argument for preferring G.

The question arises whether this result is compatible with the
relativity of geometry proved above. This relativity was based upon
theorem @ (p. 33) which stated the possibility of mapping geometries
upon each other. As we said at the beginning of the present scction,
a unique and continuous mapping is possible only for geometrical
structures having the same topology; theorem 8 is correct only within
these limits. If topologically different spaces are mapped upon cach
other, neighborhood relations will be disturbed at some places. The
mapping of the torus space presented above corresponds in two
dimensions to the case in which the surface of the torus is cut open
along one of the curves drawn in Fig. IT (Plate 1) and shaped into a
plane circular ring; under these circumstances the surface of the torus
will be deformed and the points along the cut will be separated from
adjacent points. The two edges of the ring correspond to each other,
i.e., they are assigned identical points on the torus. The continuity is
reestablished when an infinite number of smaller and smaller rings are
arranged concentrically within one another; but then the mapping
will cease to be unique in one direction. The violation of continuity
or uniqueness corresponds in the physical interpretation to a causal
anomaly, in this case to the preestablished harmony. If perfect
freedom of choice of geometry is to be preserved as a conditio sine qua
non, causal anomalies must be reckoned with occasionally.

Do we have to renounce Euclidean geometry in such a case? e
do not have to, because no one can prevent us from believing in a
preestablished harmony; if we admit it, Euclidean geometry is saved.
We can say, however: if normal causality is to be retained, Euclidean
geometry must under certain conditions be excluded for physical
space. In this casc an additional condition must be normalized, if
the statement about the geometry of space is to have an objective
meaning. It is clear that physics will require normal causality, if it
introduces the normalization F = 0. This assumption had been
implicitly made whenever the geometry of space was discussed; without
this assumption all statements about the geometry of physical space
would become ambiguous.

The torus space was analyzed thoroughly because such a discussion
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furnishes an important argument against the aprioristic philosophy of
space. It was said above that the aprioristic philosopher cannot he
prevented from retaining Euclidean geometry, a consequence which
follows from the relativity of geometry. However, under the circum-
stances mentioned he faces a great difficulty. He can still retain
Euclidean geometry, but he must renounce normal causality as a
general principle.  Yet for this philosopher causality is another a priori
principle; he will thus be compelled to renounce one of his @ priori
principles. He cannot deny that facts of the kind we described could
actually occur.  We made it explicit that in such a case we would deal
with perceptions which no a priori principle could change. Hence
there are conceivable circumstances under which two a priori require-
ments postulated by philosophy would contradict each other. This is
the strongest refutation of the philosophy of the a priori

What can be said now about the possibility of visualizing the torus
space? The same considerations that were explained in the preceding
section apply to the metrical deformation of the measuring rods.  This
deformation can be visualized by means of a readjustment to a different
congruence. The identification of the spherical shells 1 and 5 in Fig. 8,
however, presents a greater difficulty. It is quite certain that we would
regard the individual objects on the shells as identical; when perceived
they are identical in the usual sense. The problems of visualization
arising in connection with the mutual enclosure of the spheres will be
discussed later.

A topologically different space is the spherical space, which is
particularly interesting in that it does not represent merely a possible
form of physical reality like the torus space, but, according to Einstein,
corresponds to real space.  In order to imagine it, we again construct
the visual experiences in terms of a two-dimensional analogue.
However, we shall choose much smaller dimensions for our model than
those of the Einsteinian space of the universe; otherwise we would not
be able to describe visual experiences noticeably different from those
in Euclidean space.

On a spherical surface, as on a plane, every closed curve can be
contracted to a point. Still, there is a difference: the curves can be
contracted ¢n both directions. They can be contracted in the direction

! My refutation of the Kantian system, presented in Relativitiistheorie und
Erkenntnis a priori, Berlin, 1920, p. 29, is based on this idea; the present
exposition is a still better example of a contradiction between a priori principles
than the one presented in the earlier publication, which is not quite correct.
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of the north pole as well as in the direction of the south pole, because
the surface of the sphere is closed. On the spherical surface it cannot
be stated, therefore, which of two mutually enclosing circles is the
outer one. If two circles 1 and 2 close to the north pole N (Fig. III,
Plate 1) are considered, the larger circle 2 seems to be on the outside;
but circle 2 may be regarded as an intermediate step in the process of
contracting circle 1 to a point, if the circles 3, 4, 5 are contracted in the
direction of the south pole. Enclosure is a topological concept, and
size cannot be an indication of enclosure; on the sphere, therefore, we
may not speak of a one-sided enclosure of circles as we would on the
plane. The concept of enclosure is relative; there is only an *‘ enclosure
with respect to a given point of contraction.” The relativity of
enclosure expresses conceplually the finileness and closedness of the
spherical surface.

This idea must be transferred to three-dimensional space. We
should not look for an analogue to the model in which the finite
surface of the sphere is imbedded in a three-dimensional space; finiteness
does not mean a restriction to an island in a larger surrounding world.
If we limit ourselves to the number of dimensions of the structure
itself, there exists nothing else besides it, and there is no place in this
world which we cannot reach. Finiteness is rather expressed in the
specific topological relations of all space points. Corresponding to an
exterior and an interior curvature, exterior and interior holistic pro-
perties must be distinguished; only the interior holistic properties will
be investigated here.

Spherical surfaces in three-dimensional space correspond to the
circles on the surface of a sphere. Let us analyze their relations of
enclosure by mapping the three-dimensional structure upon Euclidean
space, i.e., by drawing the corresponding distorted figures in Euclidean
space. We must proceed in this manner because we intend to draw
the spherical space. ‘‘Drawing” means mapping upon a small area,
and since small areas in a spherical space are nearly Euclidean, the
inhabitant of the spherical space will not be able to draw pictures
different from the ones we are going to present.! Yet we are mostly
interested in discovering what he will see.  From our drawing we shall
be able to infer his perspective, which is very different. from the
Euclidean one. We then can draw without distortion pictures that
represent his perceptions, because we merely have to draw plane

1 “Drawing” is conceived here as a mapping upon a small three-dimensional
volume; the pictures in the plane of the drawing are projections of this figure.
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figures which, when projected upon the retina, will furnish the same
pictures as those actually occurring in spherical space.

The mapping of the spherical space will be accomplished by a
stereographic projection. We start with the projection of a two-
dimensional spherical surface. From the center of the projection P
(Fig. 9) all points of this surface will be projected by light rays upon the
opposite tangential plane; the top view of the resulting figures is drawn
in the bottom part of IYig. 9; its center is the point O, opposite to P,

Fig. 9. Stereographic projection of the surface of a sphere. If

conceived as a cross-section through spheres, the top view (the

lower drawing) is the stereographic projection of spherical space.
whereas P itself is mapped upon infinity.  All circles going through P
become straight lines in the plane of the projection. In particular, the
great circles going through P> become central straight lines, i.c., straight
lines going through 0. The equator QQ’ becomes the fundamental
circle QKQ'K’, the center of which is O. [t can be shown, however,
that any circle of the sphere is transformed into a circle of the plane—
a result not intuitively evident, but known to mathematicians since the
time of the Greeks. Great circles, in particular, are mapped as circles
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intersecting the fundamental circle QKQ'K’ in two diametrically
opposite points, because they possess this property on the sphere; we
call them main circles. In the top view (i.e., the bottom part) of
Fig. 9, two of these main circles are drawn, constructed as the
projections of the great circles SS’ and T'7”, whose front view appears
in the top part of Fig. 9.

It follows from the unique correspondence given by the mapping
that the system of figures of the plane formed by main circles, the
fundamental circle, and the central straight lines satisfies the axioms
of two-dimensional spherical geometry. This fact enables us to
transfer the stereographic projection to three-dimensional space. One
would assume that the corresponding three-dimensional structures
satisfy the axiomatic system of three-dimensional spherical space,
and in fact this can easily be demonstrated.

We need merely conceive the top part of Fig. 9 as a cross-section
through a three-dimensional space; the system of spheres, represented
in the drawing by circles as cross-sections, is the stereographic projec-
tion of the spherical space. In the following table we write down the
coordination given by the projection:

FElement of the spherical space:  Representation in Euclidean space :

Plane The fundamental sphere, or plane through the
center O of the fundamental sphere ( = central
plane}, or sphere which intersects the funda-
mental sphere in a great circle ( = main
sphere).

Straight Line Straight line through O ( = central straight
line), or circle of intersection between central
plane and main sphere ( = main circle).

Point Point, including the infinitely distant point.

Congruent figures Such figures as can be transformed into each
other by a spherical transformation that pro-
duces a fundamental sphere of the same size.

Let us sketch briefly an clementary proof that the system of clements on the
right satisfies the axioms of three-dimensional spherical geometry.

It is clear that on every central plane the same relations exist as in the plane of
the top view drawing of Fig. 9, because every circle resulting from the intersection
of a central plane and a main sphere must possess the properties of the main
circle defined above. (The circle of intersection between the fundamental sphere
and a main sphere is a great circle, according to the definition of a main sphere;
it is intersected in two diametrically opposite points by the great circle resulting
from the intersection of a central plane and the fundamental sphere.  Since these
points belong both to the central plane and the main sphere they must be situated
on the circle of intersection of these two elements.)

Three more theorems are to be proved. First: The main circles of every main
sphere must satisfy the two-dimensional spherical geometry. Though these
main circles are not great circles of the main sphere in the Euclidean sense, they
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follow the same system of axioms as the great circles, because they result from
the projection of the totality of great circles of the central sphere upon the
corresponding main sphere.  Second: It can be proved that any two main spheres
intersect in a circle the plane of which passes through O. It is obvious that the
straight line MM’ connecting the points of the intersection of two main circles
passes through O, since M and M’ correspond to diametrically opposite points
of the sphere indicated in the front view of Fig. 9. Since the straight line MM’
falls in the plane of the intersection of the two main spheres, O falls in this plane.
Third: It can be proved that two main circles that have a common point determine
a main sphere to which they both belong.  We first show that two main circles
« and B (not drawn in Fig. 9) that have a common point ¢ must have another
common point G’, which is the opposite pole to G.  This is proved by the use of a
third main circle y which lies in the same central plane as « and in the same main
sphere as 8.  We next construct a sphere through G and ¢’ and one point each of
a and fB; the sphere determined by these four points must contain « and 8. 1t
must also be a main sphere because it passes through G and its opposite pole G’.

The other axioms can casily be read from the model. For instance, the
nonexistence of parallels is represented by the theorem that any two main
circles belonging to the same main sphere must intersect each other.  There are
also straight lines that are skew, i.e., which do not intersect, and yet cannot be
incorporated into one plane. These are represented by two main circles linked
to each other in the manner of a chain. Two planes must always intersect,
because there is no parallelism for planes; the maodel shows this feature as a
property of the main spheres.

The uniqueness of the center (0, the fundamental sphere, and the central
planes is only apparent. It is possible to choose a different projection for which
any other given point becomes the center, while one of the former main spheres
becomes the fundamental sphere; other main spheres become central planes.
The translation of one projection into another is achieved by a transformation
with reciprocal radii, a so-called spherical transformation. This fact justifies
our above definition of congruence and likewise our mode of speech with regard
to infinitely distant points of Euclidean space. The infinitely distant region of
Euclidean space is properly regarded as a plane.  Since, however, it is equivalent
to a single point located in finite space—according to the transformations given
here—we speak of an infinitely distant point.

By means of the stereographic projection it is easy to construct the
relations in spherical space. Since we are looking for an analogue to
the relativity of enclosing circles, Fig. II1, (Plate 1) we shall consider
the following structure.

Let us imagine in space two large spherical shells I and 11, made of
sheet metal, which enclose each other and are rigidly connected by
beams. An observer climbs around between the shells; however, he
cannot pass through them but is restricted to the space between the
spheres. He intends to determine which shell is the outside one.

In order to visualize his experience we construct the following figure.
In the stereographic projection we draw two concentric spheres I and
I1, the top view of which can be seen in Fig. 10. Let us assume that
they are symmetrical to the fundamental circle indicated by a dotted
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line; i.e., in the original sphere {front view of Iig. 9) they correspond
to circles of latitude lying symmetrically with respect to the equator
QQ’. The observer is stationed at A on the fundamental circle. In
order to make our problem precise we assume that light rays move
along straightest lines in space.!  Hence we can determine by means of
main circles and main spheres what is visualized by the observer, just
as in Euclidean space a representation of his perceptions is ascertained

Fig. 10. Stercographic projection of spherical space: perspec-
tives of an observer at 4.

by means of straight lines and planes. We draw two main circles
through A which are tangential to the two circles I and II; they furnish
the angular perspective for 4 as do corresponding lines of projection
in Euclidean space. Since in every plane through 4 and O the same
relations hold, we may conceive Fig. 10 as a cross-section through a
three-dimensional figure which results from a rotation around the axis

1 It should be pointed out that this assumption does not correspond to the
conditions of the general theory of relativity, since according to it Jight rays move
along four-dimensional straightest lines, so that even in the static ficld of gravita-
tion this phenomenon does no lead to straightest lines of three-dimensional
space. Cf. Axiomatik der relativistichen Raum-Zeit-Lehre, p. 128 (hereafter
referred to as A.)  The deviation, however, is very small in the case of a weak
curvature.
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AOCA’. I the view of the observer is confined to the angular space
« he will see shell I; in the angular space y he will see shell I, and in
the angular space B he will see the empty space between the shells.
The shaded angular space on the right side of the figure is invisible
to him, because it is hidden by the shells; it is the “shadow area”
for A.

For the purpose of constructing the picture of his perceptions we
must follow the cone of light rays which begins at A; since the stereo-
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Fig. 11.  Stereographic projection of spherical space: perspectives
of an observer at A.

graphic projection reproduces the original angles, this cone is im-
mediately given by the tangents at 4. It is a double cone symmetrical
tothe line AO. His perceptions are obtained by the intersection of this
double cone with a plane of projection, which must always be assumed
to lie perpendicular to the direction of view. Fig. 12 shows the views
which are seen in the three directions: (a) from A towards 1, i.e., along
the central axis of «; (b} from A along a direction perpendicular to the
first, i.e., along the central axis of the adjacent angular space 8;
(c) from A towards II, i.c., along the central axis of y. In these figures
the shells are distinguished from each other by different shadings;
Fig. 12a shows the shading of shell I, Fig. 12¢ that of shell I1.
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In Fig. 11 we have drawn the perspective relations for an observer
who stands next to a shell, at 4. The double cone of the received light
rays has degenerated into a plane; on one side of the plane, rays from
the whole surface of shell I arrive, while the other side is completely
hidden by the adjacent part of shell II. His perceptions are drawn in

i,
i,

Fig. 12. Perceptions of an observer in spherical space. Position
of observer:
{a) at 4, Fig. 10, looking along the axis of «.
{b) at A, Fig. 10, locking along the axis of 8.
(c) at A, Fig. 10, looking along the axis of y.
(d) at A, Fig. 11, looking towards I.
(e) at 4, Fig. 11, looking perpendicular to 40.
(f) at O, Fig. 11, looking in any direction.

Fig. 12d and 12¢; 124 corresponds to the central direction towards I,
12¢ to the direction perpendicular to that of 124.

We can now imagine the visual experiences of the observer. From
the space between the shells he sees both spheres as convex surfaces;
i.e., by looking towards the spheres he discovers that light rays do not
glide along the surface, and that within the space between the shells
there is no connecting light path between two points of the same surface.
If he stands in the middle of the shell space looking towards I, he sees
in front of him the convex hemisphere of this surface surrounded by
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free space; when he turns around, he sees shell 11 in the same manner,
i.e., its convex hemisphere surrounded by free space. The two dia-
grams 12q and 12¢ represent these perceptions, and we may conceive
them three-dimensionally as in Fig. III (Plate 1). Representations
of the supporting beams must be added; they intersperse the shells
vertically and are indicated in Fig. 122—12f. When he turns his head,
the beams seem to rotate with respect to each other just as in the usual
Euclidean space the straight-line junctions of the walls and ceiling of
a long room seem to rotate with respect to each other as one turns one's
head from a direct overhead view to the perspective of the far end of
the room. From this point the total perspective does not show the
spheres as enclosing each other, but as situated side by side. However,
when the observer changes his position, the surfaces are bent open in a
strange way: with increasing distance from a shell it flattens out, and
the observer sees larger and larger areas, i.e., more than its hemisphere.
If he stands immediately beside a shell, he sees the entire surface of the
other shell and it looks as flat as a plane. There is no empty space to
be seen from this position of the observer, and the beams lie in front
of the shell. This is the view given in Figs. 124 and 12¢; in 12¢, which
corresponds to the perpendicular direction, the left half of the field of
vision is hidden by the small part of the convex shell I1 against which
the cye of the observer is pressed.

The empty space between the shells shows remarkable features.
Since all light rays originating from the observer are gathered in
A’ (Fig. 10), a real optical image of the observer occurs in this spot.
It is true that every direction of view leads to A’, but this holds strictly
for one point only; points adjacent to 4’ are seen in one direction only.
The environment of A’ is then coordinated to the total bundle of rays
originating from 4. Because of the natural limitation of the angle of
vision inherent in the structure of the eye, only that section will be
perceived which is formed by radial lines from the back of the head of
the observer: the observer thus sees the picture of the back of his own
head in a huge distortion all ‘over the space, filling the entire back-
ground. In Fig. 12a-¢ we must imagine the nonshaded area filled
with an enlarged picture of one’s own hair.

Let us add the following remarks about the accommadation of the eye with
respect to spatial depth. The optical image results normally from the fact that
a bundle of divergent light rays originating from the object hits the lens of the
eye and is there changed into a convergent bundle, the point of convergence of

which, or point of the image, lics beyond the focus. In spherical space, a bundle
of light rays emanating from an object-point at a distance greater than a quadrant
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converges upon the cye. The lens gathers such rays into a point lying between
the lens and the focus. The pattern of the rays is the converse of the one
resulting for a magnifying glass. Consequently, the lens of the eye, when looking
at such distant points, must be flattened to a higher degree than corresponds,
for the normal case, to the adjustment to infinity. The normal eye will therefore
be near-sighted in spherical space and require the correction of concave glasses.
In binocular vision the two eyes must diverge for the same reason. This means
that for depth perception the same criteria exist as in ordinary space, however
in a more pronounced fashion, and the judgment of depth is therefore possible
in the same way as in normal vision. The image of the back of the head of the
observer is distinctly visible as the most distant object; this impression is con-
firmed if closer objects partially hide the back of the head.

Measurements by means of rigid rods would confirm the symmetry
of the whole picture. An observer would find the two spherical
shells equal in size, and the connecting beams equal in length.

Let us go a step further and analyze the perceptions in the interior
of the shells. The observer might discover a window and lock through
into the shell. He sees very clearly the interior of the shell; the beams
run crosswise from the wall toward the center where they intersect.
This aspect only confirms the symmetry, because on opening a window
in the other shell he observes the same phenomena: he sees the interior
of the shell and the beams meeting in the center. The greatest surprise,
however, awaits him when he climbs into one of the shells. Let us
assume that he bas discovered additional windows in the shell and has
opened them; if he stands now in the center of the shell, i.e., at the point
of intersection of the beams, he sees not only the shell all around him
but also, through the open windows, corresponding wall sections of the
other shell at the same distance in every direction, so that he finds
himself at the same time in the center of the second shell. This
perception is represented in Fig. 12f; for every direction of view the
picture is the same. Fig. 11 furnishes the explanation for what is seen
by an observer standing at 0. The shaded shell of Fig. 12f is supposed
to be concave; here the visual impression of the concentric position of
the shells corresponds precisely to the respective perceptions in
Euclidean space. If the observer occupies an eccentric position (at
B’, Fig. 11) he also sees himself in the interior of both shells, i.e., from
this position too, he looks in every direction, first at shell T and then
through the windows at shell II behind it. The picture of the second
shell, however, is strangely distorted, since, as is evident from the
study of the main circle through B and B’ in Fig. 11, the larger calotte
of shell II appears behind the smaller calotte of shell I, and vice versa.
In the interior of shell I the corresponding pictures would be obtained
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in inverse order; an observer at B has the same perceptions as an
observer at B’ (Fig. 11), only the order of the shells is changed. The
perceptions corresponding to Fig. 12f, where the shading would have
to be exchanged, belong to an observer whosc position in the stereo-
graphic projection (Fig. 11) lies at infinity.

The observer has the following visual experience of the relativity
of the mutual enclosure of the shells: At one time he sees shell [ inside
shell IT; at another time he sees shell I1 inside shell I; besides, there are
intermediate positions from which he sees the two shells not as con-
centric but as side by side with separate centers.

So far we have proceeded by developing from the properties of
spherical space the perceptions of an observer stationed in such a space.
We shall now use the opposite method. Assume that an observer has
the perceptions described above; what would he infer? Only in this
form is the problem accessible to an epistemological analysis. So long
as we start from a certain state of the universe and infer perceptions from
it, an aprioristic philosophy may contend for any number of reasons
that such a state of the universe does not exist. As soon as we start
from perceptions, hoewever, the objection disappears, because nothing
can be prescribed for perceptions. No a priors postulate can exclude
the possibility that some person may at some time have certain
perceptions.  Only the interpretation of such perceptions is con-
troversial. The interpretation concerns the inference from the
perception to the physical world; this inference is not unique, because
there are different geometrical interpretations for the same perceptual
data. Let us study the two most important interpretations, those of
Euclidean space and of non-Euclidean spherical space.

The interpretation is simple for non-Euclidean geometry. In this
interpretation we deal with spherical space; there is no absolute
“exterior” for the spheres; each of them is the exterior one with
respect to the corresponding point of contraction. The two points of
contraction are given in our model by the centers of the scaffolds. The
space is finite, but nowhere has the character of an island, i.c., every
point can be reached. Even a visual image is possible; for each of the
two spherical shells we may employ the old concepts of inside and
outside and may imagine them as curved in the conventional sense.
It is true that the visual images change and that there does not exist
one visual image reproducing the entire space, such as exists for the
two-dimensional spherical surface that can be perceived in its entirety
ataglance. However, such a plurality of images occurs merely because
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we ourselves are the observers, standing in the interior of the space
and thus may not expect a visual image which necessarily can result
only from being imbedded in a higher dimensional manifold. One
visual image comprehending the entire space is not even possible in
Euclidean three-dimensional space. It is quite possible, however, to
attain a general impression of spherical space by visual integration, so
to speak, i.e., by looking around and pacing it off. The visual adjust-
ment is achieved when the resulting changes in the perceptions—the
above described transition from a convex surface by way of the plane,
to a concave surface—are no longer experienced as a folding inside out
of the surface but as a change in perspective.

For the interpretation in Euclidean geometry we need more com-
licated images in order to account for the perceptions depicted above.
In Euclidean geometry only one side of each shell can be considered a
closed space; on the other side is the surrounding exterior space. The
two shells can be conceived as being concentric or as lying side by side;
in the first case the exterior space would correspond to the interior of
a sphere in the non-Euclidean conception; in the second case, to the
space between the shells. Universal forces have to be assumed for
this interpretation: metrical deformations of rods and light rays cause
deviations of our perceptions from the foregoing description. It is a
representation of the objective world which treats the manner in which
we draw spherical space in Figs. 9-11 as binding for space itself: the
space is actually Euclidean, but the measuring instruments change
their size when transported, and light rays travel along curved paths
so that deviating perceptions result. Whereas such a conception is
natural for the drawing—here the relations of congruence of rigid
rods and the paths of light rays for small dimensions are unlike the
corresponding relations for large dimensions—it assumes a peculiarly
empty character for large dimensions. The difference in the relations
of congruence cannot be interpreted as the result of differential
forces upon the instruments of measurement, but must be explained
as a universal deformation, which affects all things without excep-
tion and cannot be measured as a deviation from an actual physical
state.

The essential difficulty of the Euclidean interpretation lies in the
fact that the infinity of this space is physically attainable. This
interpretation need not necessarily localize infinity at a marked point
such as the point of intersection of the beams; since this point is too
obviously realized, the attempt will be made to assume infinity in
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another domain of this space. The physicist would proceed by carrying
a beam of finite thickness through the cntire space; the interior of this
beam would have to reach every point of the space at least once.
Euclidean geometry will then have to admit that a material structure
of previously finite dimensions can be laid down in such a way that it
is situated at the same time in a finite and an infinite region without
breaking. [t must assume, furthermore, that a body can run through
infinite Euclidean space in a finite time and return from the other side
to the point of its departure. This conception contains causal
anomalies; we are confronted with the same case Gg-+ F 4-A which we
described above and which, if admitted, complicates the causal
relations unnecessarily.

For physics there is a definite distinction between finiteness and
infinity; whereas the mathematician speaks of the infinitely distant
plane or the infinitely distant circle and manipulates them just like
finite structures, the physicist with his real measuring rods is bound to
finiteness. He cannot coordinate physical things to concepts of
infinite structures; rather, by translating statements about infinite
structures into statements about finite structures, he must find out
whether they possess physical meaning under these conditions.
Infinity of space to him means that there are no limits for the laying
down of measuring rods and that by laying down measuring rods on a
straight line the point of departure will not be reached after a finite
number of operations, But it is a violation of all previous notions of
causality underlying all our physical statements to say that a body
runs through infinity, or that a body located at infinity causally affects
bodies located at some finite point. There may be cases that would
compel us to accept such causal anomalies; but so long as it is possible
to exclude anomalies we shall retain normal causality in the sense of a
postulate. Similarly, the physicist cannot admit transformations that
map infinity upon a finite domain; for him, only one of the two
geometries related by such a transformation is admissible; which one
it is, is decided by experience. In mathematics the concept of topology
is ordinarily used in a wider sense than was defined above; in the
transformation group based on topological equivalence, certain
singularities are admitted so that topologically the difference between
finitude and infinity disappears.! For physics, however, the narrower
concept of topology must be carried through, strictly limited to

1 Cf. F. Klein, Elementarmathematik vom hoheren Standpunkte aus, Berlin 1925,
Vol. II, p. 142-143.
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transformations that are everywhere continuous and unique in both
directions.

Another objection seems to result from the mathematical fact that
the anomaly occurs strictly at only one point, as illustrated by the
stereographic projection of the sphere described above; and what
occurs at a mathematical point cannot be determined by the physicist
because of the limits of exactness of measurement. If in the space
considered the infinite point has not been found, one can suppose it to
be within an area which appears small to us because of the increased
size of all physical objects, and which we did not occupy with matter
while carrying around our beam; this point may, for instance, be in
the pores of a wooden beam of the scaffold. This contention neglects
the fact that in physics results may be interpreted in a way different
from those in mathematics. Physics may replace the inexactness of
measurement by a probability inference: if, under the assumption of a
spherical space, I cannot find an anomaly, whatever experiments I
perform, I assume with probability that it does not exist. Probability
statements are indispensable once we agree to base our decision about
the geometry upon measurements. The assertion of a spatial
singularity has physical meaning only if it is in principle confirmable
by inductive methods, a requirement which holds just as well for
assertions about the infinity of space. The statement that physical
space has the topological properties of spherical space is just as
physically meaningful as a statement about metrical properties of
space. Topology is an empirical matler as soon as we introduce the
requirement that no causal relations must be violated; whether there occur
causal anomalies can be decided by the usual inductive methods of
physics. An example of how clearly such anomalies would be recog-
nized consists in the experiences we would have if the surface of the
carth were “redefined” as a plane. If such a *‘definition’* were
topologically admissible, there would be some point on the surface of
the earth which we could not cross. It is physically meaningful,
however, to say that there is no such point, although not every point
on the surface of the earth has been reached by man.

Qur considerations have shown that the determination of the
topological properties of space are closely related to the problem of
causality; we assume a lopology of space that leads to normal cartsal laws.
Only in this way does the question about the topology of space con-
stitute a well-determined question. It must be called an empirical

fact that there is one kind of topology that leads to normal causality;
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and it is of course an empirical fact which topology yields this result.
Later we shall discuss a still closer connection between space and
causality. (§27, §42, § 44.)

§ 13. PURE VISUALIZATION

We began the investigation of this chapter with a presentation of
the mathematical development of geometry. This development showed
that the problem of space bifurcates into a mathematical and a physical
problem. Inquiring into the problem of the validity of the axioms,
we turned to the physical problem of space. The mathematical
problem of the nature of space was solved insofar as it was demon-
strated that axiomatic systems contradictory to each other are equally
acceptable, since mathematics concerns itself with the logical relations
within these systems and not with the truth of the axioms themselves.
We mentioned, however, in § 1 that this conception requires further
analysis. We can now undertake this analysis, which concerns the
problem of visualization of geometry. Our study of the physical
problem of space has already led us to questions of this kind.

Euclidean geometry can easily be visualized; this is the argument
adduced for the unique position of Euclidean geometry in mathematics.
It has been argued that mathematics is not only a science of implica-
tions, but that it has to establish a preference for one particular
axiomatic system. Whereas physics bases this choice on observation
and experimentation, i.e., on applicability to reality, mathematics
bases it on visualization, the analogue to perception in a theoretical
science. Accordingly, mathematicians may work with the non-
Euclidean geometries, but in contrast to Euclidean gecometry, which is
said to be 'intuitively understood,” these systems consist of nothing
but *‘logical relations’’! or “‘artificial manifolds”.2 They belong to the
field of analytical geometry, the study of manifolds and equations
between variables, but not to geometry in the real sense which has
a visual significance.

In our previous investigations, we have examined the question of
visualization and offered a visual illustration of non-Euclidean geo-
metry, even for topologically different spaces. However, we did not
state clearly whether we were concerned with physical or mathematical
visualization. Since we have discussed so far only the physical

V H. Driesch, Relativitdtstheorie und Philosophie. Karlsruhe 1924, p. 43-45.

% J. v. Krics, Logik. Tiibingen 1916, p. 705.
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problem of space, it may be argued that both our analysis of visualiza-
tion based on the behavior of rigid bodies and our illustration of
non-Euclidean geometry in terms of possible experiences deal only
with physical visualization. And it may be maintained that there
exists something like a mathematical visualization, which is not
covered by our considerations. This question requires a further
investigation.

It is true that in order to make possible a visualization of non-
Euclidean geometry we started with the behavior of real objects and
constructed imagined experiences, which led us to pictorial repre-
sentation of non-Euclidean relations. However, in choosing this path,
we followed the road which human visualization has taken throughout
its natural development. In the behavior of rigid bodies and light
rays, nature has presented us with a type of manifold which approxi-
mates Euclidean laws so closely that the visualization of Euclidean
space was exclusively cultivated. There can be no serious doubt that
we are here concerned with the developmental adaptation of a psycho-
logical capacity to the environment, and that a corresponding develop-
ment would have led to non-Euclidean visualization, had the human
race been transplanted into a non-Euclidean environment. Peda-
gogically speaking, the best means to accomplish a visualization of
non-Euclidean geometry is therefore to picture a non-Euclidean
environment. Though we see at first only changes of bodies in
Euclidean space, this experience is gradually transformed, as was shown,
into a genuine visualization of non-Euclidean space, in which bodies no
longer change.

Does this analysis disprove the existence of a special type of mathe-
matical visualization? Certainly not without further consideration.
Reference to a biological habit does not supply an epistemological
argument. We must ask what are the actual laws of the human mind,
independent of their historical development. One should not forget,
however, that the formulation of spatial visualization as a develop-
mental adaptation is itself already based on an epistemological
assertion, which it merely tends to emphasize, namely, the assertion
that there exists a real space independent of those spaces represented
by mathematics, that it is a scientifically meaningful question to ask
which of the mathematically possible types of spaces corresponds
to physical space, and that the *“harmony’’! of nature and reason does

1 Kant, Critique of Judgment, Introduction, Chapter V.
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not depend on an inner priority of Euclidean space, but that, on the
contrary, the priority depends on this “harmony.”  Arguments that
present Euclidean space as “‘reasonable’’ or “given by nature” must
not be employed to establish a preference for a certain kind of mathe-
matical space. They may be used in favor of the choice of Euclidean
space for physics, in which case we might add that they also speak in
favor of the opposite choice, since physical space is non-Euclidean
according to Einstein. The visual preference for Euclidean space
therefore cannot depend on its special suitability for the visualization
of natural objects, but rather on an inherent property that has no
connection with the outside world.

To avoid this indefinite concept of inherent property, a justification
of this preference was attempted on logical grounds based on the
simplicity of Euclidean geometry. Euclidean space has indeed certain
logical advantages. Logically speaking it is simpler than non-
Euclidean spaces. This simplicity is not very important, however;
it is simpler in the same sense as for instance a circle is simpler than an
ellipse. To claim that an cllipse is a mathematically **unreasonable”
figure, inferior to a circle which belongs to a higher realm of mathe-
matical reality, would mean a return to the mathematics of the
Pythagoreans, who used arguments much closer to religious aesthetics
than to mathematical science.  The simplicity of Euclidean geometry
is irrelevant for the philosophical problem of geometry, not only within
physics (compare § 8), but also within mathematics.!

A logical priority of Euclidean geometry is therefore not justitiable in
the sense of an epistemological superiority, and we can only base this
supposed priority on a special type of geometrical visualization that
has nothing to do with the perception of physical things. Tt is in this
sense that Kant invented the concept of pure visualizalion? as opposed
to empirical visualization. He too, however, was fully aware of the
fact that pure visualization must be related in some fashion to empirical
visualization. It is in his terminology the form of empirical visualiza-
tion, and therefore pure visualization without any reference to reality

1 The simplicity of Euclidean geometry is also expressed by the fact that the
differential clement of non-Euclidean spaces is Euclidean.  This fact, however,
is analogous to the relations between a straight line and a curve, and cannot lead
to an epistemological priority of Euclidean geometry, in contrast to the views of
certain authors.

2 The German term A nschauunyg is translated here as viswalization.  The latter
term appears preferable to the usual translation by the term intreition, which has
a mystical connotation not intended by Kant.
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is an empty notion with no epistemological significance. Since we
have shown that empirical visualization can be changed to conform to
non-Euclidean geometry, the same must be possible for pure
visualization.

We must indeed consider our previous considerations to apply to
pure visualization. Our analysis of the visualization of Euclidean
geometry in § 9 holds for pure visualization as well as for empirical
visualization. The investigation was concerned with abstractions and
did not refer to rigid measuring rods. \What else could really be meant
by geometrical visualization but those, structures of the imagination
that appear when we think, for instance, about the diagonals of a
pentagon or the shape of a closed curve on a torus? If we thought in
§ 11 that the non-Euclidean congruence was realized by means of
material measuring rods, this too was thinking in pictures of the
imagination, since the measuring rods were never actually produced.
The fiction of handling material things merely facilitated visualization.
We have thercfore constructed pictures in the frame of pure visualiza-
tion just as we draw Euclidean triangles on a blackboard. The
drawing of geometrical figures is indeed nothing but the realization
of geometrical figures through material things, which we have con-
tinually used in our previous discussions. Small particles of chalk are
piled on a wooden board to form a triangle—what else is this but
physical geometry? Every instructor who illustrates the Euclidean
laws of congruence by drawing figures on a blackboard, or even by
cutting out paper triangles, achieves “pure visualization” through
empirical visualization. He can do this because pure visualization is
nothing but a sensible quality which is realized in sense perception.
This consideration explains Kant’s terminology of * form of visualiza-
tion.” Tt expresses the same kind of blending of subjectivity and
objectivity that occurs in color vision, which is subject to a multi-
dimensional ordering and which can be experienced or reproduced only
in sense perception. Visual forms are not perceived differently from
colors or brightness. They are sense qualities, and the visual character
of geometry consists in these sense qualities.

Objections have been raised against this idea on the ground that
immediate sense impressions are not what is to be understood by pure
visualization. The sense impression of two rails is not that of
parallelism, whereas we do recognize the rails as parallel in pure
visualization. One should therefore distinguish between perceptual
space and the space of pure visualization. This objection, raised by
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Driesch,? is not tenable. The fact that the two rails do not appear
parallel, although they are parallel lines in an objective sense, proves
nothing against the perceptual space. Rather we must ask whether
there are any parallels at all in perceptual space. The answer to this
question has been given long ago by psychologists.2 There are indeed
parallels in perceptual space, but their form in an objective physical
space is that of two slightly curved diverging lines. We do not find a
correspondence between objective and subjective parallelism, but
rather a coordination of diverging lines in the objective space to
parallel lines in the perceptual space, and of parallel lines in the
objective space to converging lines in the perceptual space. All
this is of course completely irrelevant for the problem of visualization.
There do exist parallel lines in perceptual space and this fact alone is
essential since it eliminates the need for a distinction between per-
ceptual space and visualization space. Indeed, if we call the two rails
parallel, this can mean only two things. First, they satisfy certain
physical conditions; when we measure the distance between them
with a rigid measuring rod the result is everywhere the same. Second,
if this physical property is to be visualized, its representation has to be
similar to the phenomenon of parallelism in perceptual space. It does
not matter that the immediate sense impressions of rails do not present
this phenomenon. Our assertion is not concerned with the perceptual
image of rails but is a statement about their objective relation to each
other, clarified by means of a visual picture. We therefore claim that
the objective state of the rails does not correspond to the impression
of convergence as seen in our perceptual image, but to the impression
of parallelism that we might obtain {from certain objectively diverging
lines.

We are frequently faced with the necessity of looking for the picture
required for the visualization of an object, not in the perception of this
particular object, but in a different perceptual image. When we see
the lines of an illuminated advertising sign from a great distance, they
appear to be completely continuous. In spite of that we know that
this is not the ““correct’’ visualization of the lines. We should rather
imagine the picture of a string of pearls, which describe how the lights

Y 1bid., p. 44.

2 Sce FF. Hillebrand, “ Theorie der scheinbaren Grosse bei binokularem Sehen,”
Wiener Akademieberichle 1902, math.-naturwiss. Klasse; W. Blumenfeld,
“Untersuchungen iiber die scheinbare Grosse im Schraume,” Ztschr. . Psychologie
65, 1912, p. 252.
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would appear when viewed from nearby. Or consider optical illusions.
Here too, the perceived visual image is not that which is to be coor-
dinated to the objective situation. The phenomenon of the con-
vergence of parallels is nothing but an optical illusion. There can be
no doubt that in optical illusions we do experience the visualization of
the wrong picture. It is not “wrong in itself,” but we can assert a
discrepancy between the perceived picture and the objective state.
This discrepancy again proves absolutely nothing against the fact that
all visualizations are merely sense qualities of the perceptual space.
Where else could we find the origin of specific visualizations? No
visualization is nceded for the objective assertion that the two rails
are parallel. It is sufficient to state the results of measurements with
rigid rods. Of course, perceptions are needed to accomplish these
measurements, but for imaginary measurements they can be replaced
by visual images. In these visual images, however, which can be
conceived as *“close-ups” of the measuring rod and small parts of the
rails, the viswal parallelism of the rails does not appear, although all
of them together justify the assertion of objective parallelism. If the
parallelism is also to be visualized, we must supplement our assertion
by the description of certain qualities with which we are familiar from
perceptual space.

Though we have uscd previously the concept of perceptual space, we cannot
fail to mention that this term, though frequently employed, is rather unfortunate.
Perceptual space is not a special space in addition to physical space, but physical
space which we endow with a special subjective metric. (Each sense has a
different metric.) Once this fact is realized, our argument is casily understood.
That perceptual space and physical space ought to be distinguished implies that
physically equal distances in physical space are not always experienced as such.
There is no third kind of space, the space of visualization, because apart from
the definition of congruence in physics and that based on perception there is no
third one derived from pure visualization. Any such third definition is nothing
but the definition of physical congruence to which our normative function has
adjusted the subjective experience of congruence.

Finally, our example shows how much the visual experience of
paralielism is determined by logical considerations and hence is not an
absolute datum. The experiments of Blumenfeld indicated that the
same lines, produced by a series of lamps in a dark room, were perceived
sometimes as parallel and sometimes as divergent, depending upon the
feature to which the observer attended. When the lamps were
adjusted under the directive of the ‘‘directional condition” of
parallelism, objective curves resulted different from those obtained
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when the lamps were adjusted according to the ** distance condition.”?
It is exactly this variability of sense experience which was employed
in our visualization of non-Euclidean geometry. Whereas the subjects
in the psychological experiments mentioned were mostly passive, and
restricted their activities to self-observation, the visualization of
non-Euclidean geometry depends on an active concentration on the
visual experience.  There can be no doubt that this active participation
leads to a wider range of possible variations of visualization.

The investigations of § 11, which led to the visualization of non-
Euclidean geometry through an adjustment in the perception of
congruences, are therefore applicable to mathematics in the same
fashion as to physics. Although we have simplified the adjustment
psychologically by connecting it with the idea of measuring rods of
varying propertics of congruence, this is by no means necessary. We
could have worked directly with visual qualities by replacing the idea
of the transport of measuring rods by the visual directive: ““These
distances which I see should be considered congruent.” For abstract
mathematics this procedure is equivalent to a physical coordinative
definition.

This equivalence has been obscured by a certain mathematical
complication which may create the impression that special conditions
underlic the space of mathematical visualization and that a change in
the definition of congruence will not produce a corresponding change in
the visualized laws. In contrast to the physicist, the mathematician
does not use the visual directive ** this distance,” since it would never
lead him to precise visualizations. Estimates by sight are too
inaccurate in an ideal geometry to take over the function of the
transportation of measuring rods as used in practical geometry.
Rather, the mathematician uses an indirec! definition of congruence,
making use of the logical fact that the axiom of the parallels together
with an additional condition can replace the definition of congruence.
He can therefore avoid the otherwise necessary reference to visual
distances in his definition of congruence. Instead he introduces other
basic visual elements which can be visualized more easily and which
also lead to a determination of congruence. These other elements

1 Blumenfeld, op. cif., pp. 323 and 346. **Directional condition” means: one
should concentrate on the apparently equal direction of the lines. * Distance
condition” means: one should concentrate on the apparent equal perpendicular
distances. Some subjects in the experiments showed a third variation when they
concentrated on the ‘‘ perpendicularity to the frontal plane.”

87



Chapter I. Space

are the analogue to the physical components of the coordinative defi-
nition.

It can easily be seen that the parallel axiom indeed presents a
determination of congruence. In Fig. 13, let AB be parallel to A’B’
and AA’ parallel to BB’. We can then define: AB is congruent to
A’'B’. With the same definition we obtain from the dotted parallel
lines: A’B’ congruent to BC, and also A B congruent to BC congruent
to CD, etc., since the concept of congruence is transitive. The
Euclidean axiom of parallelism therefore determines the congruence
along any straight line. This is the reason why the Riemanian
generalization of geometry, through the concept of congruence, leads
to the same type of geometry as the generalization introduced by
Bolyai-Lobatschewsky through a change in the parallel axiom. Of
course, the parallel axiom alone is not sufficient to define the comparison
of differently directed line segments.  As long as we restrict ourselves
to the parallel axiom, it is impossible to decide whether AB is equal
or unequal to AA’. For such a comparison we must introduce the
right angle, which is the previously mentioned additional condition;
i.e., a directive must be given which decides whether the four angles
resulting from two straight intersecting lines are cqual or not. Now
we can construct rectangles, and their diagonals furnish the definition
for the equality of differently directed line segments.

The visual elements introduced in connection with the definition of
congruence in place of a direct comparison of length are therefore
parallelism and the right angle. These are the perceptual elements
of the ccordinative definition. Whenever a mathematician forms
visual representations, he uses coordinative definitions just like a
physicist, with the difference that his coordinated objects are not
physical objects but visual qualitics. The fact that we are dealing
here with a coordination is illustrated by the following considerations.
Our definition of congruence in terms of these elements is expressed
by the obvious fact that we can dispense with ruler and compass and
compare line segments on a drawing board with straightedge and right
triangle alone.! Tt is exactly this type of definition of congruence
which we have in mind when we speak of pure visualization of Euclidean
geometry, thus avoiding a direct comparison of length. The fact,
however, that this procedure can also be represented by means of

! We have in mind the commonly used drafting device with a straightedge

pivoted on a crossbar. Fixed in place by a screw, it can draw parallels in any
arbitrary direction.
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physical objects, namely a straightedge and right triangle, characterizes
it as a coordination. We coordinate to the concepts of parallel and of
right angle visual qualities which we know from the perceptual ex-
periences of the physical objects, straightedge and right triangle. The
coordinative definition required for congruence is here established in a
different fashion. We use an indirect method. There is of course no
objection to readjusting our visualization.  Just as we adjusted our
perception of congrucnce in the previous example, we can similarly

N N

’
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~ ‘
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Fig. 13. Definition of congruence by means of parallels.

adjust our perception of parallelism and rectangularity. For instance,
we could consider the lines in Fig. 13 as intersecting at right angles
which would make angle AA4’B’ equal to angle A”A'B’.  The visual
picture of Fig. 13 is then an admissible and noncontradictory repre-
sentation of a rectangular network, with the only shortcoming that it
does not it the behavior of the straightedge and right triangle. The
visual elements of a mathematically conceived space can therefore
also be adjusted; and if we feel an inner resistance against such a
change, this too is due to an adaptation to experiences with rigid
bodies.

We have to mention another reason for the difficulties arising in
connection with this adjustment. The concept of congruence in
Euclidean geometry is not exactly the same as that in non-Euclidean
geometry. Each geometrical concept contains implicitly all the
geometrical axioms. This fact will become clearer in the next
section, where we shall explain the nature of an implicit definition.
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Accordingly, the content of a geometrical concept is determined only
by the totality of the axiomatic system, and thus the concepts of
Euclidean congruence and of non-Euclidean congruence are not identi-
cal, but play equivalent roles in the axiomatic systems. In connection
with our previous remarks regarding the relation between congruence
and parallelism, we can illustrate this point as follows: *Congruent
means in Euclidean geometry the same as ** determining parallelism,” a
meaning which it does not have in non-Euclidean geometry. What
is actually meant by equality of length? First it asserts a one-to-one
correspondence between all points of the segments; this concept
determines the higher class. The corresponding specific difference
states in Euclidean geometry: ““...such that the resulting metric
corresponds to the axiom of the parallels.” We can formulate this
more precisely: Euclidean equality is a unique coordination of line
segments, such that a curve which is equidistant from a straight line
is also a shortest line and such that two shortest lines which are not
equidistant will intersect at a finite distance. The first condition
distinguishes Euclidean geometry from geometries with positive
curvature, apd the second from those with negative curvature. It is
thus clear that the characterization of non-Euclidean geometry must
be different. Common to the two geometries is only the general
property of one-to-one correspondence, and the rule that this corres-
pondence determines straight lines as shortest lines as well as their
relations of intersection. Strictly speaking, we cannot say that the
equality defined by the drawing of Fig. 6 (page 51) corresponds to the
ordinary concept of cquality. It corresponds only to the equivalent
concept of a non-Euclidean geometry. This consideration expresses
what we have called *“presupposing tacit conditions.” If we fecl a
resistance to accepting the congruence defined by Fig. 6 as an equality
we react in this manner, because we miss in this equality the element
which ‘“determines parallelism.” This goal, however, we cannot
achieve, because it is logically impossible, and therefore must be
renounced in any attempt to adjust our visualization to a non-Euclidean
congruence.

We can summarize our results as follows:

There is no pure visualization in the sense of the a priori philosophies;
every visualization is determined by previous sense perceptions, and
any separation into perceptual space and space of visualization is not
permissible, since the specifically visual elements of the imagination
are derived from perceptual space. What led to the mistaken con-
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ception of pure visualization was rather an improper interpretation of
the normative function, which we have recognized in § 9 as an essential
clement in all visual representations. Indeed, all arguments which
have been introduced for the distinction of perceptual space and
space of visualization are based on just this normative component of
the imagination. Although it is usually granted that the visual
picture of two parallels on the blackboard is not different from the
picture of two lines, the prolongation of which would intersect in the
sun, the visual insight into the Euclidean axiom of the parallels is
generally considered to be very compelling. And rightly so: in spite
of all the limitations of visualization, we can visualize the Euclidean
axioms rather well. Consider, for instance, the axiom that the straight
line is the shortest connection between two points. Tt is intuitively
certain that a straight line is shorter than any line however slightly
curved: this insight is due to the peculiarity of human thinking that it
can draw strict conclusions from vague visual pictures; this is an
important ability of the human mind which we put to continual use.
It is therefore impossible to disprove the existence of pure visualization
on the basis of a lack of clarity in visual pictures. On the contrary,
this argument has given a new impetus to the thesis of pure visualiza-
tion, since it has been interpreted in terms of a distinction between the
vague perceptual space and the precise space of visualization. The
main objection to the theory of pure visualization is our thesis that the
non-Euclidean axioms can be visualized just as rigorously if we adjust
the definition of congruence. This thesis is based on the discovery
that the normative function of visualization is not of visual but of logical
origin and that the intuitive acceptance of certain axioms is based on
conditions from which they follow logically, and which have previously
been smuggled into the images. The axiom that the straight line is
the shortest distance is highly intuitive only because we have adapted
the concept of straightness to the system of Euclidean concepts.!
It is therefore necessary merely to change these conditions to gain a
correspondingly intuitive and clear insight into different sets of
axioms; this recognition strikes at the root of the intuitive priority of
Euclidean geometry. Our solution of the problem is a denial of pure
visualization, inasmuch as it denies to visualization a special extra-
logical compulsion and points out the purely logical and nonintuitive
origin of the normative function. Since it asserts, however, the
possibility of a visual representation of all geometries, it could be
1 Compare this with p. 100.
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understood as an extension of pure visualization to all geometries.
In that case the predicate “pure” is but an empty addition, since it
denotes only the difference between experienced and imagined pictures,
and we shall therefore discard the term ‘‘ pure visualization.” Instead
we shall speak of the normative function of the thinking process, which
can guide the pictorial elements of thinking into any logically
permissible structure.

§ 14. GEOMETRY AS A THEORY OF
RELATIONS

We must therefore reject the arguments for the priority of Euclidean
geometry within mathematics. The geometrical axioms are not
asserted to be true within mathematics, and mathematical geometry
deals exclusively with implications; it is a pure deductive system.

We have based this assertion on our demonstration of the existence
of visual pictures for both kinds of geometry and we must now
investigate the extent to which visual pictures are actually necessary
in mathematical geometry. The role they play in physical geometry
is clear. They establish the relation between thinking and reality;
they connect perceptions with concepts and therefore are involved in
the important decision within physics which of the conceivable
geometries corresponds to reality. There is no analogue for this
decision in mathematics, because here no problem of choice among
geometries exists.! What purpose do visual pictures serve?

To answer this question we must follow the theory of implicit
definitions which was developed in connection with Hilbert’s axioms.2
According to this theory there is no need for visual pictures in mathe-
matical geometry, and the mathematical meaning of geometrical
structures and laws is exhausted by purely conceptual relations. The
geometrical elements point, plane, line, etc., have no meaning other
than that which is determined by their properties as formulated in

! We must also reject the epistemological equivalence between perception in
physics and visualization in mathematics.

2 See also the preseatation by Schlick, Aligemeine Erkenntnislehve, Berlin
1918, pp. 30f. Our criticism of the theory of visualization corresponds in many
respects to the presentation by Schlick (ibid., p. 297), whose investigation of this
question has become fundamental. For a comprehensive presentation of space
as a relational structure which is particularly valuable because of well-chosen
examples, see also Carnap, Der Raum, Chapter 1 (Erganzungsheft der Kant-
studien 1922).
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§ 14. Geometry as a Theory of Relations

the axioms. In mathematics, there is no additional visual significance.

We must say, for example: a point is something which can never lie
on two different nonintersecting straight lines at the same time and
which furthermore has the order property that between any two such
things there is always at least a third, etc. In short, it satisfies all the
conditions expressed in the axiomatic system. [t is impossible, of
course, to express this definition explicitly so that the defined concept
of point no longer occurs on the right-hand side. We must speak
therefore of an implicit definition. Let us consider an example from
the realm of cquations. The equation

¥ =42y

can be solved for y, in which case

y=1441+x

where y does not occur on the right-hand side. In contrast, the
equation
x =siny

is implicit for y, i.e., it cannot be solved for y. Sometimes it is written
in the apparently solved form

y = arc sin x,

but the meaning of the function arc sin is defined only by the previously
given implicit equation. It is therefore merely a restatement and not
a solution by means of independently defined functions. This kind of
empty restatement in an explicit form is possible also for implicit
definitions. It appears already in the formulation: a point is something
which has the properties determined by the axioms of Euclidean
geometry.!

But does not this process define only the *objects” of geometry—
do not the connecting relations befween, lies on, ctc., retain their visual
significance? If this objection were justified, little would have been
gained by the implicit definition of the basic elements. However, the
relations too can be defined in this fashion. We can say: the relation
between is the three-place relation & which applies to three points on a
straight line and whose properties are to be determined. Thus the
content of the different relations too is implicitly defined. This is
not a circular procedure. What remains as undefinable basic concepts
are such purely logical concepts as clement, relation, one-lo-one

.

1 Compare this with the restrictions given on p. 97.
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correspondence, smplication, and, etc. All geometrical concepts, the
elements as well as the relations, can be given as functions of these
basic concepts.

This situation would appear more clearly if the axioms were not
expressed in words but in logical symbols. Hilbert ! has chosen words
for the sake of greater lucidity because we find it difficult to understand
the meaning of the basic concepts of geometry without visual pictures.
His formulations, however, have been carried through so rigorously
that a translation into logical symbols would be easy. This rigor
constitutes the great significance of Hilbert’s axiomatic system, which
distinguishes it from the work of all of his predecessors. Especially
the axiomatic system of Euclid is in this respect quite insufficient:
he did not succeed in a complete conceptualization of the representing
visual elements. To illustrate the purely logical meaning of Hilbert's
axioms and to give an example of the symbolism of mathematical
logic at the same time, we cite the three * between axioms” of Hilbert
in this kind of language. The axioms that define the concept
between are stated as follows: 2

I1, 1. If A, B, and C are pointson a straight line, and B lies between A
and C, then B lies also between C and A.

IT, 2. If A and C are two points on a straight line, there exists at least
one point B which lies between A and C and at least one point D
such that C lies between A and D.

I1, 3. Among any three points which lie on a straight line there exists
exactly one which lies between the other two.

For our translation we need the following symbols: 3

Logical symbols Geomelrical symbols
and (conjunction) p(x) X is a point
V  or (disjunction) s(x) x is a straight line
D implies (has the consequence) 1(x, y) x lies on y (the relation
lies on)
(x) forallx... b(x, y, z) x lies between y and z

(the relation between)
3x there is at least one x such
that . ..

$ it is not the case that p

! D. Hilbert, op. cit. 30p . cit., p. 6.

3 For further explanation of logical symbolism, see the author’s Elements of
Symbolic Logic, New York 1947, §§ 6-7, 17-18.
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The three axioms now read:
11, 1. (x)y)EHP(X)- Piy)- P(2). @W)ls(w) . 1(x, w).)(y, w).I(z, )]
by, x, 2)2 bly, z, x)}
I, 2. (x){z){p(x).p(2).(x£2). Aw)[s(w).)(x, w}).](z, w)]
S (3y)ply) - bly. x. 2)]. (3V)[p(v) . b(z, x, v)]}
IL, 3. (x)(y)(@){p(x). p(y) - p(2) . Bw)[s(w).1(x, w).1(y, w).](z, w)]
D [bly, x, 2)V hix, y, )V b(z, x, y)]
.[bly, x, z).b(x, y, z)]
.(b(y, x, z).b(z. x, y)]
b(x, y. 2).b(z, x, )]}

These sentences should be understood as follows: Only the logical
symbols have an independent meaning; the gecometrical symbols have
a derived meaning—they denote elements and relations such as to
satisfy the axioms, whose meanings are determined by the logical
symbols alone.

We can easily show that the axioms entail a restriction such that
only a certain number of the visual relations of geometry satisfy the
axioms. Fig. 14 gives us the picture of three points on a straight line.

X y z

Fig. 14. The relation befween.

Which of them lies between the other two? If we suppose that it is z,
we have identified b with the visual relation ordinarily called “lies
outside.” Axioms II, 1 and I1, 2 are compatible with this supposition,
but not II, 3, since our assumption would give us:
(x)(y)(@){p(x).p(y)-p(2). Gw)(s(w).1(x. w).y, w).1(z, w)]

2 [b(x, y. 2).b(z,x, y)]}
This expression contradicts the symbolic expression of II, 3 given
above, according to which only one of the expressions on the right
of the horseshoe is permissible. The system defined by the three
axioms therefore excludes our supposition. The same, of course,
applies to the supposition that x lies in the middle. Our only choice
is to consider y as lying in the middle. Only the visual relation between
and not the visual relation lies outside satisfies the relation & which

was defined exclusively by logical symbols.
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Have we herewith determined the visual relations uniquely, i.e.,
defined them completely? By no means, since we know that other
elements and relations satisfy the system of the Euclidean axioms as
well. There are, of course, certain restrictions on the identification of
the basic geometrical concepts with visual relations, but there always
remains an arbitrary factor. The visual elements cannot be exhaus-
tively defined by the basic logical concepts alone.

Let us recall the number system. If we understand by a “ point”’
a triplet of numbers, i.e., an ordered combination of three real numbers,
and by a “straight line’ a linear equation, etc. . . ., the system of these
“things " also satisfies the Euclidean axioms. This fact is the basis for
the possibility of analytical geometry. We have been so conditioned
to this way of thinking that the visual difference between the terms
“straight line” and “lincar equation” is often ignored in the same
text and they are used interchangeably. This situation results from
the fact that the properties of these concepts determined by the
Euclidean axioms are the most important and the most frequently
used. In other connections, however, the difference becomes obvious.
A taut string can be identified with the visual picture of a straight line,
not with that of a linear equation. The latter is coordinated to it,
but is not visually equivalent.

Another example of elements that satisfy the Euclidean axioms is a
set of elements which themselves belong to Euclidean geometry but
which have an entirely different meaning from that of the words
“point”, “straight line”, ctc. Consider the well-known duality in
projective geometry whereby the clements point and line can be
interchanged. These elements have quite different visual structures
but identically the same properties in projective geometry. A system
that satisfies all the Euclidean axioms is formed by the so-called family
of spheres. Imagine a fixed point P in space through which pass
spheres and circles, such that P lies on the surface of the spheres and
the circumference of the circles. Let us coordinate the following
concepts:

a point: any point in space except P
a straight line: a circle through P
a plane: a spherical surface through P

while the other geometrical concepts retain their original visual
significance relative to the new elements. For instance in the relation
between two points the “‘between” now means along a circle and not
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along a straight line. This new system of elements satisfies all the
Euclidean axioms without exception. This can easily be proved.!
The axiomatic system, therefore, cannot exhaust the visual content of
its elements and its relations. It cannot even uniquely determine a
set of gcometrical elements among the Euclidean entities.

Does this fact prove that mathematics cannot replace its visual
components by logic? This interpretation would be erroneous.
Mathematics does not deal with visual points and straight lines but
only with the logical structures as defined by the axiomatic system.
It is not the task of mathematics to coordinate visual pictures to these
concepts; this task would lead from mathematics to physics.

If we say that mathematics can define its elements by means of implicit
definitions, some qualification is required. R. Carnap directed my attention to
this fact. Whether something is a point is not determined by its nature alone
but depends on the other things to which it is to be related. One must always
begin with a multitude of things and state which are to be points, straight lines,
etc. Only then can one decide whether these things in their totality correspond
to the coordinated concepts. Carnap calls such concepts as point, straight line,
etc., which are given by implicit definitions, improper concepts. Their peculiarity
rests on the fact that they do not characterize a thing by its properties but by its
relation to other things. Consider for example the concept of the last car of a
train. Whether or not a particular car falls under this description does not
depend on its propertics but on its position relative to other cars. We could
therefore speak of relative concepts, but would have to extend the meaning of this
term to apply not only to relations but also to the elements of relations. See
Carnap, Symposium I, 1927, p. 355.

Why should mathematics use visual pictures? For the content of
its assertions and for its logical conclusions it needs only the logical
properties of these elements. The precision of mathematical reasoning
lies specifically in the fact that it utilizes only the logically formulated
properties of the visual structures. Visual structures are nothing but
an aid to thinking and belong to the psychological apparatus which
draws the conclusions, not to the content of the thoughts themselves.
Thinking does not aim at the pictures but at the logical structure
which they express. The psychological significance of an example
rests on the fact that logical operations are facilitated when we think

! By means of stereographic projection (Fig. 9, p. 69) we can coordinate each
spherical surface to a plane of projection. Each circle through P on the spherical
surface is coordinated to a straight line in the corresponding plane of projection.
This proves our assertion if we consider arbitrary spheres through . 1t is
evident that in the above table a complicated function must be substituted for
the congruence of the Euclidean metric. See Weber-Wellstein, Enczyklopddie
der Elementarmathematik, Teubner 1905, Vol. 11, pp. 34f and 52{.
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of concrete objects. If we write one of the logical arguments in its
scholastic form: !

MEP

S 4 M

it is very difficult to supply the correct conclusion, which in this case
is E. (This is the so-called form Celarent.) However, if we now
formulate a concrete example

No mammals have gills
All dogs are mammals

D N I A R S Y

the conclusion ‘“No dog has gills” follows without effort. In this
example therefore we perform nothing but a logical operation, whose
logical structure is given in symbolic form, but whose manipulation is
considerably facilitated by the logically inessential terms ‘“mammals”,
“gills”, etc. Similarly, it is easier for the mathematician to reach
conclusions from the axioms if he imagines them realized by physical
objects. His visual geometrical figures actually lead him into physics,
not for physical purposes, however, but for the sake of the logical
structure that is illustrated by the physical objects. This procedure
does not make him a physicist any more than our performance of the
inference Celarent makes us zoologists.

As a crude example let us consider the customary presentation of the
vector calculus, which is usually developed as the physics of hydro-
dynamics. The purely mathematical concept of the divergence is
introduced as source, and the gradient, in some cases, as velocity.
While the mathematician is well aware in this case that he is using
physics as a means of visualization, he forgets it in the usual visual
representation of the geometrical axioms. Here, too, he is concerned
with physics, namely the physics of rigid bodies and light rays. ** Pure
visualization’ means supplying the structure of mathematical relations
with physical content analogous to supplying content lo the vector calculus
in terms of hydrodynamics. In several branches of geometry this

1 The symbols mean: S = subject term, M == middle term, P = predicate,
A = universal affirmation, £ = universal denial, I = particular affirmation,
O = particular denial. If the two premises are arbitrarily given in their logical
form, the conclusion is determined. The symbols 4 and £ of the premises have
already dctermined the corresponding symbol of the conclusion. Logical

considerations determine what that symbol should be. In this case it is k.
See the presentation of logic by 1. v. Kries, Logik, p. 662, Tiubingen, 1916,
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procedure becomes evident. Let us recall the “construction of
geometry under the presupposition of motions™ as it was presented by
Klein.l  He speaks there about the translations of the space, considers
all points shifted so that they coincide with certain other points, and
formulates the properties of this shift by means of axioms. One of
these axioms states that two translations can be interchanged (Fig. 15).
We can move point A first sideways to 4’ and then up, or we can move
it first up to A" and then sideways. In ecither case we arrive at the

A" B
o

A A

Fig. 15. The interchangeability of two translations.

same point B. It is obvious that dealing with the concept of motion
does not represent a mathematical operation; a mathematical point
cannot be moved, it can only be coordinated to another point. In
the logical language of mathematics we should speak of a coordinative
operation O which coordinates to the point A first a point A’ and then
coordinates to A’ a point B. The coordinative operation between
A and B is the relative product 0102, and the axiom which we are
considering states that the relative product 0102 equals the relative
product 02042 This product therefore satisfies the commutative law.
In symbols, we have

0102 = 0201 or AO]OQ. o =A00; ...

This is the logical significance of our assertion. If it is formulated in
the language of motion, and one speaks of shifting point 4 to point B,
the logical framework is translated into visual pictures derived from
the behavior of physical bodies moved along rigid rails. Such a
translation does not change the mathematical relationships, nor does
it give a different content to the mathematical assertion, but makes it
more vivid and easier to understand. Although we must grant to the

1 ¥, Klein, Elementarmathematik vom hiheren Standpunkte aus, Vol. 11, p. 174,
Berlin 1925.

2 The relative product is the relation resulting from the “‘arrangement in
series” of two relations. The relation brother-in-law is the relative product
brother-spouse (or also husband-sister).
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mathematician the right to use such visualizations for the purpose of
facilitating his thought processes, we cannot admit that it has any
mathematical significance whatsoever.

The same arguments hold for the visualization of congruence by
means of the superposition of line-segments. The logical significance
of this motion of superposition is again a coordination of stationary
line-segments. The visualization by means of transportation is
derived from the experience with rigid bodies. We merely give some
physical content to the logical framework. The concept of motion
has no more significance here than had the zoological concept animal in
the foregoing example of a logical inference.

We must therefore maintain that mathematical geometry is not a
science of space insofar as we understand by space a visual structure
that can be filled with objects—it is a pure theory of manifolds. In it,
visualization plays the same role it does in arithmetic or in analysis;
and, like the latter, it is reducible to basic logical concepts, namely the
concepts of coordination, classes, etc.,, which constitute the actual
content of geometrical assertions. The geometrical axioms are
completely formulated as mathematical laws by formulae like those
given on page 95. The visual elements of space are an unnecessary
addition. Therefore the question of the truth of an axiom does not
arise in mathematical geometry. Axioms are arbitrarily fixed relations,
the content of which can be expressed by certain combinations of
logical concepts alone, and which can be replaced just as well by any
other consistent combination of basic concepts.

If we wish to express our ideas in terms of the concepts synthetic and analytic,
we would have to point out that these concepts are applicable only to sentences
that can be either true or false, and not to definitions. The mathematical axioms
arc therefore neither synthetic nor analytic, but definitions, This statement
might be construed as a contradiction of our assertion that the visual compulsion
of the geometrical axioms is logical in nature, because this assertion scems to
indicate that the axioms are analytic. The seeming contradiction is resolved as
follows: if a is a geometrical axiom, then points, straight lines, and other concepts
which it may contain have no independent meaning. They obtain their meaning
from a only in connection with the other axioms. We could consider the concepts
point, straight line, etc., to be defined by the axiomatic system and to be reintro-
duced into axiom a. This procedure, however, would give us a new axiom which
we might designate by a’; @’ is analytic and true, whereas a is a definition and
neither true nor false. Pure visualization gives us axiom a’; the geometrical
axioms themselves are of the type a.

Hence the question whether axioms are a priori becomes pointless since they
are arbitrary.

Strangely enough, F. Klein, who has made outstanding contributions to the
development of non-Euclidean geometry, does not regard the axioms as arbitrary.
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He calls them ‘‘not arbitrary, but reasonable statements which generally are
evoked by spatial visualization and whose individual content is regulated on the
basis of convenience' (op. cit., p. 202). Nevertheless, the axioms of non-
Euclidean geometry likewise are supposed to belong to these reasonable state-
ments, since visualization can require the axiom of the parallels only within
certain limits of accuracy (op. cit., pp. 191 and 201). This point of view is
untenable, since non-Euclidean geometry would become *“unreasonable ™’ beyond
a certain degree of curvature. Kliein's comments should be understood as a
hint to mathematicians to think visually, rather than as an cpistemologically
conceived argument.

Only one system of axioms within mathematics retains its claims to
truth, namely the axioms of logic itself. This system seems to be
irreducible.  An investigation of this question would lead far beyond
the scope of this book, which deals with the problems of space and
time. We can thus treat only the geometrical aspects of mathematics
and shall be satisfied in having shown that there is no problem of the
truth of geometrical axioms and that no special geometrical visualiza-
tion exists in mathematies.

We have restricted ourselves in our formulation of the problem to gecometrical
visualization in order to avoid the discussions that have recently arisen in
connection with mathematical intuitionism.  Even though it is not possible to
eliminate the visual element in mathematics altogether,there does not existaspecial
kind of gecometrical visualization. It may be that intuitive visual processes enter
into every instance of logical thinking and appear thus in all branches of mathe-
matics in equal fashion. This question deals with the epistemology of logic and
the relation between logic and mathematics, not with the specific problem of
geometry and geometrical visualization. Above all, the results of such an
investigation can never establish a difference between Euclidean and non-
Euclidean geometry. There can be no doubt that the two systems occupy
parallel positions in mathematics. When Hilbert (Math. Aun. 95, pp. 170-171)
in his emphasis on the visual character of practical logical reasoning, believes
that he confirms Kant’s theory of visualization, he appears overly tolerant in his
interpretation of an historical philosophical system. Kant's theory of the
visualization of mathematics was based on the visual character of the synthetic
axioms and was not concerned with the visual compulsion of analytic judgments.
Hilbert’s further remarks regarding the existence of extra-logical objects and
the possibility of their visualization are relevant only to visualization in general.
See also p. 107.

§ 15. WHAT IS A GRAPHICAL
REPRESENTATION

The analysis of geometry as a theory of relations will become quite
explicit if we use it to clarify a problem seldom recognized in its full
scope. This is the problem of graphical representation.

Graphical representations are widely used. Every physical or
technical text is filled with drawings of curves which enable us to
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understand the most complicated phenomena. The engineer cannot
design his steam engines and motors, his bridges and electric circuits,
without the use of diagrams; he needs these diagrams to calculate the
efficiency of machines, to represent the strength of materials, and to
obtain the stability of the vibratory state of motors and radio trans-
mitters from the intersection of two straight lines on the diagram.
These figures, whose dimensions he measures on graph paper and whose
area he calculates with a planimeter, are aids not only to his under-
standing but also to his calculations. The physicist represents laws
of nature graphically on the one hand by translating certain mathe-
matical functions into curves and planes according to the rules of
analytical geometry, on the other hand by plotting his measurements
on graph paper and by connecting the points through curves in order
to discover the represented functions. What the physicist represents
as coordinates on graph paper is by no means only distances and
spatial magnitudes. They can be pressures, temperatures, electric
voltages, in short any measurable magnitude found in physics. This is
all so well known that it need not be emphasized any further. Every-
body has at one time or another welcomed the clarifying effect of a
graphical representation while attempting to understand a physical
problem.

We must ask the question, however, how it is possible that things so
different as the gas law, the path of an electric discharge, etc., can
all be represented by spatial diagrams. What do they have in com-
mon? Why, indeed, do such diagrams lead to an easier understanding?
This fact is really quite strange. Would not the operator of a steam
engine do a better job if he were thinking visually about the current
of steam and the growing of the pressure as such? He could visualize
them directly since he is able to perceive current and pressure. But
does he use this kind of visualization? No, he looks at the manometer
which provides a graphical representation of the pressure, and he
estimates the amount of coal to be added by the amount which a
pointer on a scale is short of the prescribed level.

If we were able to look into the minds of all these mechanics, elec-
tricians, and engineers, as we are able to look at a moving picture, we
would find no images of pressures, voltages and lights, but invariably the
sketch of a black curve on graph paper. Just think of a physicist in
front of an electric switch; why does he turn the handle or move the
wire into a certain position? Because his inner eye sees curves
that increase, intersect, or decrease, and points traveling along a
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curve directed by means of switches. By far the most frequent
visualizations of physical happenings are representations in terms of
spatial relations that completely replace direct pictures. How is this
possible?

The solution to this problem is contained in our conception of
geometry as a theory of relations. The control of natural phenomena
is achieved by means of mathematical concepts. These concepts are
defined by implicit definitions and are not dependent on a unique and
specific kind of visualization. Whatever visual objects we wish to
coordinate to them is left to our choice. They may be pressures and
currents as well as rigid measuring rods. This process of coordination
is equivalent to a coordinative definition. There exists a coordinative
definition not only for straight lines and rigid measuring rods, but
also for straight lines and direct currents, or increases in the tension
of a stretched rod. The coordination is arbitrary not only relative
to certain kinds of things but also to the total domain of objects. The
geometrical axioms can therefore be realized by means of compressed
gases, electrical phenomena or mechanical forces as well as through
rigid bodies and light rays. All these areas have a logical structure
of such a kind that they can be coordinated to mathematical geometry;
therefore they can also be coordinated to physical geometry and
represented by means of diagrams.

Is a graphical representation actually a coordination to physical
geometry? Do we coordinate here anything but ideal structures?
We do indeed coordinate physical things, but it is somewhat difficult
to notice this fact. We are so accustomed to the coordination of rigid
bodies to mathematical geometry as a theory of relations that we no
longer notice that there exists a duality. Nevertheless it is a coordina-
tion. On the one hand we have the mathematical system A of
relations and on the other hand the physical system a of rigid bodies.
Every assertion about A can be translated into an assertion about a,
and it is customary to use assertions about a alone which are symbolic
of assertions about A. This is called visual geometry. The system
a is the visual space of A. In contrast, the content of A cannot be
visualized and may be expressed by formulae like those given on
page 95. This consideration also clarifies the term pure visualization.
We do not think of the system a as a system of natural objects, but of
objects exemplifying the relations of Euclidean geometry; then the
system a of things is a space of pure visualization. Of course, we are
not tied to a Euclidean gcometry 4 but could choose a non-Euclidean
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geometry A’ just as well. If we think of idcal objects a’ which look like
rigid bodies but satisfy the laws of A’, then a’ is the space of pure
visualization of non-Euclidean geometry. The system a is a space
either of pure or of empirical visualization, depending on whether we
just invent the objects in a or find them in nature.

The so-called visual geomelry is thus already a graphical representation,
a mapping of the relational structure 4 upon the system a of real
objects. It is therefore possible to represent even purely logical
structures in graphical form. The representation of the inference of
the scholastic schema (page 98) is the graphical representation of a
logical inference. The logical relation of major premise, minor premise
and conclusion is represented graphically by the spatial arrangement of
the three lines. Another example of this type is the graphical repre-
sentation of complex numbers, which were originally defined in purely
logical terms, by means of points on a plane. This example shows how
the systems A and a are merged in customary linguistic usage.
Mathematics concerns itself with the coordination of the complex
numbers to a system 4, i.e., to a plane defined by the geometrical
elements in the formulae on p. 95. Instead, one usually speaks of
a coordination to the plane of a drawing, i.e., to the corresponding
elements of a. Both terms are used interchangeably; thus we have
the advantage of being able to think in pictures, since only the system
a can be visualized, not the system A.

We can now understand why graphical representations are possible.
The system of relations A can be coordinated not only to the physical
system a, but to a large number of different physical systems &, ¢. . .,
for instance to the system of thermodynamics, to that of electrical
phenomena, etc. Let us take as an illustration the P-T diagram of a
gas of fixed quantity. The coordination for some of its elements is
given in the following table: 1

1. point = the state of a gas at constant
pressure and temperature.
2. straight line through the origin = change of state at constant
volume.
3. straight line parallel to the T = change of state at constant
axis pressure.
4. straight line parallel to the P = change of state at constant
axis temperature.

1 The following expressions are justified by the gas law PV = RT,
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5. any straight line = change of state where the
volume I’ is related to the
temperature by the function !

o T
«T+8
6. two parallel straight lines = two changes of state as given
in 5 with the same « and
different B.
7. two equally long line segments = two changes of state as given

in 5 for which the expression
V(Pe—P)2+(T2—T)?
depending on the initial and
final states, has the same value.

On the basis of this coordination, the system b of the states of a gas
is as good a realization of the system of relations 4 as the system of
rigid bodies.

What do we do, however, if we are not satisfied with our table, but
actually draw a diagram? We then carry out another coordination,
namely that between a and 4. We no longer speak of 4, but of a.
We say that in a change of state according to 5, the gas moves along
a straight line, and we now understand by “‘ straight line”” a drawn figure
and no longer a change of state. The straight line in the drawing
is itself an object of a which we coordinate to the change of state.
The connection between A and a is so close, that in order to understand
the coordination between A and b, we establish the coordination
between a and b. Of course, this is not logically necessary. We can
omit a and treat b directly as a visualization of A. If we do this,
however, we may no longer think of diagrams but must endow the
objects in b with the qualities given in perception. e may think for
instance of the sensation of pressure and temperature, any combination
of both of which is a representation of a point. If we think of both as
uniformly increasing, then the sensation which we have is the image
of a straight line. The system b of states of the gas is as much a realiza-
tion-of A as the system a of rigid bodies and it is also a realization in
terms of perceptions if we actually think of the states of a gas and do
not smuggle in diagrams. There is not just one, but there are many
different physical geometries. The geometry of rigid bodies is
generally preferred for practical reasons, but it is by no means the only

1 « and B arc arbitrary constants.
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one that can be visualized. We are so accustomed to the preferred
position of rigid bodies that we acknowledge as space only the system
represented by them. In principle, one could just as well call the
manifold & of states of a gas a physical space. The “physical space”
is generally reserved, however, for the system a of rigid bodies.

These practical considerations are naturally by far the most
important ones and we shall therefore understand by physical geometry
the system a of rigid bodies and light rays. This preference is caused
not only by habit but is also based on the physical properties of the
objects in 2. They can easily be produced as geometrical tools such
as rulers and triangles, easily be kept constant, and above all, readily
be compared with other physical phenomena. These are the reasons
why the objects in a have become the preferred tools of measurement
and why we have grown accustomed to determine all physical states
by comparison with rigid measuring rods. We measure temperature
via a column of mercury finally on a rigid scale, an electric voltage
by the length of a circular strip of paper, the scale of the voltmeter,
etc. This preference, however, is not due to logical necessity. We
could just as tell measure the length of rigid rods by means of voltages
if we were to substitute a standard dry cell for the standard meter kept
in Paris. The reduction of all measurements to rigid measuring rods
is based purely on pragmatic considerations. At various times
attempts have been made to show the epistemological necessity of
reducing all measurements to those of space (and time). This
restriction is not admissible. The reduction is merely generally
expedient because of the practical advantages of rigid measuring rods.

Now we understand the meaning of graphical representations.
They signify nothing but a coordination of the system a to the systems
b, ¢, . .. of other physical objects, which is possible only because all
these systems are realizations of the same conceptual system A.
That we call a graphical representation a visualization is epistemolo-
gically speaking not correct, since the systems , c, . . . can be visualized
just as well as a. Due to practical considerations, however, we have
grown accustomed to express the conceptual relations of 4 mostly
by a, not thinking of them abstractly but always as represented by
visual pictures of a. It is a simplification if we represent other physical
systems in terms of the preferred system 4. Indeed, even the operator
of a machine thinks more readily in terms of diagrams than in terms
of the physical processes which he controls by the levers in his hand.
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We should like to express at this point the conjecture that the
representation of geometrical relations by systems of objects is more
than a matter of convenience and that it rests on a basic necessity of
human thinking. It is quite impossible to think abstractly about
relations. We cannot understand them without some method of
symbolic representation which supplies a concrete model of the abstract
relations. The choice of system a is of course only one out of many
possible selections. Even if we use the purely logical relations given
by the formulae on p. 94, we are employing a concrete model
when we think of the written letters, which are again nothing but a
graphical representation of the system of relations. Thinking com-
pletely without symbols seems to be impossible. However, this fact
should not lead to the mistaken impression that the chosen symbol
is essential for the content of the thought. It is as irrelevant as is
the color of the beads of an abacus for the arithmetical operations
they represent. By content in the logical sense is meant only the
system of relations common to a given set of symbolic systems. The
fact that we can think of a system of relations only in terms of concrete
objects does not change its independent and purely logical significance.
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CHAPTER II. TIME

§ 16. THE DIFFERENCE BETWEEN SPACE
AND TIME

Philosophy of science has examined the problems of time much less
than the problems of space. Time has generally been considere ; as an
ordering schema similar to, but simpler than, that of space, simpler
because it has only one dimension. Some philosophers have believed
that a philosophical clarification of space also provided a solution of
the problem of time. Kant presented space and time as analogous
forms of visualization and treated them in a common chapter in his
major epistemological work. Time therefore seems to be much less
problematic since it has none of the difficulties resulting from multi-
dimensionality. Time does not have the problem of mirror — smage
congruence, i.e., the problem of the existence of equal and similarly
shaped figures that cannot be superimposed, a problem which has
played some role in Kant's philosophy. Furthermore, time has no
problem analogous to non-Euclidean geometry. In a one-dimensional
schema it is impossible to distinguish between straightness and
curvature. A curved line can always be “‘straightened out’ without
a deformation of its smallest elements. It is therefore impossible to
determine by internal measurements whether a one-dimensional
continuum is straight or curved. A line can have an external curvature
but never an internal one, since this possibility exists only for a two-
dimensional or higher continuum. Thus time lacks, because of its
one-dimensionality, all those problems which have led to the philo-
sophical analysis of the problems of space.

The treatment of the problem of time as parallel to that of space
has been detrimental. One was aware only of those problems which do
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not exist for time, rather than of its special features. These features
manifest themselves in the fact that time order is possible in a realm
which has no spatial order, namely the world of the psychic experiences
of an individual human being. This is the reason why the experience
of time is allotted a primary position among conscious experiences,
and is felt as more immediate than the experience of space. There is
indeed no experience of space in the direct sense in which we feel the
flow of time during our life. The experience of time appears to be
closely connected with the experience of the ego. “I am” is always
equivalent to “I am now,” but [ am in an “eternal now” and feel
myself remaining the same in the elusive current of time.

At the moment, however, we cannot go into this question. Before
we attempt a solution of these intricate problems, it is necessary to
consider the order of time as a problem of natural science, similar to
that of the order of space. An analysis of natural science is the only
path to the central problems of epistemology. We must therefore first
examine those problems which result from the parallelism of spatial
order and time order and show that the changes in the philosophical
analysis of geometry have also consequences for the order of time.
First, the problem of congruence exists for time intervals as well as for
spatial distances. The parallelism becomes even closer, if space and
time are combined into a four-dimensional manifold where all the
epistemological problems appear in the same fashion in which we have
encountered them in the three-dimensional manifold of space.

Whereas the conception of space and time as a four-dimensional
manifold has been very fruitful for mathematical physics, its effect in
the field of epistemology has been only to confuse the issue. Calling
time the fourth dimension gives it an air of mystery. One might
think that time can now be conceived as a kind of space and try in
vain to add visually a fourth dimension to the three dimensions of
space. It is essential to guard against such a misunderstanding of
mathematical concepts. If we add time to space as a fourth dimension,
it does not lose in any way its peculiar character as time. Through the
combination of space and time into a four-dimensional manifold we
merely express the fact that it takes four numbers to determine a
world event, namely three numbers for the spatial location and one for
time. Such an ordering of elements, each of which is given by four
conditions (coordinates) can always be conceived mathematically
as a four-dimensional manifold. The same is of course possible in
many other cases. Musical tones can be ordered according to volume
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and pitch, and are thus brought into a two-dimensional manifold.
Similarly, colors can be determined by the three basic colors, red,
green, and blue, if we state for any given color how much it contains
of each of these three components. Such an ordering does not change
either tones or colors; it is merely a mathematical expression of some-
thing that we have known and visualized for a long time. Our
schematization of time as a fourth dimension therefore does not imply
any changes in the conception of time.

The practical value of this form of mathematical expression lies in
the fact that we can occasionally visualize the manifold with the aid
of spatial concepts, i.e., that we can represent them graphically. We
can thus symbolize the manifold of tones by mecans of a plane. If we
express the volume of the tone on a horizontal axis and its pitch on a
vertical axis, then every point of the plane (more correctly, the quad-
rant, since volume and pitch cannot be negative) corresponds to a tone
of specific volume and pitch. Such a representation of tones on a
plane is for many purposes very practical, but it is by no means
necessary. Even if we understand by volume and pitch the experience
that we have in hearing the tone, the two-dimensional manifold still
exists; these experiences themselves form the manifold. Let us refer
at this point to the considerations of § 15 which showed that a multi-
dimensional manifold is a conceptual structure and that the space of
visualization is only one of many possible forms that add content to
the conceptual frame. We therefore need not call the representation
of the tone manifold by a plane the visual representation of the two-
dimensional tone manifold. The auditory realization of the tone
experiences themselves would also give perceptual content to the
conceptual manifold. The same holds for the four-dimensional space-
time manifold. We cowld conceive it as represented by a four-
dimensional space; in this case, however, imagination fails us, since
visualized space has only three dimensions. In this situation we can
avail ourselves of spatial representations of cross-sections of the
four-dimensional manifold. We may represent a dimension of space
on a horizontal axis, the dimension of time on a vertical axis, and
obtain in the plane of the resulting space a representation of the
manifold of events which occur on a line in space at various times.
This method of visualizing the flow of time by means of a diagram can
be very useful. The theory of relativity, however, is not required
for such a visualization, since graphically represented railroad
schedules, for example, achieve the same effect.
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Yet this device does not change our conception of time. We can
always fill the four-dimensional space-time manifold with the direct
perceptual content which we have connected with space and time in
the past. In the way we experience events as spatially and tem-
porally determined, they already form a four-dimensional manifold.
We may therefore retain the perceptual difference between space and
time without fear of contradicting the mathematical representation,
Just as the representation of tones on a plane cannot require us to give
up the intuitive representation of the volume or pitch of a tone, so
the combination of space and time into a four-dimensional manifold
cannot offer any grounds to discard the intuitive representations which
we connect with space and time and which differ considerably for them.
On the contrary, it is just in this form that the intuitive representation
of all four dimensions is possible without difficulty,

The properties of time which the theory of relativity has discovered
have nothing to do with its treatment as fourth dimension. This
procedure was already possible in classical physics, where it was
frequently used. However, according to the theory of relativity the
four-dimensional manifold is of a new type; it obeys laws different from
those of classical theory. These results were obtained when time was
subjected to the same kind of analysis as was applied to the three-
dimensional space manifold. The analysis led to a realization of the
arbitrariness of coordinative definitions even for time, and finally to
some insights which appeared at first very strange. To demonstrate
these changes in the conception of time we need not employ mathe-
matical considerations. We can remain within the perceptual
experience of time and develop everything the theory of relativity
teaches about time. Indeed, in an epistemological sense we shall go
further. On the other hand, we shall recognize the significance of
the structure of the four-dimensional manifold with the help of a
mathematical formulation of our results, and thus deprive it of its
apparent mystery. We shall even find that the Minkowskian world is
incorrectly interpreted if one looks to it for support of the parallelism
of space and time; on the contrary, the world of Minkowski expresses
the peculiarity of the time dimension mathematically by prefixing a
minus sign to the time expression in the basic metrical formulae. The
peculiarity of time appears even in an analysis that does not consider
the subjective experience of time. e shall show that the parallelism
does not exist objectively and that in natural science time is more

fundamental than space, the topological and metrical relations of which
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can be completely reduced to observations of time. We shall finally
recognize that time order represents the prototype of causal pro-
pagation and thus discover space-time order as the schema of causal
connection.

In this chapter we shall consider only physical time. We shall pay
no attention to the psychological characteristics of the experience of
time, but shall analyze the physical order of time just as we gave an
analysis of the physical order of space. Such a distinction is certainly
possible; we can examine what physics means by ‘time " just as we can
examine what physics means by ““matter.”” It has often been claimed
that only the physical properties of time can be revealed in such an
investigation and that, unaffected by physical time, the psychological
experience of time retains its a priori character and obeys its own laws.
This view which has been expressed by various philosophical writers in
connection with the theory of relativity, must be rejected most emphati-
cally. Allourso-called a priori judgments are determined by primitive
experiences, by the physics of everyday life, to a much higher degree
than we may think. Nothing would do more harm to the progress of
science than to interpret such experiences as apodictic necessities and
thus to arrest the natural growth of our knowledge. Actually, such
a conception would make the physics of everyday life the norm for
scientific physics and express our unwillingness to adjust our imagination
to the development of physics from a naive world picture to an exact
science. We shall therefore use the distinction between fime as
experience and physical time only as a temporary aid which leads us to
a deeper scientific insight into the concept of time; we shall correct the
intuitive experience time accordingly. Indeed, we shall find that it is
just the relativistic concept of time which presents the experience of
time in a new light. This analysis will clarify the meaning and
content of everyday experiences; finally we shall learn in this way,
better than through a phenomenological analysis, what we ““actually
mean'’ by the experience of time.

§ 17. THE UNIFORMITY OF TIME

The solution we have offered for the problem of physical geometry
is based on the idea of the coordinative definition. The first coordina-
tive definition referred to the unit of length and the second to con-
gruence. Whether two distant line-segments are equal is not a matter
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of knowledge but of definition; and this definition consists ultimately
in a reference to a physical object coordinated to the concept of a unit.
We recognized the need for such a coordinative definition because
otherwise the problem would remain undetermined. It is not a
technical but a logical impossibility to compare distant line-segments
without a prior coordinative definition of congruence. The definition
of congruence by means of rigid bodies proved to be most useful, since
this definition was shown to be independent of the path along which the
rigid body is transported.

Similar considerations must be carried through for the problem of
time. It is so obvious that we have to determine a unit of time, that
we shall merely mention this first coordinative definition. But for
time, too, there is a comparison of length. Before we enter into an
cpistemological investigation, let us first examine what time intervals
physics considers to be equal in length. The rotation of the earth is
the most important example; we say that the time intervals which
the earth requires for one complete rotation are equal. For the
subdivision+of such time intervals we use a different method, namely
the measurement of angles. We accept time intervals as equal if they
correspond to equal angles of the earth’s rotation. Through the
combination of these two methods we obtain the measure of time, and
the flow of time we have thus obtained is called uniform. The problem
of the congruence of time intervals leads therefore to the problem of the
uniformily of time.

The described time measurement employs two essentially different
methods.  1f we consider the revolutions of the earth to have equal
duration, we do this because they represent periods of the same lype.
The same principle is involved if we say that the periods of a pendulum
are equally long. The counting of periods is the first and most natural
type of time measurement. The sccond method consists in sub-
dividing the diurnal pericd by means of the angle of the earth’s
rotation. In this case, cqual times are measured with the aid of equal
spatial magnitudes. This reduction of time measurements to space
measurements is also present in inertial motion. According to the
law of inertia, if a body moves freely, unaffected by accelerating or
retarding forces, it will cover equal distances in equal time intervals,
We can thus use its motion as a measure of uniformity and regard as
equal the times of transit through equal distances. Finally, the
motion of light permits an analogous method since light covers equal
distances in equal times. There are therefore two basic kinds of time
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measurement : one consists in counting periodic processes, and the other
in measuring spatial dislances corresponding to certain non-periodic
processes.

The opinion has been expressed that there are no actual time
measurements and that all time measurements must be reduced to
spatial measurements. This is not correct.  The reduction applies
only to the second type of time measurement; the first method has
nothing to do with spatial measurements,  If we count periodic events,
as for instance the tick-tock of a watch, we are using a genuine time
scale. We hear a sequence of sounds and call the intermediate time
intervals equal.  That we call them equal is based on the fact that
cach sound represents the end of a full period at which the swinging
pendulum has reached its previous position. How it moves within
one of these periods does not matter at all. It is well known that the
motion of a pendulum is far from uniform and yet we accept the
intervals of the complete periods as equal.  The fact that a period is
completed is recognized by the return of the system to its original
condition; there is no need of a spatinl measurement.  This time
measurement is thus based on the recurrence of the same state.  The
watch is a good illustration of this procedure. The internal works
have in this case only the signilicance of a counting device, and the
angular path of the hands is merely a measure of the number of cogs
which the gears have advanced and hence also a measure of the
number of completed periods of the balance wheel.  The time measure
of the watch is therefore provided by the balance wheel; the hands
merely indicate the number of wnits of measurement and save us the
trouble of counting. Actually, we can only measure an integral
number of time intervals by this method.  If the unit is chosen small
enougly, however, the resulting inaccuracy can be made very small.

In special cases the individual period is run through uniformly as,
for instance, in the case of the rotating earth. e arrive at a sub-
division according to the second method by measuring the angular path
of the carth's rotation relative to the fixed stars. This subdivision
of the time measure involves genuine spatial measurements, namely,
of angular distances, and differs therefore from the merely apparent
use of angular measurements in the case of the watch.

To summiarize our ideas, we may say that the measurement of equal
time intervals is obtained through mechanisms which we assume to
run through their periods in equal times,  Actually we never measure
a “pure time,” but always a process, which may be periodic as in the
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case of the clock, or nonperiodic as in the case of the freely moving
mass point. Every lapse of time is connected with some process, for
otherwise it could not be perccived at all. The measurement of time
is therefore based upon an assumption about the behavior of certain
physical mechanisms.

How can we test this assumption? There is only one answer: we
cannot test it at all. There is basically no means to compare two
successive periods of a clock, just as there is no means to compare two
measuring rods when one lies behind the other.  We cannot carry back
the later time interval and place it next to the earlier one. It is
possible to make empirical statements about clocks, but such state-
ments would concern something else. Two clocks stand next to each
other, and we observe that the beginning as well as the end of their
periods coincide. Further observation may show that the ends of
their periods always coincide. This experience teaches us that two
clocks standing next to each other and having equal periods once will
always have equal periods. But this is all. \Whether both clocks
require more time for later periods cannot be determined.

Why is this determination impossible? Do not the laws of physics,
for instance those of the motion of a pendulum, compel us to believe in
the equality of the periods? It is true that the laws as described in
textbooks suggest this belief; but if we ask ourselves where these laws
come from, we shall find that they are obtained through observations of
clocks calibrated according to the principle of the equality of their
periods. The proof is therefore circular.  If we had used a different scale
for our measurements, we would have obtained different laws which in
turn would have compelled us to consider the latter scale as the correct
one. Neither can the circularity be removed by time measurements of
nonperiodic processes. The law of inertia does prescribe a measure of
time, but this law could casily be restated for a different type of time
measurement in which a freely moving body slows down and a body
which falls towards the carth moves at a uniform rate—this restatement
would never lead to internal contradictions.

A solution is obtained only when we apply our previous results about
spatial congruence and introduce the concept of a coordinative definition
into the measure of time. The equality of successive time intervals
is not a matter of knowledge but a matter of definition. As for spatial
congruence, a certain rule must be laid down before the comparison of
magnitudes is defined. This determination can again be made only
by reference to a physical phenomenon; a physical process, such as the
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rotation of the earth, is taken as a measure of uniformity by definstion.
All definitions are equally admissible.  We could define the motion in
the earth’s gravitational field as uniform and would consequently obtain
a retardation for a freely moving body. Physics, however, has
decided on a particular definition with special properties. It uses
three independent methods for the definition of the uniformity of time:

1. The definition by means of natural clocks.

2. The definition by means of the laws of mechanics. (It comprises
not only the definition by means of inertial motion, but also those
definitions which use the rotating earth or the pendulum.)

3. The definition using the motion of light (light clock).

We shall discuss 1 and 2 in the following section, 3in § 27.  However,
we can assert: it is an empirical fact that these three definitions lead
to the same measure of the flow of time.  Since these definitions have
this property, the clock proves to be the natural measure of time in the
same sense in which the rigid measuring rod is the natural measure of
space.

Processes of nature thus determine a flow of time. It is, however,
not an epistemological necessity to use the clock as a definition of
uniformity. In an epistemological sense any other definition is equally
admissible, provided only that it leads to a univocal and noncon-
tradictory description of nature. For practical reasons one chooses
the definition by mcans of clocks because it simplifies the description
of nature considerably. This simplicity has nothing to do with truth,
since it is merely descriptive simplicity.

On the other hand, it is a statement of fact that a flow of time of this
kind exists; that therefore all periodic processes, and furthermore
inertial motion and the motion of light, lead to the same measure of
time.  This statement should not be considered to be a priors but the
result of experience. Tt could be false, and later we shall learn about
cases for which it is indeed not true. Today we know that it applies
strictly only in gravitational-free space and in gravitational ficlds of
particular simplicity (in stationary fields). Since strictly speaking
there are no such fields, our characterization of the uniform flow of
natural processes holds only approximately.

This approximation fits terrestrial and astronomical relations to
such a high degree that the deviations lie far below the limits of
exactness. There is good reason, therefore, for astronomers to try to
make uniform time independent ot the fluctuations of the earth’s
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motion resulting from its own rotation, axial oscillations, its revolution
around the sun, and lunar influences. These difficulties show that the
coordinative definition of uniformity cannot be given so ecasily as it
can be schematically conceived.  There is no periodic motion which is
completely free from external influence and which returns to exactly
equal states.  Even the carth’s rotation has these properties only to
a certain, though very high, degree of approximation.  The precession
of the carth’s axis has the effect that the earth has a slightly different
position after each rotation and therefore does not reach exactly the
same state.  For this reason uniform time is not considered to be equal
to the directly observed time, but is derived indirectly from it by a
serics of corrections. This method is the same as that used in the
measurement of length, where the unit of length is given not directly
by the transported measuring rod but is calculated indirectly with the
aid of correction factors for temperature, ctc. It is obvious, of course,
that this method does not enable us to discover a ‘“ true”’ time, but that
astronomers simply determine with the aid of the laws of mechanics
that particular flow of time which the laws of physics implicitly define.
A redefinition of uniformity through a change in the laws of physics
would give the astronomer a different time. His work is comparable
to the investigation of the physicist to determine the c.g.s. unit of
electric current, if the ampere is already defined by the electrolytic
separation of a specific quantity of silver. This is an exceedingly
difficult task, which is of great importance, but it does not teach us how
large the unit of current should be.

We can schematize the definition of uniformity given by the laws of
physics in the same way as we schematized the definition of the
comparison of length. For this purpose we introduced in § 6 the
distinction between universal and differential forces. Universal forces
are those that affect all substances cqually, whereas differential forces
affect them differently. We shall use the same distinction in our
definition of the clock, which we defined above as a closed periodic
system. However, the concept of a closed system is not defined so
long as universal forces are permitted. If we should regard the period
of the earth’s rotation as variable—for example (starting from an
arbitrary point) call the second rotation twice as long, the third three
times as long—then this definition would become noticeable in the
equations of physics through the appearance of a force which was thus
introduced by definition. This force would have the ““effect ™ that the
period of rotation would constantly increase. We would find that this
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force retards all clocks in equal fashion and that it retards the motion
of all otherwise freely moving bodies; it has all the properties of a
universal force. We now set this force equal to zero by definition,
i.e., we define the closed system as free from differential forces, but
neglect universal forces. This definition therefore determines the zero
point from which forces are measured. Without such a zero point the
magnitude of a force would be left undetermined, since a force is
something which we regard as the cause of a change, and a change of
temporal or spatial intervals can be determined only if a coordinative
definition of congruence has previously been given. For this reason
the definition of the congruence of time intervals is connected with the
problem of a force field. The definition of congruence for time com-
parison is therefore also the basis for the measurement of a force, and
conversely this definition of congruence can be given through the rules
for the measurement of a force.

We must finally recall another difficulty which exists for any
definition of a closed system. We can never construct a system
completely isolated from external differential forces, because this is
possible only to a certain degree of approximation. Consequently we
can define only the concept closed to a certain degree of approximation.
This degree of approximation, however, depends on the relation between
the external forces and the internal forces of the system. In a given
field of external (differential) forces, one system can be relatively well
closed, another relatively badly closed. Furthermore the same
system can sometimes be relatively well closed, and sometimes
relatively badly closed, depending on the external (differential) field.

§ 18. CLOCKS USED IN PRACTICE

Let us consider in this connection the clocks in actual use. There
is the pendulum clock, the spring-balance clock (pocket watch), the
earth clock, and finally the atomic clock of the revolving electrons
within the atom. Actually, pendulum clocks are not clocks because
they are not closed systems. They move only because of the earth’s
gravitational force, which belongs to the class of universal forces
and could be eliminated by definition. Simultaneously, always we
find a differential force that affects the supporting arrangement of the
pendulum and compensates for the gravitational force. This elastic
force is an external differential force which is essential, however,
because if it did not exist, the pendulum would not oscillate but would
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fall freely. This force is of the same order of magnitude as the driving
force of the pendulum and the system is thus far from being closed.
The pendulum clock can therefore be used as a measure of uniform
time only with certain precautionary measures, namely, when the force
of attraction of the earth is constant. The pendulum clock is really
nothing but an indicator of the earth’s attraction, a force which is
measured by the equations of mechanics, such that it is constant when
time is defined by truly closed clocks, as for example the earth clock.!
Therefore, even the pendulum clock may be taken as a measure of
uniform time. If we were to move a pendulum clock to a different
latitude, however, the same equations of mechanics would force us to
consider the unit of time of the clock as changed, since the strength of
the gravitational field of the earth is smaller near the equator than at
the poles due to the considerable flattening of the earth. The definition
of time by means of the pendulum belongs therefore to the second
type of definition given in the previous section (page 117).

The spring-balance clock is a clock in our sense. The force that
determines the length of the pendular period of the balance wheel is
the elastic force of the spring, i.e., the fnternal force of the clock.
Gravitation has no effect in this case, and the indications of the spring-
balance clock are thus independent of latitude. This kind of clock
would oscillate even if it were far away from any masses in interstellar
space, whereas the pendulum clock would not operate under these
conditions. We may thercfore always think of a pocket watch, when
we talk of clocks in our future discussions, since it is the best example
of a closed system. For precise time measurements watches have
shortcomings, however, which make them inferior to the pendulum
clock for astronomical purposes. The elastic forces fluctuate slightly,
i.e., the system is not strictly periodic, and therefore, although this
system is closer to our epistemological ideal, its time is not as accurate
as that of the pendulum clock. So long as pendulum clocks remain
in the same place they satisfy the condition of uniformity to a very
high degree, because the earth’s attraction is very nearly constant.
On ships, on the other hand, spring-balance chronometers are used,
because the effect of geographical latitude would otherwise be notice-
able, and the rocking of the ship would cause fluctuations in the

1 It is easy to recognize that the measure of force depends on the measure of
time which appears in the dimensions mii-2 of force. A force is measured by the
acceleration which it produces. If the measure of time were redefined in a
suitable fashion, the acceleration of a freely falling body would not be constant
and the gravitational force would vary with time.
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clastic supporting forces which for penduium clocks are of the same
order of magnitude as the driving forces.

One should not forget, however, that the spring-balance clock too is
only approximately frec from external physical forces. It must, for
instance, be placed on a firm support to prevent its fall in the gravita-
tional field. This elastic supporting force, which is external, affects
the clock and causes a slight bending of its gears and shafts. The
spring-balance clock thus runs somewhat differently, depending upon
the side on which it rests. This effect is extremely small, and we may
say in our language: the external physical forces are very small in
comparison with the internal driving forces of the clock. This type of
clock is therefore closed to a relatively high degree of accuracy. This
applies, of course, only so long as the elastic forces are not too large.
If we were to fasten a pocket watch to a rotating disc, for instance,
and bring it into a strong centrifugal field, the supporting forces would
increase correspondingly and would bend the gears and shafts so much
that the clock could no longer be considered a closed system.

The most important clock for practical time measurements is the
earth clock. e have alrcady mentioned that this clock too needs
corrections because it is not strictly periodic, but it is far superior in
this respect to the spring-balance clock. Since it floats freely in
space and the effect of radiation can be ignored, the earth clock is a
well-closed system. There is a slight disturbance by the gravitational
effects of the moon and sun; they act as brakes upon the earth’s
rotation with the eventual result of a state like that of the moon, for
which the period of rotation equals that of the orbit. For a single
rotation, however, this effect can be ignored.

The ecarth clock has the characteristic that it moves uniformly even
within the individual period. Thus the unit of time can be sub-
divided by means of angular measurements. On the other hand, the
counting of periods is more difficult, since the end of an individual
period cannot be directly recognized. What constitutes a complete
rotation of the earth is definable only relative to the environment;
hence the difference between stellar and solar day. The latter is
about four minutes longer, because the period between two solar
culminations increases due to the orbital motion of the earth. If the
earth were alone in the universe, it would be useless as a clock, because
we would have no indication for the end of its individual periods.  The
earth clock is therefore not a natural clock in our sense. In contrast
to the pendulum clock it is closed, but it differs from ideal clocks in
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the sense that it is not periodic. The earth’s rotation is an inertial
motion, and the definition of a measure of time by means of the earth
clock should therefore be included among the definitions that use the
law of inertia rather than a periodic system.l Therefore, the question
when a *‘real ” rotation of the earth has been completed can be answered
only on the basis of the laws of mechanics. The answer depends on
the determination of the astronomical inertial system (compare § 36),
to which the earth’s rotation must be related for this purpose. Since
the stellar day is practically identical with this ““day of the inertial
system,” it is generally preferred to the solar day.

One might suppose that these considerations are unnecessary as
long as we are interested only in the uniformity of time and not in
the length of an individual day, since we can employ the method of
subdivision by angular measurements because of the uniformity within
a period of the carth’s rotation. But how are we to measure this angle
of rotation? It is well known that the angle of rotation measured
relative to the sun is not suitable for this subdivision (because of the
varying velocity of the earth along its path) but only the angle relative
to the fixed stars. The only difference is the following: In order to
determine uniformity it is sufficient to know the state of the astro-
nomical inertial system with the exception of a uniform rotation,
whereas for the determination of the length of a day even this variable
must be eliminated. Practically speaking, however, little is accom-
plished by the admission of such an unknown rotation, since the
determination of the inertial system except for a uniform rotation con-
tains almost all the problems pertaining to the determination of the
rotation-free inertial system.

We should finally mention the atomic clock, which, although of no
practical use, plays an important role in the experimental investigations
of the relativistic laws dealing with clocks. An electron within the
atom revolves with a high degree of precision and its period provides
us therefore with a very exact unit of time. The force that the nucleus
of the atom exerts on the electron, keeping it in a closed path, can be
considered as the internal force of the clock. The entire atom, and
not the electron alone, is the clock the period of which is indicated by
the revolution of the electron. This clock is closed to a very high

1 The elliptic motion of the earth around the sun is a periodic process. The
point at which the earth is closest to the sun, the perihelion, may be regarded as
the end of a period.  This, however, is not an inertial motion, but a gravitational
motion.
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degree since the external forces acting on an atom are very weak
compared to its strong internal forces. The atom would be an ideal
clock except for the resuits of quantum theory.  We can never observe
an atomic clock as we observe other clocks; we can only measure the
frequency of the emitted radiation. According to the ideas of classical
theory, the frequency would be a direct measure of the period of the
electron’s revolution, which could thus be directly observed. Bohr's
discoveries have taught us, however, that the atom emits light in an
cntirely different fashion. The revolving electron does not emit any
light at all; consequently we have no knowledge of its period of
revolution. Light is emitted only when the electron jumps from one
orbit to another: the conditions of a periodic system are, therefore, not
satisfied. Bohr's theory has shown nevertheless that the frequency is
determined by the stationary states between which the jump takes
place. However this situation is much more complicated and the
question arises whether under these conditions the atom may still be
regarded as a clock. As long as we have no accurate information
about the process of the emission of light, we can only express con-
jectures at this point. On the other hand one could, of course,
investigate experimentally how far the atomic clock satisfies the
relativistic laws of clocks. In this manner we might discover directly
whether or not the atom can be regarded as a clock in the sense of the
relativistic theory of time.

§ 19. SIMULTANEITY

After we had specified the unit of time, which is the first metrical
coordinative definition of time, we wete led to the problem of unifor-
mity, which is the second metrical coordinative definition of time and
deals with the congruence of successive time intervals. There is however
a second type of time comparison that concerns parallel time intervals
occurring at different points in space rather than consecutive time
intervals occurring at the same point in space. The comparison of
such time intervals leads to the problem of simultaneity and hence to
the third metrical coordinative definition of time.  Although it had been
known for some time that uniformity is a matter of definition—
Mach,! for instance, asserted the definitional character of the uniformity
of time emphatically—the definitional character of simultaneity was

1 E. Mach, The Science of Mechanics, The Open Court Publishing Co., Chicago
and London, 1919, p. 223.
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recognized first by Einstein and has since become famous as the
relativity of time. Einstein immediately applied his solution of the
problem of simultaneity to theoretical physics and for this reason the
epistemological character of his discovery has never been clearly
distinguished from the physical results. Therefore, we shall not
follow the road taken by Einstein, which is closely connected with the
principle of the constancy of the velocity of light, but begin with the
epistemological problem.

To see this problem clearly, we must start with a distinction which
originated with the work of Einstein. We shall distinguish between
the simultaneity at the same place and the simultaneity of spatially
separated events. Only the latter contains the actual problem of
simultaneity; the first is strictly speaking not a simultaneity of time
points, but an identity. Such a concurrence of events at the same
place and at the same time is called a coincidence. In a strict coin-
cidence there is actually no comparison of space or time since position
and time are identical for both events. Practically speaking, such an
identity never occurs since we could no longer distinguish the two
events. But an approximate coincidence can be realized, in the
example of two colliding spheres or two intersecting light rays.
Simultaneity plays no essential role even in the case of a roughly
approximated coincidence, because a time comparison of distant events
shows such slight differences in the determination of the time of
neighboring events that they can be ignored. \We can therefore treat
the problem of the comparison of neighboring events similarly to the
problem of coincidence and restrict our investigation to the comparison
of distant events.

This investigation will lead us to the result that the simultaneity
of distant events is based on a coordinative definition. We shall
demonstrate this result by showing that a comparison of time has the
characteristic propertics of a coordinative definition. We therefore
maintain:

First, it is impossible to ascertain whether two distant clocks are set
“correctly” in their indication of time; second, they can be sct arbi-
trarily and yet no contradiction will arise.

Following the first line of thought, we may ask how one can determine
the simultancity of distant events. We shall consider events as
distant, if the distance between them is large compared with the
dimensions of the human body. The perceptual judgment of simul-

! For a rigorous treatment of the comparison of neighboring events, sec A., § 8.
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taneity is thus not sufficient under these circumstances. We may hear
for instance the sound of thunder and notice at the same time that the
hands of our watch point to 8:30. The determination of simultaneity
which we make here is a comparison of neighboring events; we compare
the moment when the watch indicates 8:50 with the moment when
the sound of thunder reaches our ear and not with the instant of its
occurrence. If we want to derive from this time determination the
actual time at which the thunder occurred, we must have additional
physical facts. We must know the distance which the sound has
traveled and the velocity of sound, before we can calculate backwards
from 8:50 to the time at which the thunder took place.

But are there no other means? Tt is well known that we can avoid
using the velocity of sound in the given example, if we observe the
lightning rather than the thunder. Let us say that the lightning was
observed at 8h 49m 50s; we may then consider this time as the time
at which both lightening and thunder occurred. Is this statement
true? Obviously, in this type of time determination the situation is
changed quantitatively but not in principle. The light of the lightning
also requires a certain amount of time to reach the eye, and our
judgment therefore concerns again the moment at which the light
reaches our eye and not the moment when the lightning actually
occurred. Only because this time difference is extremely small can we
ignore it for practical purposes.

It can easily be seen that the time comparison of distant events is
possible only because a signal sent from onc place to another is a
causal chatn. This process leads to a coincidence, i.e., a comparison
of neighboring cvents, and from the time measurement thus obtained
we can determine the time of the distant event only with the help of
an inference.  What assumptions are contained in this inference?

This inference requires besides the knowledge of the distance also
the knowledge of the velocity of the signal. How can this velocity
be measured?

In principle, there exists only one method, which we shall schematize
as follows, The signal leaves a point Py at the time {; and reaches a
point Pg at the time fa. Tts velocity is then given by the quotient of
the time interval fo—?; and the distance Po— P;. Therefore, fico time
measurements are required which have to be made at different places.
We can think of them as given by two clocks located at P’} and Ps.
If the indication of the time interval f2—{ is to be meaningful,
however, the two clocks must have been synchronized previously, i.e.,
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it must have been determined whether their hands occupied the same
positions at the same time. In order to measure a velocity, therefore,
the simultaneity of distant events must already be known.

Is this statement correct? Did not Fizeau measure the velocity of
light differently? Fizeau indeed used an arrangement which did not
require the simultaneity of distant events. We can schematize his
measuring arrangement as follows. In Fig. 16 a light ray is sent from
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Fig. 16. Round trip of a light signal.

A at the time £; = 12:00; it is reflected at the point B, which is at a
distance ! from A4, and finally returns to A at {3 = 12:06. It has
required 6 minutes to travel twice the distance /, and its velocity is
thus given by the ratio of these two numbers. In this arrangement,
time is measured only at 4, only one clock is used and the simultaneity
of distant events does not affect the problem. Of course, in the actual
experiment the time interval was much smaller than 6 minutes, even
though ! was several kilometers long, but Fizeau measured it by an
ingenious device involving a rotating gear. We have simply chosen
larger numbers to clarify the illustration.

On closer examination, we notice that this measurement contains a
certain untested assumption, namely, that the velocity of light is the
same in both directions along /. For instance, if it were less, in the
direction AB than in the direction BA, the velocity of light as
calculated by Fizeau would correspond to neither of the two velocities,
but represent an average of the two. How can we prove this
assumption by Fizeau?

It seems that it can be proved only if the time £ is known at which
the light ray reaches B. This means, however, that we are again
employing #wo clocks and a comparison of distant events. Our
assertion that the measurement of any velocity in one direction
presupposes a knowledge of simultaneity is therefore correct.

Thus we are faced with a circular argument. To determine the
simultaneity of distant events we need to know a velocity, and to
measure a velocity we require knowledge of the simultaneity of distant
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cvents. The occurrence of this circularity proves that simultaneity
is not a matter of knowledge, but of a coordinative definition, since
the logical circle shows that a knowledge of simultaneity is impossible
in principle.

We also notice that the second characteristic of a coordinative
definition, namely its arbitrariness, is satisfied. It is arbitrary which
time we ascribe to the arrival of the light ray at B. If we assume it to
be 12:03, the velocity of light becomes equal in both directions. If we
assume it to be 12:02, the light ray requires 2 minutes in one direction
and 4 minutes in the other; this assumption is equally compatible with
Fizeau's measurements. It does not make sense, therefore, to call the
time 12:02 false or improbable, since we are here concerned not with an
empirical statement but with a definition. This definition determines
at once the velocity of light and simultaneity, and such a determination
can therefore never lead to contradictions. If we wish to determine
by velocity measurements which events are simultaneous, we shall
always obtain that simultaneity which has already been introduced by
definition.

It is this consideration that teaches us how to understand the
definition of simultaneity given by Einstein

2 = th+1(ts—h) (1)
which defines the time of arrival of the light ray at B as the mid-point
between the time that the light was sent from A4 and the time that it
returned to A. This definition is essential for the special theory of
relativity, but it is not epistemologically necessary. Einstein's
definition, too, is just one possible definition. If we were to follow
an arbitrary rule restricted only to the form

(2) la = 14 €(tza—14)) O<exl (3)
it would likewise be adequate and could not be called false. If the
special theory of relativity prefers the first definition, i.e., sets e
equal to 4§, it does so on the ground that this definition leads to simpler
relations. It is clear that we are dealing here merely with descriptive
simplicity, the paturc of which will be explained in §27. The
arbitrariness is restricted only by condition (3) which specifies that
{2 must lie between ¢; and {3; otherwise the signal would arrive at B
at a time earlier than its departure from A. The epistemological
significance of this restriction will be discussed in detail in § 22.

These considerations have shown that simultaneity is a matter of
a coordinative definition. Simultaneity also has the peculiar dual
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character which we can most easily observe in the definition of the
unit of length. What we mean by a unit of length can be defined
conceptually: a unit of length is a distance with which other distances
are compared. Which distance serves as a unit for actual measure-
ments can ultimately be given only by reference to some actual
distance. The same is true of simultaneity. We can give a con-
ceptual definition of “simultaneity’: two events at distant places are
simultaneous if the time scales at the respective places indicate the
same time value for these events. What time points of parallel time
scales do receive the same time value can ultimately be determined
only by reference to actual events. This reference is essentially of the
form: “ These particular events are to be called simultaneous.” We say
with regard to the measuring rod as well as with regard to simultaneity
that only “ultimately” the reference is to be conceived in this form,
because we know that by mecans of the interposition of conceptual
relations the reference may be rather remote. We may recall here
the example of the determination of a unit of length by reference to a
color, mentioned in § 4, where the reference is not directly to a spatial
distance. - Correspondingly, we find that the reference in the definition
of simultaneity is commonly not in terms of the occurrence of arbitrary
events, but in terms of light, i.e., a physical process, the properties of
which arc utilized in the definition of simultaneity. In this fashion
we are able to replace a direct reference by a description of operations
which can easily be repeated, since it is commonly understood what is
meant by “light” and by these operations. The definition of simul-
taneity through the use of light signals, for instance Einstein's
definition, cannot be compared to the definition of the meter by
means of the Parisian standard meter, but is to be compared to the
definition of the meter by means of the earth’s circumference. In
this definition the physical phenomenon the earth’s civcumference
corresponds to the physical phenomenon light in the definition of
simultaneity, and the rule “count off 40 million times’ corresponds
to the rule ““send a light signal from A4 to B and back and set the time
of arrival at B equal to the average of the two time values at 4.”
Such a rule does not change the nature of the coordinative definition,
since what is meant by “light"’ and *'the circumference of the earth”
can ultimately be determined only through a direct reference.

The conceptual definition which we related to the coordinative
definition of simultaneity may appear empty; it is tautological to define
simultaneity as the equality of time values on parallel time scales.
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But the situation is no different for any other conceptual definition.
All conceptual definitions are tautological in this sense, since they
deal exclusively with analytic relations. A concept is coordinated to
a combination of certain other concepts and derives its meaning only
from these other concepts. The conceptual definition of the unit of
length is also a tautology in this sense. Yet the desire for a different
conceptual definition of simultaneity has a certain justification. We
mean more when we speak of simultaneity; we are searching for a rule
that restricts the determination of the parallel time scales in a special
fashion. An answer to this question can only be given by the causal
theory of time which we shall develop in § 21 and §22. We anticipate,
however, that this investigation will not eliminate the relativity of
simultaneity but only justify the restriction of arbitrariness given
in (3).

§20. ATTEMPTS TO DETERMINE
ABSOLUTE SIMULTANEITY

Before we proceed from these results to further problems, we shall
first discuss some of the objections that have been raised against the
arbitrariness of simultaneity. The answers to these objections will
assure us that the solution of the problem of simultaneity is correct.
These criticisms consist in various attempts to establish absolute
simultaneity.

The first of these attempts starts with the idea of using velocities
greater than the velocity of light. As a result, the interval f3—/; of
definition (2, § 19) would be shortened and the definition of simul-
taneity would become less arbitrary. If there existed a signal with
infinite velocity, the interval would equal zero and absolute simul-
taneity would be established. Even if an infinite velocity could not
be attained, the inaccuracy could be made as small as desired by means
of correspondingly high velocities. Such an approximation would
suffice to define absolute simultaneity as a limit. Indeed, if arbitrarily
high velocities could be reached, there would be absolute simultaneity.
The relation between signal velocity and the interpretation of the word
“absolute’’ will be discussed in § 22. We may comment at this place,
however, that this objection is pointless, since there are no signals
that travel faster than light. We do not mean merely that physics
has not yet discovered a higher velocity, but rather the positive
assertion that there can be no higher velocity. Reasons for making
this assertion will be given in § 32.
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Chapter II. Time

The second group of attempts to define absolute simultaneity uses
specially conceived mechanisms. We can imagine an electrical
mechanism of this type to be built according to Fig. 17.! The current
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G

Fig. 17. An attempt to determine absolute simultaneity by
means of an electrical arrangement.

from battery E flows through galvanometer G if the two switches
Ty and Tg are closed. If only one of the two switches is closed, no
current flows through G. Let us imagine now that T; and T, are
closed for an instant. If these two instants are simultaneous, the
circuit will be closed and a brief impulse of electric current will flow
through G which will show a single deflection. If they are not simul-
taneous, the circuit will never be closed and no deflection will occur
inG. The deflection in G is therefore the criterion for the simultaneity
of the two events, and this simultaneity is defined without arbitrariness.

However ingenious this attempt may appear, closer examination
reveals where it fails. It uses a far too primitive theory of electric
currents. The property of an electric current to flow only in a com-
pletely closed circuit holds for stationary states alone. Under rapidly
changing conditions, however, the electric current shows entirely
different properties. The occurrences during a momentary closing of
the two switches can be described as follows. Let us assume that only
Ty is closed for a moment. The electromagnetic field, which had
previously spread from E to T, proceeds now to G (and further to the
lower side of 7). The electrons in the wire are set in motion and a
short impulse of current flows through G. The characteristics of this
current are those of a displacement current because of the capacity
of the open contact 72. G will thus show a deflection if it is a sensitive
galvanometer, which, of course, must be assumed for these experiments.
Thus we observe a deflection even though only one of the two switches

1 This mechanism was described by F. Adler, in Orfszeit, System:zeit, Zonenzeit,
Vienna 1920, p. 81.
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is closed. If in addition we close switch T2, a second impulse of
current results which increases the deflection in G. It is irrelevant
here whether 7y and T2 are closed simultancously or within a short
interval of time. In ecither case we obtain the same deflection con-
sisting of the sum of the two impulses.

Only if the difference in time is so great that the disturbance of the
electromagnetic field which spreads from 7', through G has already
reached 72 when the second switch is closed, will there be a difference
in the magnitude of the deflection in G. The propagation of the
electromagnetic field from 7'y to 7’2 travels however with the velocity
of light; thus there exists a small interval of time within which the
two impulses of current may follow one another without any difference
in the effect on G. It is therefore not permissible to conclude from the
deflection in G that the two switches were closed simultaneously;
they might as well have been closed within a small interval of time.

This mechanism therefore does not yield a decisive method for
simultaneity. It leaves as much arbitrariness as the determination of
simultaneity by means of signals, since the signal in this case is an
electromagnetic disturbance which likewise propagates with the speed
of light. The entire arrangement is really nothing but a disguised
signaling process. What happens when the circuit is closed at T
depends, according to the law of action by contact, only on the state
of the electric field in the immediate environment of 7.  Whether 7
is open or closed is therefore irrelevant.  Only if the disturbance of the
field, caused by the carlier closing of Ty, has already advanced to 7'
will there be any effect on the happenings at 5. In this case the circuit
must have been closed at 77 just carly enough to permit the disturb-
ance to travel the distance TG T2 with the velocity of light, Letting
this time interval be 4¢, we can state that the magnitude of the
deflection in G tells us only whether the difference in time between the
closing of switches T’y and T is greater than A¢. If this difference is
less than ¢, it is impossible to decide whether or not the two switches
were closed simultaneously.

The electrical mechanisms for the determination of absolute simul-
taneity fail because electric effects propagate with the velocity of light.
The relations of a stationary circuit suggest at first sight action at a
distance, but actually no violation of the principle of action by contact
occurs. The principle of action by contact is one of the most basic
laws of physics. It is impossible for the cffect of an occurrence to be
immediately noticeable at any arbitrary distance. The effect spreads
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by traveling through all intermediate points. This principle applies
to every form of causal propagation. Gravitation, for instance, offers
no exception and the Newtonian law of gravitation is correct only under
stationary conditions. For rapidly moving systems, this law must be
corrected to account for the finite speed of the propagation of gravita-
tion.l  One should not conclude, however, that the principle of action
by contact necessarily implies the existence of a finite limit to the speed
of all causal propagation. The principle excludes only infinite
velocities, whereas it is compatible with any arbitrarily high velocity.
If we wish to assert the existence of a finite limit, this assertion will
have to be added to the principle of action by contact. Only this
addition enables us to assert that there is no mechanism capable of
determining absolute simultaneity. Even gravitational forces cannot
be used for such a mechanism, since they also spread with the velocity
of light.

We may therefore omit the different mechanisms that have been
invented for the determination of absolute simultaneity, because all
of them are variations of the same fundamental idea and fail because
each presupposes, in a more or less disguised form, an infinite or
arbitrarily high velocity of causal propagation. We shall mention one
more example, which involves a misconception of rigid bodies. ,Let a
rigid rod rest with its ends on the marks A and B (Fig. 18). If the rod

£
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Fig. 18. An attempt to determine absolute simultaneity by
means of moving a rigid rod.

is suddenly grasped at A and pulled to the left, its ends no longer cover
the points A and B. The two moments at which the coincidences
of A and B with the two ends of the rod are lost, must be absolutely
simultaneous according to the laws of classical physics. This cannot
be admitted in a physics which includes the principle of action by
contact; in such a physics there are no absolutely rigid bodies. When
the rod is grasped at A, the end which rested on B does not move

! This requirement is actually carried out in Einstein’s theory of gravitation.

At the same time, however, the Newtonian Jaws are recognized as approximations
in yet another sense.
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immediately, since the effect spreads by means of an elastic propaga-
tion from A to B. The velocity of this elastic propagation cannot bhe
greater than the velocity of light (actually it is smaller). Therefore,
this arrangement cannot be used for the determination of simultaneity.
With the existence of a limit for all causal propagation, not only infinite
velocities but absolutely rigid bodies are excluded.

Since absolute simultaneity cannot be attained through causal
propagation, the possibility of a fundamentally different method might
be envisaged. This leads to a third attempt at a determination of
absolute simultaneity, to ““absolute transport time.”

This procedure uses the transport of clocks to establish absolute
simultaneity. The two clocks are synchronized when close together
(i.e., the hands are in the same position at the same time) and then one
of them is moved. We then have a clock at a distant point syn-
chronized with the first one. We shall call this arrangement of clocks
a lransporl-synchronization.

A criticism of this method can be carried out in either of two ways.
First we may investigate whether the transport of clocks actually leads
to a simultaneity that is free from contradiction. This investigation
presupposes that the time indications of clocks are independent of the
path and velocity of transport, i.c., the following assertion would have
to be true: two clocks, synchronized at one place, are still synchronized
when they are brought to a different place along different paths with
different speeds. This statement, however, is denied by relativistic
physics (cf. § 30). Either alternative secems possible, but only experi-
cnce can decide which of them holds for reality. Even without the
assumptions of relativistic physics we can state that the possibility of
transport-synchronization depends on an empirical assumption that
must be tested.

However, if relativistic physics were wrong, and the transport of
clocks could be shown to be independent of path and velocity, this
type of time comparison could not change our epistemological results,
since the transport of clocks can again offer nothing but a definition of
simultaneity. Even if the two clocks correspond when they are
again brought together, how can we know whether or not both have
changed in the meantime? This question is as undecidable as the
question of the comparison of length of rigid rods. Again, a solution
can be given only if the comparison of time is recognized as a definition.
If there exists a unique transport-synchronization, it is still merely a
definition of simultaneity.
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We can characterize the peculiarity of the transport-synchronization
clearly if we use the Minkowskian picture of the four-dimensional
space-time manifold. The transport of a clock constitutes a causal
chain spreading from the point event E; to the point event E’s. In
this respect there is no difference between this method and the method
which employs signals for the determination of simultaneity. Here
too we find that the comparison of time is established with the aid of a
causal chain. While the signal simultaneity uses the velocity of the
causal propagation, the transport of clocks makes use of different
considerations,

Here we can imagine points marked off on the causal chain E E’y
(Fig. 19), which are produced by the transported clock whenever it

E: B} | E,

E, E,

8 b

Fig. 19. Definition of simultaneity by means of the transport
of clocks.

completes a unit of time. At the same time the clock that remains
subdivides the chain EE3, and the time comparison between E'p and E»
results from counting the number of sections on the two causal curves.
It is obvious that this comparison of time presupposes that the marked-
off sections are of equal length. But this presupposition is based on a
coordinative definition and the analogy to the definition of spatial
congruence is clearly seen. The theory of absolute time states that the
diagram necessarily looks like Fig. 19, but it is clear that at first the
clocks furnish only the irregular relations of Fig. 194 and that this
figure must be redefined in order to coincide with Fig. 19h. An
additional assumption, which alone makes such a redefinition univocal,
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must be recognized. It is the assumption that a clock which moves
along a differently winding world-line from E, to E’s marks off the
same number of sections. Of course, this is an empirical assumption.

The absolute transport time, if uniquely defined, would give us
nothing but a definition of simultaneity, which is a definition in the
same sense as the definition of congruence by means of rods. The
theory of relativity, however, maintains the existence of an essential
difference. Whereas the congruence of rods is independent of the path
of transport, that of clocks is not. The theory of relativity excludes
the transport time because of this physical fact.

We summarize the results of the preceding sections as follows. The
time metric depends on three coordinative definitions. The first deals
with the unit of time and determines the numerical value of a time
interval. The second deals with usiformity and refers to the com-
parison of successive time intervals. The third deals with simultaneily
and is concerned with the comparison of time intervals which are
parallel to each other at different points in space. These three
definitions are required in order to make a time measurement possible;
without them the problem of the measurement of time is logically
undetermined.

There is neither absolute simultaneity nor absolute uniformity, if we
understand by “absolute” the property that this time is the only
correct time. However, there remains the possibility that physical
mechanisms or the entire system of physical laws might distinguish
one definition as simpler than the others. In this sense there might
be an absolute time. For instance, we know from experience that the
definition of uniformity by means of clocks or of the law of inertia is
distinguished from others by its simplicity. This distinction is
maintained in the special theory of relativity and vanishes only for
more general gravitational fields. Among the definitions of simul-
taneity, those based on the infinite limiting velocity or the transport
of clocks might turn out to be the simplest. Whether or not they do is
an empirical question; both possibilities are denied by the special
theory of relativity. Hence this theory played an important role in
the clarification of the definitional character of simultaneity.

§ 21. TIME ORDER

In the preceding sections we have developed the three metrical
coordinative definitions of time, which concern the unit of time,
uniformity and simultaneity. We shall now turn to another type of
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coordinative definitions, namely, the fopological ones. We shall
present two such definitions.

The first topological determination of time deals with time order at
the same point. Consider an observer at a certain point who has to
decide the temporal order of two events, both of which occur at the
same place. This aspect of temporal order corresponds to the relation
grealer than in the series of numbers and we shall represent it by the
same symbol. ““E; > E," means therefore: *“ Eq is later than E,.”

With respect to two events that are sufficiently separated in time,
the observer has an immediate experience of time order, and he uses
this experience as the basis for the ordering of the events. However,
in this chapter, we shall not refer to the subjective experience of time
order. Subsequently it will be shown that it is in principle impossible
to use subjective feelings for the determination of the order of external
events. We must therefore establish a different criterion.

Such a criterion is found in the causal relation. If Ea is the effect
of Ey, then Eo §s called later than E,. Thisis the topological coordinative
definition of time order. To complete this statement we should add
that it also applies to the case where E is only a partial cause of E,
or where E; is only a partial effect of E).

It is obvious that with the definition of ‘'later than” we have also
given the definition of *“ earlier than.” The second relation is nothing but
the converse of the first. If £, is later than E;, then E; is earlier than
E,. This follows analytically and needs no new coordinative definition.

However, we must now make sure that our definition of ‘‘later than”’
does not involve circular reasoning. Can we actually recognize what
is a cause and what is an effect without knowing their temporal order?
Should we not argue, rather, that of two causally connected events the
effect is the later one?

This objection proceeds from the assumption that causality indicates
a connection between two events, but does not assign a direction to
them. This assumption, however, is erroneous. Causality establishes
not a symmetrical but an asymmetrical relation between two events,
If we represent the cause-efiect relation by the symbol C, the two cases

C(E1, Es) and C(E,, Ey)
can be distinguished; experience tells us which of the two cases actually
occurs. We can state this distinction as follows:

If Ey is the cause of Eq, then a small variation (a mark) in E; is
assoctaled with a small variation in Es, whereas small variations in E,
are not associated with varialions in E;.
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If we wish to express even more clearly that this formulation does
not contain the concept of temporal order, we can express it in the
following form, where the events that show a slight variation are
designated by E*:

We observe only the combinations

E\Es Ey*Eo* E Eq* m
and never the combination
E(*E, (2)

In this arrangement the two events are asymmetrical and therefore it
defines an order. That event which appears in the unobserved com-
bination without an asterisk, namely Ej, is called the effect and further-
more the temporally later event.

It should be noted that assertions (1) and (2) were obtained without
the presupposition of an order. We could have placed the event E,
first in these combinations and would still have been able to distinguish
Es as the effect.  On the other hand, we have made the assumption
that we are able to distinguish between E and E*, i.e., that we know
which of the two events has the special mark. We may do so because
E* is to be interpreted as a combination (E, ¢) where ¢ signifies an
additional event, namely, the special mark. Just as we may assume
that E, and E2 can be recognized as two separate events, we may
assume that E* can be recognized as the combination of two separate
events. This assumption lies within the frame of our schematization,
which presupposes that we can distinguish individual events. We
cannot justify this schematization within the frame of our present
discussion, which is limited to space and time, since such a justification
belongs to the analysis of the concept of causality. Here we must be
satisfied with the assertion that the space-time problem cannot be
solved at all without some schematization.!

An example: We send a light ray from A4 to B. If we hold a red
glass in the path of the light at A, the light will also be red at B. If

! A presentation of causal order which does not use the principle of the mark,
but which of course presupposes certain schematizations, was given by the
author in *' Die Kausalstruktur der Welt und der Unterschied von Vergangenheit
und Zukunit,”” Berichte dey DBayrischen Akademie, math. naturwiss. Abh., 1928,
p. 133. This more rigorous presentation is not possible, however, without an
introduction of the concept of probability. Reference is also made to a remark
in my book Axiomatik der relativistischen Raum-Zeit-Lehre, Braunschweig, 1924,
p- 133, which refers to a possible connection of the mark principle with the second
law of thermodynamics.
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we hold the red glass in the path of the light at B, it will nof be colored
at 4.

Another example: We throw a stone from 4 to B. If we mark the
stone with a piece of chalk at 4, it will carry the same mark when it
arrives at B (event Eg). If we mark the stone only on its arrival at B,
then the stone leaving A (event E) has no mark.

This distinction appears trivial, but it is extremely significant. A
theory of causality which ignores this elementary difference has
neglected the most essential aspect. The procedure which we have
described is used constantly in everyday life to establish a time order,
and we have no other method in many scientific investigations where
time intervals are too short to be directly observable. We must
therefore include the mark principle in the foundations of the theory
of time.

We have in the above principle a criterion for causal order that does
not employ the direction of time, and we can thercfore use it in our
definition of time order. There exists a topological coordinative
definition for time order. We can base it in general on the concept of
the causal chain, in which the order of events corresponds to the order
of time. Occasionally one speaks also of signals or signal chains.
It should be noted that the word ‘'signal’’ means the transmission of
signs and hence concerns the very principle of causal order which we
have discussed.

We have to distinguish here between two problems. First, the
procedure described leads to an order of time, in the same sense in which
the points on a line are ordered. Such a series of points has two
directions, neither of which has any distinguishing characteristic.
Temporal order, too, has two directions, the direction to earlier and
the direction to later events, but in this case one of the two directions
has a distinguishing characteristic: time flows from the earlier to the
later event. Time therefore represents not only an ordered series
generated by an asymmetrical relation, but is also unidirectional.
This fact is usually ignored. We often say simply: the direction from
earlier to later events, from cause to effect, is the direction of the
progress of time. However, in this form the assertion is empty unless
we specify what ' progress of time'’ means. In the same fashion we
could say that the points on a line progress from left to right; but this
assertion is empty, since the progress of points means here nothing but
the progressing in the selected direction. When we speak about the
progress of time, in contrast, we intend to make a synthetic assertion
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which refers both to an immediate experience and to physical reality.
This particular problem can only be solved if we can formulate the
content of the assertion more precisely. We shall leave this problem
for the time being and content ourselves with the conclusion that the
direction which we have defined as earlier-later is the same direction
as that of the progress of time. For the problems dealt with in the
theory of relativity it suffices that there exists a serial order of time,
i.e., that we can distinguish between two directions which are opposite
to each other. At present, we shall not refer to the unidirectional
character of time.

We must now investigate the question whether the time order
defined above can be carried through consistently.

If a contradiction did occur, it would manifest itself as follows:
According to one analysis, E2 would be later than E), and according to
another E2 would be earlier than E,. This result would lead to the
schema of Fig. 20, in which there is a causal chain from E; to E» such

Fig. 20. A closed causal chain.

that E; is an effect of E,, while there is also a causal chain that makes
E) an effect of E;. The combination would result in a causal chain
that returns to its origin. In order to exclude such a contradiction

we must make the assumption that there are no closed causal chains.
At first glance, one might suppose that this assumption goes too far
and that indeed there occur closed causal chains in certain mechanisms,
the prototype of which is the electric bell. The pulling (P) of the
lever causes a break (B) in the current, which in turn causes the return
(R) of the lever; this switches on (S), the current which finally again
pulls (P} the lever. It appears as though this chain of events could be
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diagramed as in Fig. 21a, which represents a closed curve. The mistake
in this argument, however, is easily seen. The individual pulls of the
lever are different events; i.e., although they are of the same kind, they
are not identical events. Consequently, the chain should be diagramed
as in Fig. 21b, namely, as an open chain. Our principle of the mark
forces us to this conception. If we make some change in B, for
instance by short-circuiting the current and thus preventing the
return of the lever, then P; will no longer occur. However, such
interference does not change P;. Now it is clear what we mean by a
closed chain, namely, a chain that returns to identically the same event,
not to one of the same kind,

R
sl
R R,
B S B,
P P,
a b

Fig. 21 aand b. The mechanism of an electric bell.

It seems obvious that there are no such chains. Yet the statement
that there are no closed causal chains expresses merely a conclusion
drawn from experience, which has thus far been confirmed without
exception. . We could imagine experiences which would disprove this
statement.

Such conceptions are not unfamiliar. In the form of a periodic
return of all physical events, they have played a role in many cos-
mologies. It is conceivable—although of course there is no evidence
for it—that some day the entire universe will return to a previous
state in every detail and start from there anew on the identical course
of events. Such an occurrence would leave us the choice of inter-
preting the chain of events cither according to Fig. 21a or according to

Fig. 21b. As in the problem of space we have here the choice of
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regarding two states of the same kind either as sdentical or only as
similar. Our principle of the mark fails here for a reason to be
explained later. This property of the world as a whole has no
significance for individual events and we can thus limit the definition
of time order for our purposes to causal chains within one world period,
the starting point of which is to be considered arbitrary. It is there-
fore not the case of a periodic universe, but a more complicated one,
which interests us as a counterexample to our assumption.

Let us assume that some individual world-lines are closed whereas
others are not. We shall examine this assumption by the help of an
example, in order to see what fundamental principles would have to be
abandoned.

World-lines I and II of Fig. 22 are both world-lines of human beings.
World-line I is normal, while world-line II does not intersect itself

| u

Fig. 22. A closed and an open world-line next to each other.

directly, but is represented by a curve which, like a spiral, is not really
closed but merely returns to the neighborhood of one of its points.
This fact is indicated by the little arc at that particular point. A
causal connection between the neighboring parts of this world-line
can be established by means of signals (speech) within the region of the
small arc. If you were the individual of world-line 11, you would have
the following experience.

Some day you meet a man who claims that you are his earlier self.
He can give you complete information about your present condition
and might even tell you precisely what you are thinking. He also
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predicts your distant future, in which you will some day be in his
position and meet your earlier self. Of course you would think the
man insane and would walk on. Your companion on world-line I
agrees with you. The stranger goes his way with a knowing smile;
you lose sight of him as well as of your companion on world-line I and
forget about both of them. Years later you meet a younger man
whom you suddenly recognize as your earlier self. You tell him
verbatim what the older man had told you; he doesn’t believe you and
thinks you are insane. This time you are the one that leaves with a
knowing smile. You also see your former companion again, exactly as
old as he was when you last saw him. However, he denies any
acquaintance with you and agrees with your younger self that you
must be insane. After this encounter, however, you walk along with
him. Your younger self disappears from sight and from then on you
lead a normal life.

These events would be very strange, but not logically impossible.
We can now recognize those fundamental principles which would have
to be abandoned if these events should actually occur.

We could no longer speak of the uniqueness of the present moment.
On the same world-line there would be pericdic *“ now-points’* one after
the other. In region R we would find two now-points of the same
world-line in causal interaction; and under these circumstances we
would lose the possibility of conceiving of the self as one identical
individual in the course of time. There would be on this world-line
a succession of new individuals who would travel the same world-line
at certain intervals. On world-line I we must also mark off such
periods; however, the individuals of this world-line would never notice
one another since their now-points never enter into causal interaction.

We can thus recognize that not only the uniqueness of time order,
but also the identity of the individual during the passage of time,
would be lost. This is the main difficulty in trying to imagine such
events. We also recognize those properties of the causal chain which
underlie the familiar concept of individuality. This concept originates
in the fact that there are no closed causal chains.

We face here a fundamental principle controlling physical reality.
It enables us to speak of a unique time order and of a unique now-point.
Furthermore, it makes possible the concept of the individual that
remains identical during the passage of time.! It is therefore the most

1 This is often denoted by the term genidentity. The term was introduced by
K. Lewin, in Der Begriff der Genese, Berlin 1922.
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important axiom regarding time order, and we realize to what an
extent the familiar concept of time order is based on this characteristic
of causality. Of course, this axiom is a result of experience; hence
events of the type described above cannot be excluded a priors.

Besides this axiom there arc several other less important axioms
regarding time order. They deal with the continuity of time order
and are likewise empirical statements about the nature of causal
relations.

§ 22. THE COMPARISON OF TIME

We now turn to the comparison of two time series at different points
in space. For this purpose we shall again use signals. We must
first make the assumption that there always are connecting signals
between any two points in space. Since we use signals, our previous
definition of time order offers an important result. Let E be the event
of the departure of the signal from P, and E’ the event of its arrival at
P’; then E and E’ are two events connected by a signal; consequently
they are ordered; E' must be later than E. Certain events are therefore
already ordered although they belong to different temporal sequences.

Not all events are ordered, however. To clarify this situation, we
shall introduce the auxiliary concept of firsi-signal. 1f several kinds
of signals are sent from P at the same moment, they will arrive at P*
at different times. To order the times of their arrivals at I’ we need
only the time series at 2. That particular signal having the earliest
time of arrival at P’ is called the first-signal; it is therefore defined as
the fastest message carrier between any two points in space. The
existence of first-signals can be derived from our previous axioms.

We now send a first-signal from P, calling the event of its departure
Ey (Fig. 23). The event of its arrival at P’ is called E’. Simul-
taneously with the arrival of this signal, another first-signal is sent
from P'. The arrival of this signal at P is the event Ea. We ask for
the order of E’ relative to £y and Ea.  According to definition we have

E’ is later than E,
E' is earlier than E,

Let E be an event at P between E; and E;. What is the position of
E relative to E’? Here, our definition of time order fails. A first-
signal sent from E would arrive at P’ later than E’, and a first-signal
from E’ arrives at P later than E, as can easily be seen from Fig. 23.
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It is therefore impossible to connect the events E and E’ in either
direction by a signal, and their time order is consequently not deter-
mined. We shall call such events indelerminate as to time order.

We must now distinguish between two cases. In the case of Fig. 23,
the time interval E E; is coordinated to the event E’, and every
event of this time interval except for the end-points is indeterminate

E, ¢

E ¢
E.W

Fig. 23. Events which are indeterminate as to time order.

as to time order relative to E’. The other case would occur if there
were no limit to the speed of signals; then the first-signal would have
an infinite velocity ! and the time interval E;E2 would be reduced to
a single point Eq. This point Eg would then be coordinated to E’ and
be the only event at P indeterminate as to time order relative to E’.

It is an empirical question which of these two cases occurs in our
world. According to classical physics it is the second case, according
to relativistic physics the first. There is decisive empirical evidence
for the relativistic theory of time. Light has the limiting velocity;
it is physically impossible to reach higher velecities. Light is therefore
a first-signal. For the experimental basis of this statement see § 32.
It is important to note that we are able to formulate the limiting
character of the velocity of light without the concepts either of velocity
or of simultaneity: the departure and return of the first-signal PP’'P
are separated at P by a finite interval of time.

This result leads to a clarification of the problem of simultaneity.
The definition of simultaneity ascribes equal time values to different

1 This means that the first signal itself would not be a signal, but the limit of all
signals. Consequently, two events connected by a first-signal would not yet be

temporally ordered. This justifies our subsequent assertion that in this case £¢
would be indeterminate as to time order relative to E”.
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points in space. It must not contradict our definition of time order,
which restricts the time values of E;, E’, and E; in the sense of (3);
therefore, only events which are indeterminate as to their time order
may be regarded as simultaneous. Among the events, however, no
further rule restricts our choice. We define: any two events which are
indeterminate as lo thesr time order may be called simultaneous.

This topological definition would be sufficient for a unique definition
of simultaneity in the classical theory of time. To each event £’ at P’
there corresponds a single event E at P which is indeterminate as to
time order, and this E would then be regarded as simultaneous with E’,
In the case of a finite limiting velocity as in Fig. 23, the topological
definition of simultaneity does not lead to a unique determination,
but admits any event E between E; and E; as simultaneous with E’.
The relativity of simultaneity follows from the topological peculiarity
of the causal structure, according to which first-signals (Fig. 23)
determine a finsle interval and not a posni-event, as corresponding to a
single event E’ located on a different space point.

These considerations supply the conceptual definition of simultaneity
which we previously sought (p. 129). The concept simuitaneous is to
be reduced to the concept indeterminate as to time order. This result
supports our intuitive understanding of the concept simultaneous.
Two simultaneous events are so situated that a causal chain cannot
travel from one to the other in either direction. Events which occur
at this moment in a distant land can no longer be influenced by us, not
even by telegram; and conversely, they can have no effect on what is
happening here at the present moment. Simultaneity means the
exclusion of causal connection. Within the frame of an epistemological
investigation this result appears justified. Yet we must not commit
the mistake of attempting to derive from it the conclusion that this
definition coordinates to any given event a single event at a given
different place. This would be the case only for a special form of
causal structure, a form that does not correspond to physical reality.
The causal structure of our universe involves the consequence that
exclusion of causal connection does not lead univocally to a unique
simuitaneity.

Our epistemological analysis thus leads to the discovery that the
relativity of simultaneity is compatible with the intuitive conception
which we connect with simultaneity. It is not this conception which
is incorrect, but the conclusion derived from it that simultaneity must
be uniquely determined. Thus all the difficulties which philosophers
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have seen in the relativity of simultaneity are eliminated. At the same
time our result eliminates the mystery with which adherents of the
theory of relativity have invested this concept. There are essentially
two errors in relativistic presentations which have confused the
epistemological issues.

One mistake results from the derivation of the relativity of simul-
taneity from the different states of motion of various observers. It is
true that one can define simultancity differently for different moving
systems, which incidentally is the reason for the simple measuring
relations of the lorentz transformation, but such a definition is not
necessary. We could arrange the definition of simultaneity of a
system K in such a manner that it leads to the same results as that of
another system K’ which is in motion relative to K; in X, ¢ would not
be equal to } in the definition of simultaneity (§ 19), but would have
some other value. It is a serious mistake to believe that if the state
of motion is taken into consideration, the relativity of simultaneity is
necessary. Actually the relativity of simultaneity has nothing to do
with the relativity of motion. It rests solely on the existence of a
finite limiting velocity for causal propagation. The arbitrariness in
the choice of simultancity makes it possible to assign the value
¢ =} to every uniformly moving system (or inertial system). A
further confusion arises if in addition to the relativity of motion, the
subjectivity of the observer is introduced into the argument. The
relativity of simultaneity has nothing to do with the subjectivity of
sense perception. The visualization of several logically equivalent
methods of measurement is merely facilitated when different definitions
of simultancity are ascribed to different observers. The multiplicity
of observers in the theory of relativity has no further significance. We
are here concerned not with a difference of reference points but with a
difference in the logical presuppositions concerning measurements. The
comparison of time must be defined in some fashion before time
measurements are possible at all. That this determination is arbitrary
within certain limits, is due to the causal structure of the world and
rests therefore on empirical grounds.

The other error committed in certain relativistic presentations lies
in the belief that an absolute theory of time is a logically impossible
conception. Such a criticism applies only to the conceptions of
absolute time usually presented by the opponents of the theory of
relativity. The following formulation, however, defines a meaningful
concept of absolute time: absolute time would exist in a causal structure
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for which the concept tndeterminate as fo time order leads to a unique
simultaneity, i.e., for which there is no finite interval of time between
the departure and return of a first-signal PP'P at P. Only this
precise formulation reveals the error in the classical theory of time:
this property of the causal structure was postulated a priori, when an
empirical investigation was called for. Relativistic physicists have
indeed formulated a correct theory of time, but they have left their
opponents in the dark concerning the epistemological grounds of their
assumptions.

§ 23. UNREAL SEQUENCES

Let us consider one more objection against the theory of time that
we have developed. We have based the relativity of simultaneity on
the finiteness of the velocity of light. Is it not possible, however, to
produce arbitrarily high velocities even if we recognize the limiting
character of the velocity of light?

Consider, for instance, a mechanism of the following kind (Fig. 24).
Two rulers which cross obliquely lie one above the other. If the
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Fig. 24. The moving point of intersection of two rulers.

obliquely drawn ruler moves in the direction of the arrow, the point
of intersection S moves downward along the edge. The smaller the
angle between the rulers, the greater will be its velocity. If they are
exactly parallel, the velocity of the point of intersection becomes
infinite. Can we not consider this point of intersection as a moving
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signal and establish thus the infinite velocity which we need for the
definition of absolute simultaneity?

This question can be answered when we consider our definition of a
signal. The point of intersection cannot transfer a mark. If we add,
for instance, to the lower ruler a projection 1" (indicated by dots), the
signal would be interrupted. On the other hand, the signal arrives
unchanged in the lower part of the ruler. The “signal” consisting of
the moving point is therefore not a real process, and not a signal,
strictly speaking; we shall call it an unreal sequence. Because of its
properties it does not define a direction. If we call the departure of
the point of intersection from the upper end E; and its arrival at the
lower end Eq, we have to order the four combinations (1 and 2, §21).
We observe

E\Ex  E\*E;  EE,* m
but never
E\*Eq* (2)

In contrast to the order of (1) and (2} in § 21, we find here that
E, and Ez appear symmelrically. Consequently, it cannot be deter-
mined on the basis of this phenomenon in which direction the point of
intersection travels.

It may be objected that the direction of motion of the point of
intersection can be recognized in a different manner: it depends on the
direction in which the ruler is slanted. This objection overlooks the
fact that the slope of the ruler cannot be determined directly since we
are dealing with a ruler #u motion. Its slope can be defined only in
the sense of the direction of a moving line; for this purpose we project
every point of the ruler simultaneously on a system at rest and measure
the slope of the projection. This procedure will be discussed in detail
in § 25. Here we shall say only that the result depends on the definition
of simultancity. According to one definition the lines are parallel and
the point of intersection will move infinitely fast; according to another
it will move upward; and according to a third it will move down. The
motion of the point of intersection therefore cannot be used for a
definition of simultaneity. On the contrary, the determination of the
direction of the motion of the point of intersection demands a prior
definition of simultaneity.

The same can be demonstrated for all unreal sequences, many of
which can be constructed. Another example would be the lateral
motion of a light-ray sent out by a quickly rotating searchlight
which at a certain distance has a speed higher than that of light.
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Although the direction of rotation of the lamp cannot be inverted
because the lamp itself is a physical mechanism, we can define
simultancity such that outside a certain circle the light travels in a
direction opposite to that of the lamp. Ifor a proof we must refer
to a different publication.!

The discussion of unreal sequences shows clearly the significance of
the causal theory of time. Only the events in a real causal process are
temporally ordered; unreal sequences obtain their time order as the
result of some method of time comparison which is already defined
within the system. With this distinction, the relativistic theory of
time elucidates the phenomenon of time better than the classical
theory.

1A, §26.
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CHAPTER III. SPACE AND TIME

A. The Space-Time Manifold without
Gravitational Fields

§ 24. THE PROBLEM OF A COMBINED
THEORY OF SPACE AND TIME

So far we have treated space and time scparately. We have
described the specific problems that presented themselves in each of
the two types of order, and have developed the epistemological basis
on which we can now construct a combined theory of space and time.
Such a construction must be the final goal of any epistemological
investigation of space and time, since physical events are ordered in
space as well as in time. Hence it is only this combined order which
presents the final solution of the space-time problem. Such a solution
is difficult, because the combination of the two orders introduces specific
problems that do not appear in the study of cither of them alone.
This fact justifies the treatment of these problems in a separate chapter
on the combined space-time order.

The present investigation will lead us deeper into physics than was
necessary in the previous two chapters. We now want to develop
the actual construction of the space-time metric as well as the episte-
mological principles on which the space-time theory is based. This
presentation will lead us a step beyond the epistemological framework
of this book, since such a construction is actually the task of physics,
which uses the metric constantly. The step will appear advisable
when one considers how little attention physicists have paid to the
epistemological aspects of this problem. Presentations of the
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space-time theory by physicists are concerned primarily with physical
issues and fail to make the epistemological problems explicit. On
the contrary, they are often epistemologically vague, in order to make
the physical theory appear as plausible as possible. In this chapter
we shall present the physical theory of space and time including certain
aspects of the theory of gravitation. We may defend this procedure
on the grounds that the drawing of sharp boundaries between the
various sciences is detrimental to their epistemological clarification,
A philosopher constantly afraid of stepping into another domain runs
the danger of asserting empty generalities, because his philosophy is
not sufficiently anchored in the specific sciences. It would be rewarding
if the present epistemological study should also help to clarify some
problems for the physicist.

We shall devote Part A to problems connected with the special
theory of relativity. We shall, however, treat only the theory of
space and time developed by the theory of relativity, omitting related
problems, e.g., of electrodynamics, which fall outside the frame of our
investigation.  We shall always keep epistemological interests in the
foreground; yet we need to show what physical considerations pertain-
ing to space and time are presented in the special theory of relativity,
and how these considerations provide physical content for the episte-
mological frame developed in the foregoing chapters.

The restriction to gravitation-free spaces, necessary for the special
theory of relativity, finds its historical origin in the Newtonian
principle of relativity which introduced the uniformly moving inertial
sysiem as the normal system. For Newton the problems of gravitation
begin with acceleration. This far-reaching idea was adopted by
Einstein with certain reservations, to the extent that uniformly moving
systems occupy a central position in his theory. He carried the
Newtonian relativity a step further with his principle of relativity,
which excludes axiomatically the possibility of assigning a preferred
position to any single system within this class. According to Newton
it is only within mechanics that no distinction between inertial systems
can be made. When Newton believed, in addition, that even the
motion of light does not furnish a distinction, he could do so only
because he considered light as the emission of small particles, i.e.,
as a mechanical process. But in view of further developments in
optics which led to the wave theory of light and with it to the ether as
medium of the waves, one of the inertial systems must be singled out
by the motion of light as the system at rest relative to the ether.
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Since Einstein did not draw this conclusion in spite of the wave theory
of light, he has extended the Newtonian relativity to the field of optics.

Today even this form of relativity theory has become a special case
in the framework of Einstein's general theory of relativity, which
includes the phenomena of gravitation. According to this theory a
metrical field pervades the entire space and in gencral does not satisfy
the conditions of the special theory of relativity. Only in special
cases, for instance in the vast empty spaces between the fixed stars,
does the metrical inertial field permit the construction of inertial systems
of greater extension. This far-reaching consideration leads to a
complete clarification of the special theory of relativity and explains
what determines the unique state of motion of the inertial systems.
We shall present these ideas in Part B and content ourselves in Part A
with the axiomatic supposition that there are spaces, or parts of space,
to which the special theory of relativity can be applied, and that in
these spaces a certain state of motion can be distinguished as uniform.
It will be our task to show how this particular state of motion can be
recognized and determined by certain physical phenomena. This
approach is advisable because, as we shall show in Part B, it can be
extended to spaces that contain gravitation provided that we restrict
ourselves to infinitesimal regions, and because it supplies in this form
the foundation also for the general theory of relativity. The state of
motion, as well as a detailed construction of the space-time metric,
will be the subject matter of our presentation.

We must begin this analysis, however, with a preliminary investiga-
tion. In the preceding chapter we developed the relativity of
simultaneity; and before we begin with the metrical construction, we
must clarify the consequences of this relativity for the measurement of
space. It is here that we shall find the new ideas which the cpiste-
mological analysis of the concept of time has introduced into the
combined theory of space and time,

§ 25. THE DEPENDENCE OF SPATIAL
MEASUREMENT ON THE DEFINITION
OF SIMULTANEITY

The fact that the definition of simultaneity can be arbitrarily chosen
leads to consequences for the measurement of space which become
apparent when systems moving with different velocilies are considered.
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Our previous conception of the measurement of spatial distances was
based on the transport of measuring rods; the value obtained by
successively marking off the measuring rod along the segment is its
length. However, this definition of length is applicable only if the
measuring rod is al rest relative to the segment. Although the
measuring rod is moved when it is placed repeatedly along the segment,
it is at rest relative to the segment at the particular moment when it
is marked off, i.e., at the moment when it fulfills its metrical function.
The length obtained in this fashion is commonly called the rest-length;
it is the length of a segment measured with a measuring rod relative to
which it is at rest.

First we find that there exists an ambiguity in the comparison of the
resi-length of measuring rods moved with different velocities. 1f we carry
a measuring rod into a system in a different state of motion, it is
impossible to compare it in the described manner with a measuring
rod at rest; therefore, a coordinative definition must be introduced.
We say that the measuring rod is to be regarded as having the same
length whether at rest or in motion. This determination has nothing
to do with simultaneity; and we shall call it the first comparison of
length in kinemalics.

We must next lay down a rule which we shall call the second com-
parison of length in Rinematies, and which deals with the question of the
lenglh of a moving line-segment. This problem appears when all
lengths are referred to a single coordinate system K (Fig. 25), which may
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Fig. 25. The length of a moving line-segment.
be conceived as a framework of rigid rods. We may then perform
measurements only with rods which are at rest relative to the
coordinate system. How can we determine, under these circumstances,
the length of a segment A’'B’ which is moving in the direction of the
arrow? [f we were to mark it off with the measuring rod, this would
give us the rest-length in K’, not its length as measured in X.

This measurement must therefore be made by some indirect method
which includes time measurements. Let us suppose that a definition
of simultaneity has been given for K and that at a given instant,
defined for K, we mark on the axis of K those points which coincide
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with the endpoints A’ and B’ of the moving segment.  The moving
segment is thus projected on the system K and the length of the pro-
jection AB can now be determined by a measuring rod which is at
rest in K. We shall call the rest-length of A B the length of the moving
segment A'B' measured in K.

How do we know that this method is correct? This question is
meaningless, since we are again concerned with a definition.  What
is meant by the length of a moving segment?  In classical kinematics
it was never noticed that such a concept had to be introduced, because
the usual method determines only the rest-length of a segment. The
Jength of a moving segment was tacitly assumed to be identical with
its length at rest. We can see, however, that in this manner only the
rest-length of a moving segment is defined analogous to the rest-
length of a scgment at rest.  On the other hand, the measurement of a
segment with a measuring rod that moves relative to it requires the
formulation of a new concept. This formulation is a matter of
definition. We shall choose this definition in such a manner that it
leads to a reasonable extension of the concept of length.  This definition
reads: The length of a moving line-seyment is the distance belween
stmultaneous positions of tls endpoinis.

The technique of extending a concept which we have used here can
be illustrated by an elementary example. It corresponds to the
introduction in vector analysis of the concept of the geomelrical sum
(vector sum) of two segments. The concept of the sum of two seg-
ments is first defined for segments lying in the same direction, i.e., as
their algebraic sum. In Fig. 26 the sum of the segments 4B and BC

Fig. 26. The geometrical sum of two line-segments as an
example of the extension of a concept.

is given by the distance AC, but we do not know how to compute the
sum of the segments A B and BD, unless we introduce a new definition.
It would be wrong to assume that this sum is given by the rotation of
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BD into the position BC and by addition in the previous sense, i.c.,
by AC. This statement does not follow from the earlier definition,
but represents a new definition which we shall call the scalar sum. We
could just as well have given the new definition differently and specified
the distance A D as the sum of the two segments AB and BD. This
new sum is the geometrical sum. Is this new definition correct? The
question is not reasonable, because the new definition does not follow
from the old one and is therefore arbitrary. There is only one restric-
tion which we shall impose, namely, that the new definition, which is
more general than the old one, should coincide with it in those special
cases where the old definition applies. This condition is satisfied by
the geometrical sum, because it yields AC as the sum of AB and BC.
The new definition is therefore a consistent extension of the old one.
This condition, of course, is also satisfied by the scalar sum. The
principle that such extensions must be consistent with existing
definitions therefore does not lead to uniquely determined concepts,
but leaves them arbitrary within certain limits. The choice of the
geometrical sum instead of the scalar sum in vector analysis is based on
other considerations. The geometrical sum yields different results for
the additions AB4-BD and A B+-BE, namely the distances AD and
AE, whereas the scalar sum yiclds the same results in each case,
namely AC. Hence the advantage of the first concept consists in its
greater usefulness and has nothing to do with truth.

The same method of extension is used in the formulation of the
concept of the length of a moving segment, where a concept is
devcloped for a case not considered in classical kinematics. Again the
rule of consistent extension is satisfied, since the length of the moving
segment becomes identical with the rest-length in the case where it is
at rest. The new concept therefore satisfies the only condition that
can be imposed under these circumstances,  Since this condition does
not prescribe a unique extension, we cannot say that the new concept
is true. It is useful, and may be considered a meaningful extension
of the concept of length; this is all that can be required.

[t can easily be shown that the length of the moving segment, as we
have defined it, will depend upon the definition of simultaneity.
Imagine that the segment is in a given state of motion relative to the
coordinate system; then the length cf the projection depends on the
definition of simultaneity used in K. If the definition of simultaneity
were changed, the length of the moving segment would also change.
Assume that the projection of A’ occurs at the same time as befare,
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but the projection of B’ a little later.! B’ will have moved slightly to
the right and B will be farther to the right; 4B therefore becomes
longer. Suppose now that simultaneity has been redefined to make
the instants of the two projections simultaneous; then the new distance
AB yields the length of the moving segment A’B’. This length is
now greater than it was according to the first definition of simultancity,
and the measurements of space are therefore dependent on measure-
ments of time.

We can also show that the length of a moving segment depends on
its velocity. Assume that the simultaneity-projection is made of a
rod moving with the velocity v relative to a system K in which simul-
tancity is defined according to Einstein's definition (1, §19). Sub-
sequently the rod is brought into the system K and placed next to the
projection.  Will it now coincide with the projection?  To say that it
does is not an a priorf assertion, but a physical hypothesis that must
be tested by experience. The theory of relativity denies this hypo-
thesis; it maintains that the projection is shorter than the rest-length,
and that this difference becomes greater with increasing values of v,
This result cannot be justified now, but we can understand intuitively
that it is possible; it expresses a property of rigid rods. We also
recognize that the opposite assertion is likewise merely a hypothesis.
In § 22 we formulated an absolute theory of time and showed that there
would be an absolute simultaneity if signal velocities were unlimited.
Even in this case it would constitute an additional hypothesis to assume
that the projection of a moving rod, based on this simultaneity, equals its
rest-length. 11 follows from the nature of the extended concepl of lenglh that
the length of a moving segment is generally different from ils rest-length.

Even this simple logical fact has led to considerations that raise the
question of truth in the wrong place. It has been asked: which is the
“true length” of the rod, its rest-length or its length when in motion?
Evidently this question is unreasonable. Is the algebraic sum a
“truer sum’’ than the vector sum? This is nonsense. The length of
a moving rod is conceptually different from the length of a rod at rest
and will therefore in most cases have a different measure. At most,
one could ask whether there might be a greatest or smallest length of
the rod. According to the Lorentz transformation, the rest-length is
the greatest length. It is not the true length of the rod but merely its

1 More precisely, the projection of A’ is the same point-event as before, whereas
the projection of B’ is a point-event which stands in the relation later than to
the previously used corresponding point-event.
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true rest-length. A different measure represents the true length of the
moving rod. The concept of truth does not enter into the comparison
of these two types of length. Let us consider, as an example of these
logical relations, a rod AB viewed from a point P; (Fig. 27); it then

Fig. 27.  The visual angle as an example of a relative magnitude.
subtends an angle «). The size of this angle changes when the point
Py travels along the horizontal, and has a smaller value a2 at the
point P2. Which of these angles is the true visual angle? Again this
question is unreasonable. A visual angle o is defined only for a given
distance PoP; and there can be a lrue visual angle only for such and
such a distance. There is also a largest subtended angle when Py
coincides with Py and e; = ap == 180°. This however, is not the true,
but the largest subtended angle; or, if we wish to characterize it by
another property, it is the subtended angle for the distance zero. The
extended concept of length that we have introduced has exactly the
same logical structure. The length of a moving segment corresponds
to the visual angle. It depends on the state of motion, just as the
visual angle depends on the distance. The rest-length of the rod is its
length at velocity zero, just as ag is the visual angle at distance zero.
Both are maximum values.

There is an inessential difference between the two, viz., that the
length of the moving segment depends not on one but on two para-
meters, on the state of motion of the segment and on the definition of
simultaneity. If we call the length of the moving segment /, then /is a
function of v and s, where v is the velocity and s symbolizes the
definition of simultaneity. Thus we may write

1 =1v,s) M
This functional relation has the peculiarity that for v = 0 the function
becomes independent of s, and
{(0, s) = lp = constant (2)

Indeed, if v = 0, the projection of B’ (Fig. 25) upon K at a later time.
is still B and the definition of simultaneity no Jonger has any influence
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For this reason the rest-length of a body can be defined without
reference to simultaneity. After we have introduced the extended
concept of length which contains the concept of simultaneity, the special
case of the rest-length must, strictly speaking, also contain the concept
of simultaneity. The rest-length must therefore also be defined as the
distance between the simultaneous positions of the endpoints. The
resulting value, however, does not depend on the definition of simul-
taneity; every definition of simultaneity gives the same result for the
rest-length and we can thus omit this addition in the definition of
rest-length.

A rigorous analysis of these considerations leads to a correction of the rule of
consistency for extended concepts used frequently in mathematics.  One cannot
say that, in the special case, the wider concept becomes identical with the narrower
concept, but only that it yields the same result. 1t makes a difference whether we
specialize a concept by giving one of the variables a special value, or whether the
dependence on this variable is not even contained in the definition. Thus
I(v, s)y o is not identical with Jo, but leads to the same distance in the coordinate
system. Similarly we must not say that the concept of the geometrical sum is
identical with that of the algebraic sum for equidirected distances; it simply leads
to the same numerical result.

Relation (1) formulates the famous assertion by Einstein ! that the
length of a rod depends on its velocity and on the chosen definition of
simultaneity. There is nothing mysterious in this relation, for it is
based on the fact that we do not measure the moving rod, but its
projection on a system at rest. How the length of this projection
depends on the definition of simultaneity can best be illustrated by
reference to a photograph taken through a focal-plane shutter. Such
a shutter, which is necessary for very short exposures, is not located
between the lenses, but immediately in front of the film. It consists
of a wide band with a horizontal slit, which slides down vertically.
Different bands of the image are photographed successively on the
film. Moving objects are therefore strangely distorted; the wheels
of a rapidly moving car, for instance, appear to be slanted. The shape
of the objects in the picture will evidently depend on the speed of the
shutter., Similarly the length of the moving segment depends on the
definition of simultaneity. One dcfinition of simultancity differs
from another because events that are simultaneous for one definition

! Einstein’s formulation usually is different, because he uses only the special
definition of simultaneity (1, § 19) for each coordinate system, and consequently
the state of motion of the segment determines at the same time the definition
of simultaneity which is to be used. We therefore have s = s{v), which reduces
(/) to J(v); thus the length of a moving segment depends only on its velocity.
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occur successively for another one. What may be a simultancity
projection of a moving segment for one definition is a *‘focal-plane
shutter photograph®® for the other. A picture obtained by means of
the first definition therefore appears distorted according to the second
definition. The comparison with the focal-plane shutter makes this
distinction clear, with the only difference that the focal-plane shutter
operates much more slowly. It is a physical mechanism functioning
at a speed below that of light, whereas the events of the projection
form an unreal sequence with speeds above the velocity of light.
(Cf. §23). This difference is not important, however, for the qualita-
tive description, and the changes in the length of moving rods can
casily be visualized.

We emphasize this manner of visualizing the relation between space
and time measurements because many presentations describe this
relation in a misleading way. These presentations are based on the
remark by Minkowski !: ‘“From now on the ideas of space and time
as independent concepts shall disappear and only a union of the two
shall be retained as an independent concept.” It is true that we may
speak of a union of space and time in the relativistic theory of space
and time. We shall discuss this idea in detail in § 29, p. 188. The
first part of Minkowski's remark has unfortunately caused the erroneous
impression that all visualizations of time as time and of space as space
must disappear. The relativity of simultaneity does indeed lead to
the coupling of space and time measurements and brings about a union
of space and time, but this statement says no more than was expressed
with the aid of the concept of the simultaneity projection and illustrated
by reference to the focal-plane shutter. To make the union of space
and time more apparent, we can use the following example. Let us
consider a space filled with moving mass points, e.g., a gas the molecules
of which are whirling about. At a given time each molecule will have
a definite position. [f we now change the definition of simultaneity,
we shall obtain the same position for some of the molecules, but not
for others; this distribution is now a **focal-plane shutter photograph.”
The state of a space al a given time is therefore not determined in an
absolute sense, but depends on the definition of simultaneity. This
situation can be visualized completely and represents everything that
is asserted by the relativity of simultaneity about the union of space
and time.

! Lecture given at the 80th Versammlung Deutscher Naturforscher und Arzte in
Cologne, Sept. 21, 1908.
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The importance of the effect of the definition of simultaneity emerges
even more clearly when we consider not only the length of a segment
or the position of a point but also the shape of a moving object. Since
the shape is determined by the simultaneous projection of all the points,
it will evidently depend on the velocity of the object and on the
definition of simultaneity. According to the Lorentz-Einstein assump-
tions, a moving circle assumes the shape of an ellipse, the minor axis
of which lies in the direction of motion. This ellipse results from the
fact that the Lorentz transformation calls for a contraction only in the
dimension of the rod parallel to thé line of motion. Such a deformation
is not unintelligible; it merely shows that the simultaneity projection
of the points of a moving circle has the shape of an ellipse in the
coordinate system at rest. The idea of the focal-plane shutter photo-
graph elucidates this assertion.

With this analysis all difficulties disappear that are intuitively
anticipated with respect to the relativity of simultaneity and the
distortion of moving bodies. One must only keep in mind that
simultaneity is a matter of definition. Whether we are to associate
the time order of distant events with the idea of the ‘‘click-click”
of the focal-plane shutter or with the notion of the “tick"” of a clock,
is not determined by the events themselves. Both ideas apply
directly only to experiences; the “click-click" is the experience of a
sequence and the “tick” an instantaneous experience. \We actually
never experience distant events, but only the effects that reach us.
Consequently we can choosc how to coordinate these events to our
visual images.

§ 26. CONSEQUENCES FOR A CENTRO-
SYMMETRICAL PROCESS OF
PROPAGATION

The dependence of spatial measurements on the definition of
simultaneity has a peculiar consequence for processes of propagation
such as light and sound waves, that travel from one center in all
directions. It turns out that the shape of a single impulse depends on
the definition of simultaneity in such a way that it is impossible to
recognize the point from which the impulse has originated. For the
sake of simplicity we shall speak in the following only of the motion of
light. Similar arguments apply, however, to sound and any other
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centro-symmetrical process of propagation. In this analysis, the
nature of the wave is not important—only the fact that it progresses
in time.

Let us consider (Fig. 28) a single impulse of light produced at 4 at
the time ¢, = 0. What shape does it have at time {2 The answer
depends on the definition of simultaneity. Let us first use the
expression (1, § 19) and set ¢ equal to } in

b = li+e(l3—1) O<exl (1
We then put a clock at every space point, synchronizing all clocks
from A according to this definition. Let us now imagine that all those
points are marked that the light impulse has reached when their clocks
show the time i3; they are located on a circle around A. The solid
circles in Fig. 28 thus indicate the position of the light impulse at

Fig. 28. Redefinition of a single light impulse from a centro-
symmetric to an eccentric process of propagation.

different times f. The figure is drawn only for a plane, and the circles
are to be understood as cross-sections of spheres. The light is
propagated in spherical surfaces around 4.

We shall now choose a different definition of simultaneity. We
leave the clock at A unchanged, but avail ourselves of the choice which
we have in setting the other clocks. We again use the expression (1)
but let the factor e be different from } and make it dependent on the
direction; we choose

¢
2(a cos $+Vc:—a? sin2g) @

We set all our clocks from A according to this rule, and therefore the
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factor € will be constant along every ray r. However, € depends on the
direction ¢ of the ray; the numerical value of ¢ is given by (2). In this
formula a is an arbitrary constant and ¢ is the numerical value of the
velocity of light which was obtained by means of the first definition
of simultaneity. The additional restriction on ¢ in (1) means only
a limitation of the values of a, which can easily be fulfilled. Sub-
stituting (2) in (1), we have an admissible definition of simultaneity.

Let us call the newly defined time ¢’; the moment at which the light
impulse departs from 4 is again #;, = 0. What is the location of the
light impulse at time #’?  If we let r be the length of the ray measured
at the time ¢’z and if we then reflect the ray at the endpoint B of the
ray r, it will return to A at a time {'3; we then have '3 = ¢3—#') = 2{
This measurement, which is made at A, does not require the #-time
and can therefore take the place of the expression obtained through
the first definition of time. The arrival of the ray at B is now calculated
from (1) and (2) as

. , . . 2r r
o = 1te(t’s—th) = ety = ¢ = ot cos $Vh "t sin%e 3)

The position of the light impulse at the time #'2 is the curve given by
this equation if we consider '3 as constant. With the substitutions

alla=c¢

=% 2 — x2442
¢ty =R cos ¢ , r x4y 4)

of which the first two are abbreviations and the other two represent
the change from polar to rectangular coordinates, (3) can now be written
as:

(r—e)2+y2 = K2 )

The location of the light impulse at the time ¢'5 is again along a circle,
but the center of this circle is displaced by the distance ¢ = at’; along
the horizontal from 4. The family of circles which result for increasing
values of #'3 is indicated by the dotted circles in Fig. 28. The center
of these circles is not stationary but moves to the right with the
velocity a, while their respective radii R increase with the velocity c.
For three-dimensional processes, these circles likewise should be

regarded as the cross-sections of spheres.
The following results obtain. The surfaces of the propagation of a
light impulse do not define a center. Depending on the definition of
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simultaneity, cither the stationary point A4, or a point that moves
uniformly relative to A with the velocity e, can be regarded as the
center of the light impulse. In either case the velocity of light equals .
This result is the basis of Einstein's principle of the constancy of the
velocity of light; the motion of light can be considered as a spherical
wave for any uniformly moving system.

A further explanation is required. What we have proved applies only to
single impulses of light; only in this case is no center defined. However, a
continuous source of light would define a center. If this constant source of light
rested at A4, the surfaces of propagation of the various light impulses would be
the solid-line circles of Fig. 28, according to the first definition of simultaneity.
The second definition, however, would give us not the family of dotted circles,
but a system of such families of circles. These circles could then no longer be
regarded as having one moving center, but each individual impulse would have
its own center which is traveling to the right and is at 4 at the particular time
when the impulse is sent. Each individual impulse would then have surfaces of
propagation which, with increasing time, would be of the type of the dotted
circles of Fig. 28. Consequently the state of motion of 4 could here be deter-
mined. Fig. 28 must therefore be conceived as representing a single impulse of
light at different times, not as representing a periodic sequence of light impulses
at the same time. This characterization of the state of motion of a constant
source of light corresponds entirely to the conceptions of the theory of relativity.
It is possible to identify by the type of propagation of light the system relative
to which a constant source of light is at rest, for instance, by the Doppler effect
which appears for another system and is quantitatively different at opposite
sides of the source of light. The principle of the constancy of the velocity of
light maintains only that the continuous motion of light has the form of a
concentric spherical wave relative to that coordinate system in which the source
of light is at rest. In the language of Minkowski: every cone of light ds? = Q has
a vertex; the line connecting the vertices of a number of such cones is the world-
line of a point in a certain state of motion. The theory of relativity agrees with
the classical theories in the statement that the constant source defines a center
for all impulses. Relativity theory adds only that the propagations of all the
impulses can be considered as spherical, measured from the system in which the
source is at rest, provided that the definition of simultaneity is adjusted to the
state of motion of the source of light.

It should be noted that the time transformation given in (2), which can also be
expressed as

¢t r c—acosd-—-Ve2—alsind
¢ @ cos g+ VeZT_atsinid

is not the Lorentz transformation. For the Lorentz transformation spatial
measurements are also changed, because they are obtained relative to a moving
system. In our example only the time was transformed, while the distances
between points at rest remained the same; the spatial coordinates, therefore,
retain their identity.

Our presentation enables us to visualize Einstein’s result, The
shape of the surface of the light wave is not uniquely determined but

depends on the definition of simultaneity. Its so-called shape is always
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the simultaneity projection of the moving light impulse on a coordinate
system. If we choose the first definition of simultaneity, we obtain
the solid-line circles of Fig. 28. But if we imagine a focal-plane shutter
photograph of these circles, where the focal-plane shutter moves from
left to right, the dotted circles will result.  This can casily be visualized,
The farther the focal-plane shutter moves to the right, the later it will
catch the light surface, and the dotted circles are therefore shifted to
the right. XNevertheless it is not permissible to say that the second
definition of simultaneity is false. The dotted circles appear like a
focal-plane shutter photograph only relative to the first definition.
Relative to the second definition all the projected events are simul-
taneous, and the solid-line circles form the picture of a focal-plane
shutter photograph, produced by a focal-plane shutter which runs
from right to left. This can also be visualized; for this purpose one
must begin the analysis with the dotted circles.

§ 27. THE CONSTRUCTION OF THE
SPACE-TIME METRIC

After these preliminary investigations concerning the connection
between the definition of simultaneity and measurements of space.
we now turn to the central problem of the physical theory of space and
time, namely the complete construction of the space-time metric. We
shall relate this construction to the causal theory of time which
previously provided the definitions of time order and of time comparison
(§ 21, § 22), and we shall show how metrical definitions can be added to
these topological coordinative definitions in such a way that a physical
space-time geometry results that is based entirely on the concept of the
causal chain. We shall carefully distinguish between empirical
statements and definitions and show to which statements of the
relativistic theory of space and time these two categories apply. As
before, the empirical statements are called ‘“‘axioms’ becausec they
play the role of logical premises in the system of space-time theory.!

Let us imagine that numerous mass points are whirling about at
random in empty space. On cach of these points there is an observer
and these observers can communicate with each other by signals.

! We shall present at this point only a summary. For a complete presentation
we must refer to A, The numbers of the axioms and definitions in the following
pages are given in accordance with those in A.
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With 'the aid of these signals they now want to establish a space-time
order.

For their measurements, the observers will use first-signals, i.e.,
light signals, because a time order constructed in this manner has the
advantage that it cannot violate the relations earlier and later for other
signals, since other signals are slower. The observers now have the
task of choosing a system of points that can be called ' at rest relative
to each other” in order to define a space-time metric in this “rigid
system.” The choice of such a rigid system is again arbitrary and the
state of relative rest is a matter of a coordinative definition. However,
one definition is distinguished by its simplicity and leads to Newton's
inertial system. That there exists such a definition is a matter of fact
and can be either true or false. We must thercfore state the basic
empirical facts in the form of axioms. These axioms are satisfied,
not under all conditions, but only in gravitation-free spaces. On the
other hand, the applicability of these axioms provides a criterion for
gravitation-free spaces. It is thus not necessary to emphasize that
our presentation is restricted to gravitation-free spaces. This
restriction is implied when the validity of the axioms is assumed.

The construction of the rigid system, or system of points at relative
rest, is accomplished by steps which we shall describe in terms of
certain operations performed by the observers on the various points.
The observer at A knows what is meant by *temporal order at 4,”
but he does not know as yet what is meant by “two equal successive
time intervals.” Provisionally, he lays down a completely arbitrary
rule; i.e., he chooses a measure of time that differs by some mono-
tonically increasing function ! from the ‘* uniform time’" which is to be
defined later.

He now tries to reach by signal a point B which has the property
that the time interval 4 BA of a light signal 2 reflected at B will always
have the same length when measured repeatedly at A in the arbitrarily
chosen metric. ABA is therefore constant. To make this possible
the point B must have a specific state of motion relative to A, which
depends on the time metric chosen in 4. Using this method, the
observer at 4 looks for a number of such points B, C, .. . which form
a “system related to 4.”

1 A monotonically increasing function y = f(#) is a function such that y always
increases with increasing values of x, though the rate of increase may vary
irregularly.

2 The line indicates that the expression refers to the time interval and not to
the spatial distance.
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The observer at 4 can now transfer his time measure to the other
points B, C, . . ., for example, by giving a time signal every *‘second.”
The observers at B, C, . . . simply consider as equal those time intervals
marked off by the arrival of the time signals from 4. (This procedure
does not yet require a definition of simultaneity.) These time intervals
need not be equal to those at A in the ordinary sense, since nothing has
been specified so far about the state of motion of B, C, . .. relative to
A. We merely give provisional definitions.

The observers at B, C,...now make the following experiment.
They measure whether the light signals BAB, BCB, CAC, etc., furnish

also BAB = constant, BCB = constant, CAC = constant, etc., when
they use for their time measurements the time scale previously supplied
by A. Generally they will find that this is not the case. Even if they
should not use the metric supplied by A4, there would not be a metric
in B which for all points yields BAB = constant, BCB = constant,
etc. In other words: The “system related to A" is not a “system
related to B."”

Let us use this idea in order to combine a selection of points into a
special system. For this purpose, we demand that a system S of
points be chosen in such a way that this system is, for each of its points,
a related sysiem. That such a system exists is an empirical fact
(Axiom [V, 1); that we select this system among all others represents
an arbitrary definition.

Using the points of the system S obtained in this manner we now
perform the following experiment. We send one light signal along the
triangular path 4 BCA, another in the opposite direction along ACBA,

and test whether the time interval ABCA equals the time interval

ACBA. Again, we do not yet employ the concept of simultaneity for
distant points. We send the two signals simultaneously from A and
observe whether or not they return to 4 at the same time. Generally
this condition will not be satisfied for an arbitrary system S. Therefore
we add a further restriction if we demand that a system S’ is to be
chosen among the systems S which satisfies the round-trip axiom.
That such a system S’ exists is again a matter of experience. (Axiom
1v, 2).

So )far we have not made use of the time comparison between the
moving mass points, but it would have been possible to do so by means
of the definition (2, § 19)

lg = ) +elta—1)) I<ex<l1 (1)
167



Chapter III. Space and Time

since this definition contains no presupposition regarding the relative
state of motion of these points. We have only to imagine that the
clock at B is continually set relative to the clock at 4, for we cannot
construct a mechanism at B which, due to the arbitrariness of the time
metric at 4 and the arbitrariness of the relative state of motion of
A and B, will permanently maintain the once-established simultaneity.
This conception does not involve any difficulties, and the resulting
simultaneity will always satisfy the basic topological requirement that
it connect only events which are indeterminate as to time order.1

Having made a choice among the mass points and having combined
a system S’ of these points into a spatial coordinate system, we can
now ask whether a special simultaneity can be defined for this system.
This simultaneity definition is given by setting € equal to }. Its
advantages consist in the following properties:

1. If a clock at B is set from A according to (1) and € = }, and if
we then set the clock at A from B, using the same rule, the two
times agree. (The synchronization is symmetric.)

2. If two clocks at B and at C are set from A according to (1) and
e =}, and if the two clocks are compared directly with each
other by the same rule, they will be found to agree. (The
synchronization is transitive.)

These properties are by no means self-evident; they require the
assumption of the previously mentioned light-axioms, which apply
in 8. These properties make the time order in S’ particularly simple
and justify the definition of simultaneity used by Einstein in the special
theory of relativity where ¢ =}. This should not mislead us into
believing that this definition is ‘“more true’ because of its simplicity.
Again we are concerned with nothing but descriptive simplicity. The
choice of a more complicated definition of simultaneity does not present
any difficulties for our imagination. One should not confuse here
“transitivity of simultaneity’ with ‘“transitivity of simultaneity
according to the same rule of synchronszation.”” The first applies always,
once a simultaneity has been uniquely defined for one clock according
to (1). For the comparison of any given clocks a special value of ¢,
which may vary with time, will have to be chosen. The second kind of
transitivity depends on certain physical conditions. Even if these are
satisfied, we are not compelled to carry through this simple kind of
simultaneity.

1 This assertion requires a special proof; see A., § 7.
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In addition to the simplicity of their time order, the systems S
possess a second important property: they permit us to make spatial
measurements. This fact is of extraordinary significance because it
proves that space measurements are reducible to time measurements.
Time is therefore logically prior to space.

First we shall define an important topological concept of spatial
order, namely the concept befween. We treated the same concept in
§ 14 and showed there that the logical significance of this concept can
be determined by an implicit definition. Here we have to achieve
more: we have to discover physical relationships that can be coordinated
to the concept between and thereby permit an application of this logical
concept to physical realily. As we have explained in §§ 14- 15, the
logical concept does not prescribe any particular application. We
shall here consider that application which leads to physical geometry.
Thercfore we must now give the coordinative definition of the concept
between.  Surprisingly enough this definition can be given solely in
terms of temporal concepts. The topological neighborhood relations
of space are therefore reduced to temporal relations and thus to causal
relations.

Definition e, A point B lies between A and C, if the first-signal
ABC arrives at C at the same time as the first-signal AC. (In short,
if ABC = AC))

If this definition is not to contradict the purely mathematico-logical
significance of the concept between, the following empirical rule must
be added:

Axiom G. 1f for two points By and B it is true that AB,C = AC,
as well as that AB2C = AC, then cither ABB; = AB; or B\B.C =
BiC.

Having determined the concept between, we can now take a further
step toward spatial measurements and define the concept straight line,
which is a metrical concept. In this case we shall not employ the
method of implicit definition used in § 14, but another logically per-
missible method, deriving the concept straight line from the concept
betiween and the basic logical concept of a set.

Definition . The straight line through A and C is the set of those
points which among themselves satisfy the relation befween and which
include the two points 4 and C.

It must be shown that the straight line determined by this co-

ordinative definition agrees with the geometrical concept of straight
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line, e.g., that the straight line from 4 to B is identical with the
straight line from B to A, etc. This proof is possible on the basis of
the axioms given thus far.

We shall now define the metric in its physical sense by giving the
coordinative definition of spatial congruence:

Definition 10. If the time interval ABA = ACA, then the spatial
distance A B is equal to the spatial distance AC. (See Fig. 29.)

I' (R rp——
Apepegpmpngmpapng— | B
A

Fig. 29. Definition of the equality of spatial distances in terms
of measurements of time intervals,

These are all the definitions required for a geometry of space. We
can answer any question of a geometrical nature by using time
measurements exclusively. e even gave overdeterminations and
must now prove the consistency of our system, which is easily done.
It can readily be shown that the straight line of definition fis also the
shortest line in the sense of the metric of definition 10.

Let us imagine ourselves in one of the systems S’ in which we intend
to carry out measurements. Specifically, we are interested in deter-
mining the geometry of $’. Once a definition of congruence is given,
the choice of the geometry is no longer in our hands; rather, the
geometry is now an empirical fact.

If we were to measure the circumference and diameter of a circle,
would their ratio equal a? In general the geometry will not be
Euclidean. But we can select certain systems S” from the systems S’,
if we demand that the selected systems satisfy the condition that the
defined geometry be Euclidean. It is again an empirical fact that
there are such systems S” (Axiom V), whereas their selection is based
on a definition.

Now we have reached an important goal: we have defined in each
system of the class $” a complete and unique metric without the
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use of rigid bodies or natural clocks. Light signals alone provide
the metrical structure of the four-dimensional space-time continuum.
This construction may be called a light-geometry. Its applicability
depends on the truth of the previously mentioned axioms which refer
only to light signals and mass points and are therefore called light-
axioms.

On the other hand, a second goal has not yet been attained. We
have not yet sufficiently restricted the class $” of systems to make it
identical with the class of Newtonian inertial systems /. The class 57
is still too general and contains other systems beside 7. A further
explanation is required. We started with freely moving individual
mass points and constructed from them a point system K by placing
certain restrictions upon the results of measurements performed by
light signals. It can now be shown that there is not one, but there are
many systems that satisfy these requirements; they form the class S”
It is not our purpose to define a class containing exactly one system,
since the Newtonian inertial systems form a class / of systems that
move uniformly relative to each other. It is the goal of our con-
struction to arrive at this particular class 7, i.e., to determine with the
aid of light signals not only the geometry within a given system of
points, but to establish at the same time a choice among the many
point systems, such that only systems in a particular stale of motion
satisfy our requirements. We thus want to specify the state of motion
in space, taking the motion of light as the physical *“framework’ to
which the systems are “‘tied.” The motion of light is too loose a
framework, however, to determine the state of motion sufficiently to
make it identical with that of the inertial systems. We obtain a more
general class S” which contains the inertial systems as a proper
subclass. Yet a considerable restriction has already been imposed
on the totality of possible states of motion, and a method has been
indicated by which a state of motion can be defined in free space,
provided that there exists a physical process, independent of the
procedure of measurement, which can be utilized.

What constitutes the excessive generality of the class $"? This
class may be understood mathematically as follows. If any system
K of the class S” is given, it is possible to transform it into another
system K’ belonging to the same class by mecans of a coordinate
transformation

xo=filxy...x"9) ¢=1.4
The class $” will now have to be characterized by a specification of the
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exact form which this transformation will have to assume. The
following considerations will achieve this aim.

The light-geometry has been constructed for each of the systems S”
and the equality of distances is so defined that a light ray travels equal
distances in equal times, i.e., the velocity of light becomes constant.
Since, according to our assumption, the light-geometry is Euclidean in
cach of these systems, the propagation of light is given by the relation

Ax 2+ 4x22 +Ax3® = 2412 (1)
where 4 indicates the difference between corresponding coordinates of
the two endpoints. If we write x4 for ¢¢ (this is only a convenient
notation for the unit of time), and put x42 on the left-hand side, the
equation reads

Adx124-dxo? +dxg? —Axy2 = 0 (2a)
In the moving system K’, the propagation of light must be given by a
corresponding equation of the same form
A2 4+4x22 +Ax'gt —Ax' =0 (2b)
The required transformation is therefore characterized by the
condition that it transforms (2a) into (28).

The solution to this problem is well known to the mathematician.
The condition is satisfied by the linear transformations !
Ay = a,';.r’,,- (3d)
where the coefficients satisfy the condition
+hk2fori=1=123
fata%j = 0 fori =1
—ktfori =1=4 (3b)
and the summation is made over the repeated superscript. These
transformations are identical with the Lorentz transformation except
for the constant %, which will be discussed presently. Another
transformation that satisfies the condition is given by the form

’

X = L 4)

These relations are called similarity transformations.  If one coordinate
system satisfying (2a) is given, the class S” is then determined as the

1 We are using here the customary notation, which omits the summation
sign. Instead we are using the rule that one has to sum over every index that
appears twice.  Formula (3a) therefore represents four equations, the right side of
cach of which is a sum of fourterms.  In (3b) we use an extension of this notation.
The summation is made over m, but the square bracket indicates the rule that
when m == 4 the corresponding term is to be written with a minus sign.
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totality of those systems derivable from the given one by the trans-
formations (3) and (4).

Class $” is therefore too general, since the class I of inertial systems
is connected by the Lorentz transformations alone, while trans-
formation (4) leads out of this class. The class §7 constitutes the
limit for the determination of the state of motion by light-geometry.
The determination of class I, a subclass of S, is not possible unless we
can avail ourselves of some physical means other than light signals.
Only one argument can be raised in favor of defining class / by means
of light-geometry alone; it can be shown that a system 7 which belongs
to S” but not to I has a physical singularity. The system 7 contains
light signals that pass through infinity and yet return within a finite
interval of time; and it contains finitely located points that can be
connected by light signals in one direction only while the return signals
never reach their goals. 1f we consider the difference between finite
and infinite as physically recognizable in the sense of § 12, the class /
can therefore be defined by means of the light-geometry. However,
since the light-axioms apply, as we shall discuss later, only in limited
regions of space, and since no unlimited spaces can be utilized for a
decision, this method is not fruitful. We can always describe systems
7 that deviate from systems of class f only outside the space we have at
our disposal.

We must therefore look for another way to exclude transformation
{(4) and thus systems of the kind 7. If we go from a system K by
means of the transformation (4) to a system K’, the points of the latter
are not at rest relative to the points of K, and its space axes constantly
expand relative to K. Therefore K has a different measure of time.!

We can therefore exclude these transformations by introducing
material bodies. The points of a system I can always be connected
by rigid rods, while this is not possible in a system 7. Thus we have
obtained a definition for inertial systems. Furthermore, the time of a
system I corresponds to the time of natural clocks, which is not true
for a system 7. This reference to clocks could also be used as a
definition of the class of inertial systems. With the introduction of
material bodies it is thus possible to eliminate the systems 7. It
should be noticed that this method does not even utilize the most
important function of material bodies. The rigid rod is not used for
the definition of spatial congruence within the system, but only for the

1 For a precise calculation of this case we must refer to §16 in A. Fora

correction to A., see also Zs. f. Phys. 34, 1925, page 34.
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determination of one—and indeed only one—distance as rigid, i.c.,
for the definition of the lemporal congruence of spatial distances. For
this reason natural clocks can be employed for the definition of rigidity.
It suffices to specify the time meiric at a space point. Then the rigidity
of the entire system and of the set of systems, even their state of
motion, is determined by means of light signals. Although this
determination refers only to the fnternal state of the systems, it thus
establishes their stafe of motion in space. This is only possible because
the light-geometry introduces rather strong restrictions and connects
every possible state of motion with a corresponding internal metric.

Finally we shall investigate how to change the transformations (3)
into the Lorentz transformations, with which they are not yet identical
because of the general constant k. We required of the desired
transformations that they leave the expression (2) invariant; this
requirement corresponds to the condition that the light-geometry be
carried through in each system, but it does not yet determine the
comparison of units between systems in different states of motion.
Yet to be specified is the comparison of the rest-length of moving line-
segments, the first comparison of length in kinematics (compare § 25).
If rigid rods are used as the unit in K, then it is convenient to call the
rest-length of the rod transported into the moving system K’ equally
long in the new system. This procedure is not possible in the light-
geometry, however, since there is nothing to transport. Consequently
another comparison of the units must be found; it is accomplished with
the aid of the second comparison of length in kinematics. If we consider
arbitrary units of length in K and K’ respectively, then the unit in K
can be measured in K’, and vice versa, with the aid of the concept of
length of a moving segment. 'We shall not obtain the same contraction
or expansion factor in both of these cases because of the arbitrary
choice of the units. If the identity of this factor is required by
definition, however, the choice of the rest-unit of one will depend on the
choice of the other,and we have thus given a rule for the first comparison
of length in kinematics.

These conditions are identical with setting £ = 1, as can casily be
shown. Since coordinative definitions are arbitrary, we canset 2 = 1.
With this additional rule, (3) becomes identical with the lLorentz
transformation, which can now be written in the form

] (+1fori=1=1,273
(5a) xy =aix'y jamatt] == 0 forv =1 (56)
i—l fori=1=4¢
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§ 27. The Construction of the Space-Time Metric

To go from here to the well-known form of this transformation, we
need only a few simplifying specializations which again are of the
nature of definitions. We give identical origins to the two systems,
choose their space axes parallel, and specify the direction of motion
of one system as being the direction of the x; axis of the other.  This
results in the familiar form of the Lorentz transformation:
140w
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inwhich ‘¢’ and “¢f”*" are substituted for “ay’" and “x'y"”’ respectively.

The twenty constants of transformation (5) are reduced by these
special conditions to the single constant ¢

rer

An exact presentation of these special conditions is given in § 17 of A., where
they are expressed by means of restricting equations on the a}.  Simple calcula-
tions lead from them to the special values of the af which appear in (6). The
derivation of equations (6) from the invariance (2) can be found in many texts on
the theory of relativity, but the distinction between definitions and empirical
statements is usually not stated clearly.

The goal of determining the class of inertial systems and their metric
has thus been attained, and this chapter of the theory of space and
time might be regarded as closed. However, since there are also
measuring instruments other than light, namely measuring rods and
clacks, and since these have so far played a subordinate role in our
construction, it is important to ask how these objects behave in relation
to the light-geometry. We could have started with these measuring
instruments and used light solely for the definition of simultaneity, in
which case we would also have obtained a geometry. We may now
ask how this geometry would be related to the light-geometry. The
statements about this relation are formulated as the matler-axioms in
contrast to the light-axioms used exclusively so far.

The formulation of these statements requires an additional con-
sideration. Because of the definitions involved, the constructed light-
geometry is arbitrary. The choice of the definitions determines
whether the relativistic or the classical light-geometry will be obtained.
The light-axioms can be the same for both. The relativistic light-
geometry that we have developed above differs therefore from the
classical theory only in the choice of definitions. [nstead of the
Lorentz transformation, Galileo’s transformation could thus be defined.
For this purpose, a spatial congruence that varies from system,to
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Chapter III. Space and Time

system would have to be defined. Distances traveled by light in
cqual times would then in general not be equal, since according to the
Galilean transformation the velocity of light depends on the direction
of the moving system. Furthermore, another comparison of the
rest-length of moving segments and another simultaneity would have
to be defined, for which the factor € in formula (1) depends on the
direction. The classical light-geometry is possible, because the light-
axioms in the theory of relativity do not differ from those in classical
theory except for the assertion of the limiting nature of the velocity
of light. Even if this axiom applies, however, the Galilean trans-
formation can be defined. The difference consists solely in the fact that
only systems moving slower than light can be realized by material
things.

The context of the matter-axioms {axioms VI—X) can be sum-
marized as follows: Material things follow the relativistic light-geometry.
If distances which are light-geometrically equal are measured by rigid
rods, they will also turn out to be equal. If the flow of time, light-
geometrically defined as uniform, is compared with that of a natural
clock, they are found to agree. Similar results hold for assertions con-
cerning the transport of clocks and measuring rods into moving systems.
We find agreement when they are compared with units which were
light-geometrically transferred to the moving system. For this
transfer we must use the definitions of the relativistic light-geometry,
not the classical definitions. Erfnstein's assertion can be expressed by
saying that malerial things adjust, not lo the classical, but lo the relativistic
light-geomelry.

This assertion constitutes what is new in the theory of relativity
from the point of view of physics. Whereas all of the light-axioms
hold in classical optics, to which the theory of relativity adds only the
assertion that the velocity of light is the upper limit for the speed of
signals, the matter-axioms signify a deviation from classical theory.
They contain the assertion that the Lorentz transformation, which in
the light-geometry differs from the Galilean transformation only by
definition, is at once the transformation for measuring rods and clocks.
This assertion contains, therefore, that part of the relativistic theory
of space and time which is to be tested empirically.

We have now succeeded in distinguishing between the physical
assertions of the relativistic theory of space and time and its episte-
mological foundation. This epistemological foundation is supplied by
the discovery that coordinative definitions are nceded far more
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frequently than was believed in the classical theory of space and time,
especially for the comparison of lengths at different locations and in
systems in different states of motion, and for simultaneity. The
physical core of the theory, however, consists of the hypothesis that
natural measuring instruments follow coordinative definitions different
from those assumed in the classical theory. This statement is, of
course, empirical. On its truth depends only the physical theory of
relativity. However, the philosophical theory of relativily, i.e., the
discovery of the definitional character of the metric in all its details,
holds independently of experience. Although it was developed in
connection with physical experiments, it constitutes a philosophical
result not subject to the criticism of the individual sciences.

In the following we shall demonstrate how the content of the light-
and matter-axioms can be visualized geometrically by the world-
geometry of Minkowski.

§ 28. THE INDEFINITE SPACE-TYPE

We have derived the Lorentz transformation by transforming the
expression
dxy? +dxgt+dxa?—Axy? = (1)
into a similar expression in the variables x’;, a transformation which
leaves expression (1) invariant. It can be shown that the Lorentz
transformation (5, § 27) possesses the additional property that it also
leaves the cxpression
Ax)2 - Axa? 4-Ax32—Axg? = As? (2)
invariant. This is a special property of the linear transformation
(5, §27) not shared by transformation (4, §27).1 The Lorentz
transformation can therefore be exhaustively defined in a purely
mathematical fashion, if we specify that it leave expression (2)invariant,
which condition automatically determines the value %k = 1. This
property is the basis of Minkowski's geometrical interpretation of the
Lorentz transformation.
This interpretation is carried through on the basis of the formal
analogy of (2) with the Pythagorean theorem. We shall concern

! The latter transforms the left-hand side of (2) into the same expression in the
variables xj, which however is multiplied by a factor Mx";...x%). Only il the
right-hand side equals 0, as in (1), this transformation lcaves (2) invariant, since
we can divide by A in this case.
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Chapter III. Space and Time

ourselves first with the extension of the space-type which results from
these considerations; its application will follow in §29, This extension
starts with the concept of length.

By the length of a line-segment we do not understand the segment
itself, but a number coordinated to it. A segment is determined if we
give the coordinates of the totality of points which lie on it. This
information does not tell us, however, how long it is; an indication of
length signifies in addition a comparison of this segment with other
segments. Length is therefore determined only if a definition of
congruence is added. The definition of congruence is given in
analytical geometry by a formula correlated to the coordinates of the
segment, which determines the length of the segment as a function of
the coordinates. For a straight segment it would be sufficient to
know the two endpoints, in which case formula

dx) 2+ dx92 4 4xy2 = As? (3a)
which js the same as the Pythagorcan theorem, expresses the distance
for three-dimensional space. Incidentally, this simple form can be
used ogly if the coordinates satisfy certain conditions; they must be
rectilinear and orthogonal. A generalization to arbitrary ccordinate
systems will be discussed in §39. Extending the theorem to a
four-dimensional space, we would have

Adx\ 2+ Ax0 + Axg2+Axs? = dst (30)

This formula, however, is not yet equivalent to expression (2), in
which the term 4x42 has a negative sign. How can our considerations
be extended to such an expression?

The extension is possible if we employ the previously discussed rule
of consistent extension. We shall define the concept of length in such
fashion that it will include expression (2), as follows:

Definition. The coordination of a number ds to the coordinate
differences dxy . . . dxq by means of the fundamental meirical form

Ax 24 dxg? - D32+ Axy2 = As? 4)
defines the measure of length.

This extension of the concept of length represents a logical procedure
previously (§ 25) explained by the example of the concept of the vector
sum. It cannot be called true or false since it merely constitutes a
definition. It satisfies the rule of consistent extension because it
becomes identical with (3) in the special case when all the signs are the
same. A metric of this special kind is called definite, while one that has
positive as well as negative signs is called indefinite.
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§ 28. The Indefinite Space-Type

The difference between a definite metric and an indefinite metric of
the form (2) can best be understood by means of Fig. 30a and 4. For
the sake of simplicity these figures are drawn for only two coordinates,
and we have

(5a) As? = Ax 2 +Axg? ds? = 4x2—dxg? (58)

Figure 30a corresponds to the definite type (54). The lines which are
at a constant distance from the origin, the contour lines, are circles,

RN

7

IFig. 30, Definite and an indefinite metric.

since (5a) represents the equation of a circle with the radius 4s. Fig.
306 corresponds to the indefinite type (54); the contour lines are now
hyperbolas, since (5) is the equation of a hyperbola, the distance of
whose vertex from the origin is d4s. The hyperbola 4s? =0 has
degenerated into the two asymptotes.

Now (5) defines a metric and ds thercfore is to be conceived as the
distance of the point (xy, x3) from the origin. This statement is
immediately clear for Fig. 30a, which simply states that 04 equals
0B. Thesame must be true for Fig. 306, and consequently every point
on a given hyperbola must have the same constant distance from the
origin; OA must equal OB also in Fig. 30b. \While this equality
corresponds to the normal congruence for Fig. 30a, we must remember
the definitional character of congruence in order to understand Fig. 305.
The distances 04 and OB in Fig. 30b appear different because (§ 11)
our visual estimate is adjusted to the behavior of rigid bodies, which
satisfy the relations of Fig. 30a. We can now adopt the previously
used method and visualize the new metric by imagining bodies that
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would satisfy it. Let us therefore imagine the distance OA realized
by arod. If we now rotate this red so that one end remains fixed at O,
the other end will travel along the hyperbola and the rod will assume
the position OB and similar positions. We can easily visualize this
situation if we remember that congruence is a matter of definition.
The behavior of the imagined rods thus offers a visual realization of the
metric (58).

The difficulties arising from the metric of Fig. 305 do not spring from
the comparison of length but from another property of this metric.
The lines which have an inclination of 45° arc nwll lines, i.c., any
distance on them, such as the distance OF, has the length zero. This
singularity is not compatible with the customary visual concept of
length, yet this property too can be visualized as will be shown
presently.

A rod OB rotated around O reaches the position OA and remains
with its end on the same hyperbola, so that the end moves far away
when the rod approaches an inclination of 45° and lies at infinity when
that inclination is reached. In this position the rod would be infinitely
extended.  We shall assume, as in § 12, that this is impossible, which
means that the 45° inclination is a limiting position that cannot be
reached but can only be approached as closely as we wish. We shall
assign to a segment OF in this singular position the length zero, because
the asymptote represents the innermost (degenerate) hyperbola and
corresponds therefore to the contour line of the shortest measure of
length.

On either side of the limiting position, the rods behave normally
according to the hyperbolic contour lines. Because of the unattain-
ability of the limiting position, however, it is not possible to rotate a
rod from the position OC into the position OA. Instead, it can be
brought into the position OD. We have therefore two kinds of rods,
which we shall call the blue and the red rods. The direction of the
blue rods lies always in quadrants I and IT, that of the red ones always
in quadrants III and IV. Tt is possible to move the rods so that they
intersect the asymptotes, but they can never be rotated beyond the
limiting position. A red rod can therefore never be brought into the
position of a blue rod and vice versa. To distinguish between these
two kinds of length, we shall give the ds? of quadrants I and II a
negative sign.

The peculiar form of metric that admits of lengths 4s2 =0 and
4s2 < 0 is the natural expression of the behavior of the described
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§ 28. The Indefinite Space-Type

measuring instruments.  The division into two types of rods which
cannot be compared is symbolized by the distinction between 4s? > 0
and ds2 < 0, and the limiting case by ds® = 0. This metric entails
certain deviations from the customary concept of length; but these
deviations are necessitated by the behavior of the described rods. We
shall now follow this line of thought in more detail.

It was mentioned before that we understand by the length of a
segment, not the segment itself, but a number coordinated to it. The
customary measurement of length, although it recognizes this dis-
tinction, adds the further requirement that the length zero be
coordinated only to a point. This requirement is violated for the
limiting position (but only for this position). The concepts of length
and exfension no longer coincide in this special case. A segment in the
limiting position can be long in the sense of extended, and yet have the
length zero. Extension is a topological concept; a geometrical struc-
ture is extended if it contains a continuous sequence of points.  Whether
or not there is an extension is determined by the coordinate system;
extension is therefore a concept referring to coordinates. What length
is to be coordinated to a geometrical element, however, is not deter-
mined by the coordinate system. Instead, the measurement of
length characterizes the behavior of measuring instruments.  This
behavior includes a singularity in the limiting position; a rod of finite
length will not coincide with a finite line-segment in the limiting
position, but compared to it would be infinitely long.  Because of this
peculiarity we assign to every finite extension in the limiting position
the length zero.  If we were able to rotate an extension like OF into a
different direction, it would assume the extension zero.  In renouncing,
for the limiting position, the requircment that length zero is to be
reserved exclusively for a point, we adjust our metric to the behavior
of our measuring rods, rclative to which the measure of a finite
extension in the limiting position is indeed zero. We have here a
topologically different behavior of measuring instruments and are
therefore forced to abandon the mentioned requirement although it is
satisfied by the customary measurement of length.

It is merely a reasonable extension of the concept of length to
admit negative numbers for the square of a length. Customarily,
length is defined as a positive number, but there are instances where the
introduction of negative length appears useful. In the metric of
Fig. 30b even the square of a length can become negative, and therefore
the length itself imaginary. But this fact is of secondary importance,
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Chapter III. Space and Time

because it is irrelevant whether we consider ds or 4s? as the length.
The distinction is merely a matter of expediency. As always, the
introduction of imaginary numbers is merely an arithmetical device,
which by no means implies that *“space or the measuring instrument
becomes imaginary.” That would be nonsensical.

Our presentation has shown that a manifold of the indefinite type
can be visualized just as well as one of the definite type. If it is said
that a nonvanishing extension of the length zero, or a length whose
square is negative, cannot be visualized, such an objection indicates
that requirements have been tacitly retained which apply only to the
usual measuring instruments. It is not the advantage of visualizability
that makes us retain these requirements for the customary geometry
of space; it is merely the behavior of the usual measuring instruments
that induces us to project a metric of the definite type into the space of
our environment. If the measuring instruments actually behaved like
the blue and red rods, their behavior would be represented by the
indefinite type of metric in the same sense as we can say that the
behavior of the usual measuring rods is characterized by the definite
type of metric. We have thus visualized the indefinite type of space
by imagining the corresponding behavior of measuring instruments.

At the same time, we recognize that the customary measuring
instruments represent a special type of geometrical relations. These
results may be added to our previous considerations regarding the pro-
blem of space, although the ideas expressed in this section are intended
to serve mainly for the application of the indefinite metric to a quite
different manifold, namely, the space-time manifold.

§ 29. THE FOUR-DIMENSIONAL
REPRESENTATION OF THE SPACE-TIME
GEOMETRY

We have illustrated in the previous section the indefinite space-type
by means of the behavior of rigid rods, considering them as the
realization of the 452, Thus we described it as a pure space-type. In
the case of the Lorentz transformation, however, the fourth dimension
is given by time, and the realization of 4s2 must therefore be carried
out in a different fashion. We shall discuss this method in connection
with the work of Minkowski.

Let us recall a consideration of § 16 according to which the time
dimension differs basically from the space dimension. If we wish to
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§ 29. Four-Dimensional Representation of Space-Time Geometry

study the actual spacc-time manifold, we must thercfore look for
space-time objects that behave like the distances 0A, OB ..., ctc.
Such objects are clocks and, with an additional qualification, measuring
rods.

The point of the space-time manifold is the point-event, i.c., an event
determined by three space coordinates and one time coordinate. The
“tick " of a clock is an example of such an event. A space point P, on
the other hand, is represented by a line which corresponds to the
flow of time at P and is called its world-line. The space point at rest
is represented by a vertical line; a slanted straight line would
correspond to a uniformly moving space point, since its position in the
coordinate system changes with time. Any two point-events determine
a “distance” ds. We shall call such a distance an #nferval, in contrast
to spatial distances and, as we shall see, also in contrast to temporal
distances. The interval is therefore a metrical concept which corres-
ponds to length and not to extension and is determined by its two
endpoints.

Let us look first for the interval 4s2 — 0. This interval is given by
the motion of light, which satisfies the equation ds2 == 0. According
to page 179 this equation is represented by the asymptotes of Fig. 305,
and the world-line of a light ray traveling along the axis is therefore
given by a straight line having an inclination of 45°.  For this light ray
x1 = x4, since we have set the velocity of light equal to 1.

The limiting position in Fig. 30b is thus represented by the motion
of light. World-lines whose directions lic in quadrants I and II are
called timelike (Fig. 31); they correspond to space points that move
slower than light. The slope of the straight line is a direct measure of
the velocity of the corresponding space point; the closer its inclination
approaches the asymptote, the greater will be its velocity. World-
lines whose directions fall into quadrants IIT and 1V are called
spacelike. They cannot be realized by moving mass points, since they
would require a velocity greater than that of light. The difference
between the blue and red rods in our illustration of § 28 corresponds
therefore to the difference between timelike and spacelike world-lines.
Timelike world-lines, according to our definition of time order in § 21,
are those lines whose point-events follow one another in time, since they
can be connected by means of signals. Spacelike world-lines, however,
connect point-events that are indeferminate as to time order (§ 22).

The choice of the coordinate axes has the following significance. We
may choose any timelike line as the time axis, because this is compatible
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with the definition of time order. Since differently inclined timelike
lines represent the world-lines of mass points in different states of
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Fig. 31. Division of the space-time manifold.

motion, the choice of one of them as the time axis constitutes the
selection of one state of motion as the state of rest. The choice of the
time axis therefore determines the state of motion of the coordinate
system. Any spacelike line, on the other hand, may be chosen as the
space axis, since we can always define its point-events as simultancous.
The choice of a definite spacelike line as the space axis represents
therefore the choice of a particular definition of simultaneity.
Generally speaking, any space axis may be combined with any time
axis to form a coordinate system, as in Fig. 31 for instance, the timelike
line 1 and the spacelike line 3.1 If we require, however, according to
the relativistic light-geometry, that simultaneity is to be defined by

1 It is even permissible to choose curved lines as the coordinate axes. The
restriction of the time axis to a straight line signifies the restriction to a uniformly
moving system in the sense of § 24, and the restriction of the space axis to a
straight line means that ¢ in the definition of simultaneity (2, §19) is constant
and therefore independent of position and time.
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§ 29. Four-Dimensional Representation of Space-Time Geometry

e=1% (2, §19) for every state of motion, then this requirement
coordinates a definite space axis to every time axis. (In Fig. 31, for
example, line 2 is coordinated to line 1.) It can be shown that this
prescription corresponds in the geometrical representation to the
requirement that the time axis and the space axis must form conjugate
diameters of the hyperbolas.

\We now look for a realization of the negative ds2, i.e., we look for a
physical object that satisfies the relations of congruence defined by the
hyperbolas of quadrants I and 1. Let us turn to Fig. 32, in which we

I

4> 0 As*> 0

ast < 0

Fig. 32. Realization of the indefinite metric by means ot clocks
and measuring rods.

have drawn only the four branches of the hyperbola 4s2 = -+1.  Let
us first consider the interval 0Q, which belongs to the quadrant
ds2 < 0. How can this interval be realized? The vertical axis 0Q
corresponds to the world-line of a point at rest in the coordinate system
K. Events 0 and Q are therefore given by the beginning and end of a
period of a unit clock at rest in K. If we write for these events the
interval
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Ax124-dxo? - Axz2 —Adx42 = As? (1)

this form reduces to
—dxg? = 452 (2)

because there is no change in position relative to K, i.e., dx; = dxs =
dx3 = 0. The interval OQ is therefore measured by the period of a
unit clock at rest in K.

Let us now consider the interval 0Q’, which equals OQ and also
cquals 1. It corresponds to the section OQ’ of the world-line of the
moving space point P on which events take place at O and at Q.
Relative to K it is measured by (1). If we now change to a ccordinate
system K’ by means of the Lorentz transformation, the same interval
is expressed by

Ax' 24 Ax'92 + Ax'32 —dx' 42 = As? (3)

since it is the peculiarity of the Lorentz transformation that it leaves
this expression invariant (cf. p. 177). The coordinates determined by
the light-geometrical metric are exactly those coordinates for which the
metrical formula assumes this simple form. This result expresses the
analogue of the geometrical assertion of the previous section that the
simple formula of the metric (32, §28) applies only to rectilinear
orthogonal coordinates. We can go even further. The coordinates
given by measuring rods and clocks must correspond to those
coordinates which satisfy (1) and (2) respectively, since this correspond-
ence is expressed by the matter-axioms.

Now we can give a very simple interpretation of 0Q". If we choose
a K’ relative to which P’ is at rest, then expression (3) reduces to

—dx'g? = As? 4)

for 0Q’, since we have again dx'y = dx's = dx’3 = 0. This means
that interval 0Q’ too is measured by the period of a unit clock, if this
clock moves along the world-line 0Q'. We therefore call ds the
characleristic lime 1 of the clock and may now say: a timelske interval is
realized by the characleristic time of a moving clock, and the rotation of the
inlerval OQ inlo the position 0Q' is realized by placing the clock into a
different state of motion.

We shall now look for a realization of the positive 4s2, i.e., for a
physical object that satisfies the relations of congruence of the hyper-
bolas in quadrants III and IV. Let us first choose the interval OS

! 1 shall use the terms “characteristic time’ and “charactcristic length” as
translations of the German terms ** Eigenzeit' and * Eigenlinge.”—u.R.
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that corresponds to two simuitaneous events in K, the spatial distance
of which is equal to 1. Since now dx4 = 0, expression (1) reduces to

Ax12+dxa24-Ax3? = As? (5)
This interval is therefore measured by the spatial length 42 of a unit
measuring rod.

Now let us choose the interval 0S’, which equals OS and also equals 1.
It is measured in K by formula (1). If we want to reduce (1) to an
expression corresponding to (5), we must introduce a different
simultaneity for which 0S’ is a simultancity cross-section. This is
casily accomplished if we place the rod into the moving system K’, since
0S’ is the space axis corresponding to the time axis 0@’ according to
Einstein's simultaneity, if 0Q* and 0S’ are conjugate diameters. The
two ends of the rod describe the world-lines OQ’ and 5,5, and the rod
is represented by the slanted strip enclosed between the two world-
lines, Therefore 0S’ is the position of the rod for a simultaneity
cross-section x'4; OS' is represented by the events cccurring at its two
ends, if these events are simultancous in the sense of Einstein's
definition of simultaneity for K. This definition reduces (3) to the
expression

Ax\ 2+ Ax' 22 - A3t = ds? (6)

Interval OS’ is therefore likewise measured by the length of a measuring
rod, if the rod is moved in the described fashion. Corresponding to the
concept of characteristic time we now form the concept of characteristic
length: the characteristic length of a measuring rod is determined by two
events occurring at its endpoints, when these events are simultaneous
according to Einstein's definition of simultancity for that system in
which the measuring rod is at rest. A spacelike interval is realized by the
characteristic length of a measuring rod, und the rotation of interval OS into
position OS’ is realized by placing the measuring rod inlo a different state of
motion and by producing evenls at its ends that are stmullaneous according
to the appropriale definstion of simullaneity.

This result shows a peculiar difference between clocks and measuring
rods. Clocks are inherently four-dimensional instruments, since the
endpoints of their unit distances are events. Measuring rods, on the
other hand, are three-dimensional measuring instruments; their end-
points are space points and they can be changed into four-dimensional
measuring instruments only if events are produced at their endpoints
according to a special rule.

These considerations show that clocks and measuring rods supply a
realization of the indefinite geometry of Fig. 30b, and that this
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geometry characterizes the structure of the space-time manifold. The
assertion that measuring rods, clocks, and light rays behave according to
the relations of congruence of the indefinite metric represents the geometrical
SJormulation of the light- and maller-axsoms.

We have previously discussed (page 160) the assertion concerning the
union of space and time. On the basis of the geometrical representation
we can now clarify this assertion. Surely, the graphical representation
of time, the combination of space and time into one manifold, is not
new, since it also holds in the classical theory of time. The new content
can be summarized in the following two assertions.

First, it is maintained that the element of the manifold determined
by two point-events, namely the interval, finds its natural realization
by clocks, measuring rods and light rays. This means that these
measuring instruments introduce into the manifold certain congruence
relations of a very specific kind. It is this fact which has made the
four-dimensional treatment of space and time so fruitful, and which
is expressed in the statement that clocks, measuring rods, and light
rays assume for the four-dimensional space-time manifold a function
which is similar to the function performed by rigid rods in three-
dimensional space. It is true that the classical space-time theory
could have treated space and time as a four-dimensional manifold; it
would even have been possible to define some metric within this mani-
fold. However, there would have existed no physical objects that
would have realized the congruence relations of this metric. The
assertion that there’exists a natural metric for the space-time manifold
has therefore great significance for physics. In this sense we may
speak of a union of space and time. This does not mean, however,
that space and time lose their specific individual differences, for, clearly,
clocks and measuring rods are quite different types of measuring
instruments. This union of space and time, therefore, preserves their
specific properties.

The transition from the indefinite metric of the theory of relativity to the
classical theory of time can be characterized by the replacement of the limiting
velocity ¢ by w. The basic metrical formula will then degenerate, since x; = cf
becomes infinite, and no metric of this kind is possible. If we were to construct a
metric in the classical theory of time, we would not work with an indefinite metric,
but would use the definite metric (3b, § 28) and define the congruence of four-
dimensional intervals in an arbitrary fashion. Of course, there are such intervals
even in the classical theory of space and time, but there is no natural rule, only
arbitrary definitions, for their relations of congruence, i.e., for the measurement of

length. The clock would not present a realization of these intervals, but would
measure contour levels; see § 30.
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Secondly, it is asserted that the manifold of space and time is of the
indefinite type. This assertion has the consequence that not only the
time axis can be rotated—this can also be done in the classical space-
time theory, since it merely means that any moving system may be
chosen as the one at rest—but even the space axis can be rotated.  In
the classical theory of space and time the space axis could not be
rotated, because the angles of quadrants 1T and IV were equal to 0.
These differences of the new space-time theory in this respect have been
the cause of erroneous interpretations. It was believed that the
coupling of the space and time axes supplied by the Loremtz trans-
formation, according to which every choice of the time axis determines
a corresponding space axis as the conjugate diameter, signifies a more
fundamental junction of space and time. This coupling, however, is
relatively unimportant because it is based on an arbitrary additional
requirement, introduced only for descriptive simplicity, for which there
is actually no epistemological need. The mistake committed here is
the one pointed out on page 146; it springs from the crroncous
conception that there is a relation between the relativity of simultaneity
and the relativity of motion. Only the fact that the space axis can be
rotated independently of the time axis is new in the indefinite metric.
This statement means that simultaneity is arbitrary within a certain
angular interval. We saw (§ 22) that this fact represents a specific
feature of the relativistic theory of space and time, which we formulated
as a structural property of causal chains and illustrated in Fig. 23.
We showed in § 25 that the definitional nature of simultancity results
in an indeterminateness for spatial measurements; therefore we cannot
speak of the state of a space at a definite time before a definition of
simultaneity has been given. For this reason the indefinite metric
formulates a second important point that can be referred to as a union
of space and time. But this characterization of the space-time
geometry can also be considered as leading to a sharp separation of
space and time, because in the equation (1) of the indefinite metric one
dimension is clearly distinguished from the others by the negative sign.
It is true, of course, that even this representation does not exhaust the
specific characteristics of time. This follows from the fact that the
purely spatial metric of § 28 also represents the indefinite type, i.c.,
that an indefinite metric can likewise be realized by spatial measuring
instruments alone. However, equation (1) expresses an asymmetry
between space and time, which clearly distinguishes between the two.

The theory of relativity therefore does not maintain that time is the
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““fourth dimension of space”’; it is and remains time in all its specific
properties. When we symbolized time by means of a straight line in
Figs. 31 and 32, we only gave a graphical representation, which means
that the logical structure exhibited by the rods described in § 28 can
also be realized by the space-time manifold. This representation is
analogous to the graphical representation of thermedynamic relations
(§ 15), which exhibit the same logical structure as do rigid bodies (in this
case the ordinary kind of rigid bodies). Therefore, the combination
of space and time under one metric cannot erase their differences. If
we speak of a geometrization of physical events, this phrase should not
be understood in some mysterious sense; it refers to the identity of
types of structure and not to the identity of the coordinated physical
elements.  On the contrary, there are essential properties of time which
are not expressed in the geometrical representation in spite of the
indefinite type of metric. However, if we remember these limitations,
geometrical representation and visualization by means of drawings can
always be used, because they combine the rigor of logical inference with
mathematical elegance and lucidity.

§ 30. THE RETARDATION OF CLOCKS

In this and the next section we shall deal with two consequences of
the matter-axioms which have given rise to misinterpretations and
unjustified criticism. The first concerns clocks; the second, measuring
rods.

Let us assume that two clocks U; and Us are set according to
Einstein’s definition (1, § 19) in an inertial system K (Fig. 33). A clock
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Fig. 33. Retardation of clocks.

U’ with equal rest-unit (that is, if it were to remain at rest next to U,
it would always show the same time as U;) is moved in the direction
of the arrow with a velocity v. When it is next to U} it shows the same
time as U, (this determination requires only the neighborhood
comparison of clocks); what will it show when it reaches clock Us?
Einstein's theory maintains that it will then be slow relative to Us.
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This statement is also called Einstein's retardation of clocks,
according to which a moving clock is slow relative to the time of the
rest-system.

The geometrical interpretation of this problem leads us back to the
relations indicated in Fig. 19 (p. 134). Let us draw Fig. 196 again
(Fig. 34) with the difference, however, that we do not use the moving

Fig. 34. The difference between interval and coordinate time.

clock in our definition of simultaneity, but compare it with a simul-
taneity obtained by Einstein's definition. The horizontal lines will
now correspond to Einstein's simultaneity. Furthermore, we shall
assume uniform motion, i.e., that the world-line E E; of the clock U’
is a straight line. According to Einstein’s retardation of clocks, the
number of sections which the moving clock has marked off along its
world-line E,E; is different from the number of contour levels through
which it has traveled.

The relations drawn in Fig. 32 (p. 185) supply a simple explanation.
0Q is the period of a unit clock. The event @, is simultaneous with @,
measured according to Einstein's simultaneity defined in K. When the
moving clock reaches @, it has not yet completed its period, since this
is accomplished only at Q. The difference between the classical and
the relativistic theory of time, therefore, is expressed in our geometrical
interpretation as follows: according to the classical theory of lime, a
moving clock measures the coordinale time, and according to the relativistic
theory it measures the interval.

Which of the two theories of time is correct? At any rate, the
distinction between interval and coordinate time is certainly correct.
The difference between the two theories of time consists in a purely
physical assertion. It is impossible to state a priors whether the moving
clock indicates the coordinate time or the interval. Epistemologically
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speaking, both suppositions are possible; which of them applies to
reality can be shown only by experience.

It is wrong, therefore, to say that the relativistic retardation of clocks
is inconceivable. One phenomenon is as conceivable as the other, and
we can only ask which one occurs in fact.  Visualization cannot give us
the answer; only observation can do so. The relativistic hypothesis
has been confirmed by observation of traveling atom-clocks, which in
fact show Einstein's retardation.! The classical theory is also based
on a hypothesis, since it is a physical hypothesis that the clock which
travels along EEs (Fig. 34) indicates the contour levels, and not the
length of the world-line. This hypothesis is identical with the
acceptance of a specific simultaneity, since the moving clock can
indicate the time difference only for one system of contour lines, which
it would thus distinguish from all others.

An objection to the relativistic theory of clocks that plays an
important role in the literature, and may therefore be discussed, is
given by the so-called clock paradox. The clock U’ (Fig. 33) is slow
compared to the time in K, and when it reaches U will show an earlier
time than Us. Let us imagine that U’ is stopped in its path at this
instant and turned around so that it will travel back to U;. The time
taken in turning the clock around may be ignored, since it is negligible
compared to the time of the round trip. The same retardation occurs
during the return trip, and U’ must therefore be slow compared to U,
when it reaches U;. The last statement is independent of both the
simultaneity definition for K and the behavior of Us. We can therefore
say: if a clock U’ is first moved away from U, and then returned, it
will be slow relative to U,.

It seems that according to the theory of relativity the process can be
interpreted in the opposite manner. We consider U’ to be at rest,
while U) is moved (to the left) and then refurned. On the basis of this
description we should conclude that U is slow relative to U’, since U,
is the moved clock. This result constitutes a contradiction, because
a neighborhood comparison, independently of the definition of
simultaneity, can tell us which of the clocks is slow when they meet.
Only one of the two assertions can be correct.

The contradiction is quite striking and may under no circumstances
be solved by considering the following two statements compatible:
*“when brought together U’ is slow relative to U3 " and * when brought

1 1 refer here to the experiments of H. Ives on the transverse Doppler effect in
cathode rays. For this question sce also A., §§ 23-24.
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together U) is slow relative to U".""!  The comparison of the two clocks
is independent of the definition of simultaneity. If the two above
statements were both considered to be true, such a conception would

Fig. 35. The asymmetry in the clock paradox.

contradict the basic rule of the theory of relativity that a point-event
(a coincidence) has an objective significance. A solution can be given
only if we can show that one of the apparently equally correct inferences
is incorrect. In fact, it is the second one.

The error lies in a misconception of relativity, which can be explained
as follows. The theory of gravitation shows (cf. § 39) that the special
theory of relativity is applicable only because the distant masses of the
fixed stars (drawn as a circle in Fig. 35) determine a particular metrical
field. If we take account of the masses of the fixed stars F, the
apparent equivalence of the two interpretations vanishes. According
to the first interpretation U’ is moving, while U and the fixed stars I
remain at rest. According to the second interpretation U’ is at rest,
and U and the fixed stars F are in motion. This analysis eliminates
the symmetry of the two processes; the second is an entirely different
process from the first because of the effect of the moving fixed stars,
which produce a gravitational field at the instant of the reversal of the
motion and thus cause a retardation of U’. Due to the gravitational
field U’ is the retarded clock even according to the second interpreta-
tion. Calculations prove this conclusion quantitatively correct.2 The
mistake that led to the paradox therefore resulted from the fact that
the considerable effects of gravitation were ignored.

! This is the opinion of ]. Petzold, Die Stellung der Relativitdtstheorie in der
geistigen Entwicklung der Menschheit, Dresden 1921, page 104.

2Cf., e.g.. A. Kopfl, Grundzige der Einsteinschen Relativititstheorie, Leipzig
1921, pages 117 and 189.
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A remark may be added concerning the extension of Einstein’s theory
of clocks to living organisms. The retardation of clocks has often been
illustrated by the example of the twins: of two newborn twins, one
makes a cosmic trip with a velocity slightly below the velocity of light
and returns as a boy, while the other twin has in the meantime become
an old man. This consequence, which many people have regarded as
absurd, actually contains nothing impossible or inconceivable and
agrees with the theory of relativity in every respect. In fact, a similar
case has been described in W. Miiller's poem ‘‘Der Ménch von
Heisterbach,” which describes a monk going on a walk and returning
after three hundred years to his monastery, where nobody recognizes
him. The poet’s imagination thus created ideas which modern physics
no longer regards as impossible.

If the objection is raised that the theory of relativity as a physical
theory applies to physical processes alone and not to living organisms,
onc forgets that there are many basic principles of physics which also
apply directly to living beings. Galilea’s law of falling bodies governs
a falling stone as well as a falling egg or a falling human being. The
laws of gravitation apply in general to animate and inanimate objects
in equal fashion. After the discovery of the spherical shape of the
earth, it was immediately inferred from this physical theory that
human beings who live on opposite sides of the spherical surface
nonetheless have the subjective feeling of upright posture, because
living organisms adjust themselves to the physical gravitational field.
It is a similar claim which is made by the theory of relativity in the
example of the twins, namely, that living organisms, like clocks,
adjust themselves to the metrical field. It would be an unjustifiable
hypothesis to assume that they would behave differently, since the
principle that the time scale of natural clocks is identical with the time
scale of living organisms (insofar as it can be defined) is one of the oldest
principles of natural science. The example of the twins is explained
by the fact that the ultimate constituents of living organisms are atoms.
If every atomic period, i.c., the period of the electron within the atom,
is retarded to the same degree under the influence of motion or of a
metrical field, physiological phenomena wouldshow thesameretardation.
since they result from the integration of many atomic periods.
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§ 31. THE LORENTZ CONTRACTION AND
THE EINSTEIN CONTRACTION

The theory of relativity makes an assertion about the behavior of
rigid rods similar to that about the behavior of clocks. This assertion
states that the characteristic length of a rod measures the interval. On
the basis of the geometrical interpretation of Fig. 32 (page 185) we can
easily recognize that this statement leads to consequences different from
those of classical space-time theory. According to classical theory,
the moving rod is not represented by the strip between the world-lines
0Q’ and $,5’, but by the wider strip bounded by 0Q’ at the left and
SS’s at the right. This follows, according to classical theory, because
the length of the moving rod, measured in K, is given by 0S, and its
rest-length in K’ would correspondingly be OS’s. According to the
theory of relativity, the rod has the shorter rest-length OS’ in K*.

This assertion of the theory of relativity is based mainly on the
Michelson experiment.!  This experiment proves that the rods satisfy
the light-geometrical definition of congruence (cf. Fig. 29, page 170)
where

AB = AC when ABA = ACA (1)

in every inertial system, for any orientation of the coordinate axes.
According to classical theory, (1) is satisfied in only one of the inertial
systems, namely, the system at rest relative to the ether. In all other
systems the rest-length of one of the branches of the coordinate axes
will no longer satisfy (1). Since the Michelson experiment has been
confirmed to a very high degree, we could consider this matter closed,
because it has no bearing upon epistemological considerations, if it had
not been given certain erroneous interpretations in the usual discussions
on relativity.

In order to explain the experiment Lorentz made the assumption

. 2
that one arm of the apparatus is contracted by the amount J] — 'iz
€

when it moves relative to the ether. Einstein, on the other hand,

considered both arms equally long in every inertial system and

calculated the contraction factor J ]_v; in an entirely different
¢

manner, as a consequence of the relativity of simultaneity. The

opinion has been expressed that the contraction of one arm of the

1 It doces not follow, of course, from this experiment alone.  See A., §§ 21, 24.
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apparatus is an “ad hoc hypothesis,” while Einstein's hypothesis is a
natural explanation that is a consequence of the relativity of simul-
taneity. Both of these explanations are wrong. The relativity of
simultaneity has nothing to do with the contraction in Michelson’s
experiment, and Einstein’s theory explains the experiment as little as
does that of Lorentz.

The above opinion is incorrect because the contraction of the arm of
the apparatus occurs for the moving system relative to which the
apparatus is at rest. The Einstein contraction would explain a
contraction of the arm only if it were measured from a different system
and is therefore not sufficient to explain the Michelson experiment.
This experiment proves that a rod which lies along the direction of the
motion is shorter than it should be according to classical theory, if ¢
is measured relative lo the rest-system. In other words: the comparison
of the rest-length of moving rods does not obey classical theory. If
there were a special inertial system I that could be regarded as an
absolute rest-system, and if we had in this system two equally long
rigid rods, one of which behaved according to classical theory and the
other according to Einstein’s theory, the two rods would cease to be
equally long if they were brought into any other inertial system S,
provided that they lay along the direction of the motion of S. The
Einstein rod would be shorter. The difference could be measured in
S as the difference between their rest-lengths, and in any other system
as the difference between the lengths of the moving rods. Einstein's
theory as well as Lorentz’s theory therefore assumes the behavior of
rigid rods to be measurably different from their behavior according to
classical theory; but the difference has nothing to do with the definition
of simultaneity.

It has been objected to previous remarks of mine on this subject !
that it is impossible to compare two magnitudes belonging to different
theories. This objection is incorrect. By reference to a third body,
we are able to establish a comparison, if we calculate how the two
magnitudes under consideration compare with that third body.
Furthermore, this mode of expression is frequently used in physics.
We may say, for instance, that a highly-compressed gas behaves
differently than it would according to Mariotte’s law. This means
nothing but that the real gas g, when compressed to a certain degree,
occupies a larger volume than a gas G which satisfies the Mariotte-
Boyle relations. The third body used in this comparison is the rigid

' See Zs. f. Phys. 34, 1925, pp. 44f.
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measuring rod which measures the volume. The third body is not
always explicitly mentioned, and the abbreviated formulation is often
preferred, because it clearly suggests a difference in actual behavior.
The Lorentz contraction must indeed be considered a real difference in
this sense. In this case, the lertium comparationts is light, which in
terms of light-geometrical definitions supplies a standard to which the
rods of the different theories can be compared. It would be an
incorrect mode of speech, however, to say that the Einstein contraction
is an apparent difference.  This contraction has nothing to do with the
difference between the real and the apparent, but results from a
difference in the conditions of measurement. We shall speak of a
melrogenic difference because this difference originates in the nature of
the measurement.  Since we are specifically concerned with kinematic
conditions of measurement, we shall speak of a metrokinematic difference.

We have pointed out before that the length of a rod is not the rod
itself, but a logical function thereof; it is a number coordinated to the
rod expressing its relation to other rods. The process of coordination
depends on certain specified conditions. In the discussion of the
concept of the length of a moving rod (§ 25) we emphasized that the
coordinated length / depends on the simultaneity s as well as the velocity
v. It is to be expected, thercfore, that the coordinated length ! will
vary with changes in the two parameters s and . This distinction is
inherent in the kinematic system. Just as we spoke of perspective
differences, in the previous example about the angle of vision, we may
now speak of metrokinematic differences.  Without changes in the rod
itself, it is subjected to different kinematic conditions of measurement
and will therefore yield different measures within the frame of one
consistent theory.

The situation is different for the Lorentz contraction. It compares
rods under the same conditions of measurement relative to different
theories. Here we have conflicting empirical assertions, since the two
theories exclude each other. The same rigid rod behaves differently
under the same conditions of measurement whether the Lorentz or
Einstein theories on the one hand, or the classical theory on the other
hand, are correct. We therefore speak of a real difference when we
compare the real behavior with a possible behavior of objects. This
real difference exists, in the explanation of the Michelson experiment,
between the classical theory and Einstein's theory as well as between
the classical theory and Lorentz’s theory, whereas there is no difference
between Einstein’s and Lorentz’s theorics; both assert the state of

197



Chapter I1I. Space and Time

affairs formulated in (1), while the classical theory differs from them in
this respect. The concept of simultaneity does not enter into this
problem at all.

It would be advisable, therefore, not to use the same name for the
two ‘‘contractions.” There is an Einstetn contraction, which results
from the relativity of simultaneity and compares the length of the
moving rod with the length of the rod at rest; and there is a Lorentz
contraction, which compares the length of a rigid rod that satisfies the
Michelson experiment with the length of the rod as defined in the
classical theory. It is a coincidence that both have the same

2
contraction factor J 1-"? 5 and this is probably the reason that the two
¢

contractions have been so frequently confused. Their meanings are
different. In addition to the Einstein contraction, Einstein’s theory
also contains the Lorentz contraction, which it "explains” as little as
does the Lorentz theory. It is simply assumed axiomatically.

What is the difference between Einstein's and Lorentz’s theories?
In order to answer this question let us distinguish between the following
two statements:

(a) the rest-length of the moving rod is different from the rest-length
of the rod at rest.

(b) the rest-length of the moving rod is different from the rest-
length of another rod which moves with it but satisfies the
classical theory.

Statement (b) is true. This was proved by the Michelson experiment
and some further assumptions; we shall call it the Lerentz contraction.
In the geometrical representation it is indicated by the difference
between the distances OS’ and 0S5’y (Fig. 32, p. 185). As formulated,
statement (a), on the other hand, is neither true nor false; its truth
depends on the coordinative definition for the comparison of the rest-
lengths of moving segments (cf. § 25). In the geometrical representation,
statement (a) is equivalent to the comparison of OS’ and OS. It seems
that Lorentz believed that statement (a) follows from statement (b).
This belief, however, would constitute an epistemological ervor.
Einstein’s theory rejects Lorentz’s conclusion and, recognizing the
existence of a coordinative definition, regards the two rest-lengths
mentioned in (a) as equal. It is sometimes overlocked by proponents
of the theory of relativity that statement (b) is nevertheless true.

It follows that Einstein's theory also contains a contraction which is
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independent of the relativity of simultaneity, namely, the Lorentz
contraction. In addition, however, it contains the difference between
the rest-length and the length of a moving segment, in other words,
the Einstein contraction.

If we say that the equality of the two contractions is ** coincidental,”
this means that their equality depends on certain presuppositions;
nevertheless there is a theoretical connection between them. It can be
shown that they must always be equal if and only if the transformation
is linear. The proof is as follows. Let { be a rod that behaves accord-
ing to the Lorentz or Einstein theory and L be a rod that behaves
according to classical theory. Their rest-lengths in K are equal, or
= L% (where the upper index designates the system in which the
measurement is performed, and the lower index the system in
which the rod rests). The Lorentz contraction therefore concerns the
ratio

W LY (2)

while the Einstein contraction concerns the ratio
1 (3)

According to classical theory we have L¥. = L (this comparison uses
the simultaneity of K and is independent of that of K’), and since
1% = LE we obtain LE. = I£. Relation (3) therefore becomes

15 LK. (4)

Because of the lincarity of the transformation (and only because of it),
ratio (4) is the same as ratio (2}, which means that (3) is also the same
as ratio (2).
On the other hand, the ratio
Wk (3)

which equals (3) according to the Lorentz transformation, can be quite
different even if we use linear transformations. This fact permits us
to construct an example in which an Einstein contraction appears but
no Lorentz contraction. If the rigid bodies did not behave like Z in the
relativistic sense, but like L in the classical sense, there would be no
Lorentz contraction; however, the Einstein contraction from K’ to K
would also disappear, since

LE . LE =1 (6)
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If we nevertheless define the simultaneity in K’ according to Einstein,
setting € =} (see 2, § 19), the inverse comparison from K to K’ will
show the Einstein contraction

.. .. v?

the magnitude of which is the square of that of the Lorentz-Einstein
contraction. This proof clarifies the fundamental difference between
the two contractions.

The difference is perhaps most conspicuous in the geometrical
representation of Fig. 32 (p. 185). The Lorentz transformation claims
that OS’ is shorter than 0S’,, since OS’ =I§. and 0S’s = LE. The
Einstein contraction maintains that 0S; is shorter than OS, since
0S) = if{ and OS = I£. It can easily be seen that the second state-
ment is a consequence of the first, because, according to the relativistic
theory of time, the rod is represented by a narrower strip. Even if the
classical theory were correct, and the rod were represented by the
wider strip, OS’s = LE would still be shorter than 0S’, = L
(SS'3 is parallel to OQ and these two lines are the boundaries of the
world-strip of the rod at rest in K). This means that for K’ there is an
Einstein contraction but no Lorentz contraction.

Another example of an Einstein contraction without a Lorentz
contraction results if the rods behave like L, i.c., there is no Lorentz
contraction, but simultaneity in X is defined differently from Einstein's
e =13. This makes L{ : LE#1. The example used in a similar form
in § 25, where we discussed the dependence of the length of the moving
segment on the definition of simultaneity, makes it particularly clear
that the Einstein contraction is a metrogenic phenomenon. In the
geometrical representation this means that we may choose as the length
of the rod differently directed sections through the world-strip of the
rod. On the other hand, the geometrical representation of Fig. 32
shows very clearly that through the difference in the width of the strip,
the Lorentz contraction indicates a difference in the actual behavior of
the rod. These considerations also explain how it is possible to
compare rods ! and L, although only one of them is physically realized.
OS is the same in both theories; the classical theory claims that the
right-hand boundary of the strip parallel to 0Q" must be drawn through
S, whereas the new theory places the boundary along the tangent to the
hyperbola which passes through S.

If we wish to enter into the further question of an explanation, we
should first point out that the problem has been confused by the use of
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the word *“contraction.”” This word has led to a mistaken application
of the principle of causality. Looking for a cause of the contraction,
some philosophers and physicists have belicved that a cause for the
difference between the magnitudes must be found. This conception
assigns a preferred position to one theory, namely, the classical theory,
whose laws are taken to be satisfied by physical objects without a cause,
while causes are made responsible only for deviations from this
behavior. The problem of causality is to be posed in a different form;
if we ask for a causal explanation, we must ask why it is that measuring
rods and clocks adjust themselves to a certain transformation defined
in terms of light-geometry. This causal problem is the same whether
the rods and clocks adjust themselves to the relativistic or to the
classical transformation. The word “* adjustment,” which was first used
by Weyl in this connection (cf. § 39), characterizes the problem very
well. It cannot be an accident that two measuring rods which have
the same length at one place always have the same length when brought
to a different place along different paths. It must be explained as an
adjustment to the field in which the measuring rods are embedded like
test-bodies.  Just as the compass necedle adjusts its direction to the
magnetic field of its immediate environment, so measuring rods and
clocks adjust their wnit length to the metrical field.  All metrical relations
between physical structures must be explained in this fashion, including
the Michelson experiment, according to which rigid rods adjust them-
selves in a definite way to the motion of light. The answer can of course
be given only by a detailed theory of matter, which has not yet been
elaborated. Tt must be explained why the accumulations of density in
certain parts of the field, electrons and similar particles, provide a
simple indication for the metric of the surrounding field. The word
“adjustment”’ therefore poses a problem rather than supplies a
solution. The existing situation is formulated rigorously by the
matter-axioms without the use of the word “‘adjustment.” If this
theory of matter were exactly formulated, we would be able to explain
the metrical behavior of physical structures. For the time being,
however, we can speak of an explanation by Einstein’s theory as little
as we can speak of an explanation by Lorentz's theory or by the
classical theory.

Why is Einstein’s theory better than Lorentz’s theory? It would
be mistaken to argue that Einstein's theory gives an explanation of
Michelson’s experiment, since it does not do so. Michelson’s experi-
ment is simply taken over as an axiom. However, Einstein’s theory
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is superior to Lorentz’s theory because it renounces the quest for an
explanation of the Michelson experiment in terms of a ‘‘ contraction.”
The “explanation” given by Lorentz’s theory is its weakness. It
assumes the classical relations to be “self-evident’” and postulates
incorrectly that any deviation from these relations must have a cause.
Linstein’s thecory makes use of the arbitrariness of the coordinative
definition for the comparison of the rest-lengths of moving segmenis
and calls the two rods equal if they behave in accordance with
the Michelson experiment. The superiority of Einstein's theory
lies in the recognition of the epistemological legitimacy of this
procedure.

§ 32. THE PRINCIPLE OF THE CONSTANCY
OF THE VELOCITY OF LIGHT

Finaily, we must mention in this connection the constancy of the
velocity of light, because this is claimed to be another assertion of the
theory of relativity which is impossible to visualize. The statement
that the same light impulse can be considered as a spherical wave
relative to systems in different states of motion is only an apparent
contradiction. It is solved if we remember that the wave surface is not
a material surface, but an ideal structure projected into a process of
propagation. Its shape therefore depends on the nature of the
construction, which is determined by the method of the measurement
of length, hence the definition of spatial congruence, and by the
definition of simultaneity. Since we are concerned with the shape of
a moving structure, measured from a resi-system, its shape can only be
considered as its simultaneity projection on the rest-system. If the
definition of simultaneity is changed, the shape of the projection is
changed, and if the Lorentz transformation assumes a specific definition
of simultaneity for cvery state of motion, then the shape of the
simultaneity projection can easily be made spherical for every state of
motion. If it is argued that it is impossible to visualize the same light
impulse in the shape of a spherical wave for each of two systems in
different states of motion, we answer that this apparent impossibility
results from the tacit introduction of assumptions ignoring the demands
of the theory. In fact, the theory does not say that the wave surfaces
in the two systems consist of the same point-events; rather, every wave
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surface compared to that of the other system represents a ** focal-plane
shutter photograph’ of the motion of light,

We may recall §26, where we have shown that every centro-
symmetric process of propagation, not only light, is an indefinite
structure, and that by itself it does not define the state of motion of its
center; this is accomplished only by the addition of a definition of
simultaneity. There we showed that the propagation of the same
light impulse can be conceived either as a system of concentric spheres
or as a system of eccentric spheres, the centers of which move at a
uniform velocity. The definition of simultaneity used in § 26 was not
that of the Lorentz transformation, because we defined simultaneity
from a system relative to which the centers were in motion. If the
definition of simultaneity is given from a moving system, the spherical
surface will result when Einstein’s definition with ¢ == } is used, since
it is this definition which makes the velocity of light equal in all
directions.

The core of the principle of the constancy of the velocity of light,
therefore, is not the assertion that light may be conceived as a spherical
wave for every moving system. This part of the principle expresses
only a general property of all centro-symmetric processes of pro-
pagation. Rather, the assertion that light possesses unique properties
constitutes the physical content of the principle. We should therefore
speak of the principle of the uniqueness of light.  This principle bas two
parts.

The first part deals with the principle of the limiting character of the
velocily of light. According to this principle, light has the highest
velocity and is identical with the first-signal defined in § 22.  This state-
ment, which belongs to the light-axioms, is not an arbitrary assumption
but a physical law based on experience. In making this statement,
physics does not commit the fallacy of regarding absence of knowledge as
evidence for knowledge to the contrary. It is not absence of knowledge
of faster signals, but positive experience which has taught us that the
velocity of light cannot be exceeded. For all physical processes, the
velocity of light has the property of an infinite velocity. In order to
accelerate a body to the velocity of light, an infinite supply of energy
would be required, and it is therefore physically impossible for any
object to attain this speed. This result was confirmed by measure-
ments performed on electrons. The kinetic energy of a mass point
grows more rapidly than the square of its velocity, and would become
infinite for the speed of light. We cannot say that this conclusion is
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logically necessary.  Whether or not physically possible velocities have
a finite upper limit can only be taught by experience. If observation
shows the existence of a limit, we have to accept it, instead of hoping
that some day a greater velocity may be found. It is true that science
has discovered many things which were never even thought of before,
but these were mostly new discoveries that did not contradict previously
established scientific laws. Of course, such a refutation may occur
and then we would have to admit that the previous scientific
“law” was false. This possibility should not prevent us, however,
from believing in scientific laws so long as they are confirmed by
experience.

Incidentally, the limiting character of the velocity of light can be
made plausible in a very simple fashion. Light represents only a small
section of the infinite range of electromagnetic waves, all of which have
the same velocity.  According to the present state of scientific theory,
the electromagnetic wave is the archelype of causal propagation. Every
other causal process, e.g., the propagation of elastic forces in a rigid
body, or the flow of an electric current, is reducible to elementary
clectromagnetic processes.! It seems plausible that a causal process
composed of many such clementary processes should be slower than
the electromagnetic propagation; for instance, the collisions of the
individual electrons may cause a retardation; however, it would be
inconceivable that such a compound causal propagation would be
faster. It follows that present-day physics has important positive
grounds for asserting that the velocity of light is the limit of the velocity
of all causal propagation.

The sccond part of the light principle can be formulated as the
principle of the metrical uniqueness of light. 1t contains the assertion that
the natural geometry of light rays, the light-geometry, is at once the
geometry of rigid rods and clocks. This statement accounts for
Einstein's term “‘the principle of the constancy of the velocity of
light.”” It states that the velocity of light is constant even if the space-
time metric is defined by means of rods and clocks. Only this for-
mulation makes the principle complete and clarifies its physical
import. It asserts a correspondence between light- and matter-
geometry, a formulation that makes the empirical nature of the
principle obvious. Einstein's terminology, however, may give rise to
misunderstanding. Physics cannot assert that the velocity of light is

1 An exception is the propagation of gravitional forces, which however according
to LEinstein also travel with the speed of light.
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constant, since the measure of velocity contains an arbitrary clement
in the definition of simultaneity. We can only say that the velocity
of light can be defined as constant without leading to contradictions.
The *“can,”” however, contains a far-reaching assertion about physical
reality, namely, the identity of light-geometry and matter-gecometry.
To speak of the principle of the metrical uniqueness of light therefore
seems to describe the situation more adequately.

Occasionally, the objection has been raised against the relativity of
simultaneity that Einstein's definition could just as well have been
given by the use of some other signal, such as sound; this is true. The
use of any signal is justified by the complete relativity of simultaneity,
i.e., the possibility of choosing for ¢ any value between 0 and 1. We
should not believe, however, that this sound-geometry has the same
unique characteristics as the light-geometry. The sound-geometry
would not be identical with the geometry of clocks and rods, nor would
it exclude velocities above that of sound. Because of the latter
fact, simultaneity as defined in this case would lead to contradictions
within the causal definition of time order as soon as signal velocities
of a speed higher than sound were used. The special properties of light
are not conseguences of the theory of relativity but its presuppositions.
Conversely, these empirical facts make the relativistic space-time
theory physically significant, for they make the light-gcometry the
natural geometry of physics.

E. Cohn ! has constructed a very instructive model of the lLorentz trans-
formation, which reproduces all itsrelations correctly and exhibits very clearly the
relativity of simultaneity. The model presents the velocity of light on a reduced
scale, and therefore units are chosen for the two moving systems which do not
coincide if transported into the same state of motion. These adjustments increase
the illustrative power of the model, since it demonstrates the uniqueness of light
in a very effective manner.  The epistemological objections raised by J. Petzold 2
against this model cannot be maintained.

The principle of the uniqueness of ligh! is one of the most basic
assumptions of the theory of relativity. Its character as a physical
and not as an epistemological assumption must be recognized before the
space-time doctrine of the theory of relativity can be judged. Its
division into two parts is also important for the physical theory, since
it is only the first, the principle of the limiting character of the velocity
of light, which is taken over into the general theory of relativity. The
second part, namely the principle of the metrical uniqueness of light, holds

1 E. Coln, Physikalisches iiher Rawm und Zeit, Teubner 1910 and later ed.

2 J. Petzold, Verh. d.d. phys. Ges. 1919, p. 495.
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only in the special theory of relativity, while it is abandoned step by
step in the general theory; this will be shown in § 38 and §§ 41-42.

§ 33. THE ADDITION THEOREM OF
VELOCITIES

Finally let us investigate the problem of the addition of velocities,
which is solved in the theory of relativity by means of the peculiar
addition theorem of Einstein. If a body has two velocities at the same
time, how can these be combined into one resultant velocity? This
question is significant because it also concerns the problem of resolving
a velocity into its components; the combination of the components of a
velocity into a resultant is only a special case of the addition theorem
in which the individual velocities are perpendicular to each other. We
must now investigate to what extent the addition of velocities can be
derived logically and to what extent it is a matter of experience.

First let us state the problem more precisely. What does it mean to
say that a body has two velocities at the same time? Obviously this
expression is very vague. We may say, for example: a body has at one

time the vclocity;;and at another time the velocity 5: what velocity?:;
results if it has both velocities at the same time? This question leads
back to the first question, since we are using the phrase “ having at the
same time.” It is therefore preferable to reverse the question: a body

has a velocity z;; and we ask how this velocity can be resolved into two
components.

We may proceed as follows, provided that we consider only uniform
rectilinear motion; all other motions are reducible to this in infinitesimal

—
regions. Let a body move from /’p to I’y with a velocity # and then

from P; to P; with a velocity ;in a different direction. For each of
these paths it uses the same time interval 4¢.  If we send it another time

directly from Py to P with a velocity of w such that it takes the same
interval 4¢, which it had previously used for the separate parts of the

trip, we say that it has velocities % and v at the same time. Now we
have given a definition of ""having at the same time,” and we can
derive logically the addition theorem for vectors

- =

t4v = w (1
In this form the addition theorem is a logical consequence; and at the

same time it justifies the resolution of a velocity into its components.
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‘The components of the velocity are defined in terms of the total velocity
in the same way as the individual velocitics 1 and » were defined in
terms of w. The law of the components of a velocity, which is a
special case of (1), is therefore purely a matter of logic.

We can also give the expression *having at the same time” a com-
pletely different meaning which has a direct physical interpretation.
For this purpose we use an auxiliary system K’; the system of reference

—
is K. Let K’ have the velocity « relative to K and let a given body
— —
have the velocity vrelative to K'. What velocity @ does this body have
relative to K?  More precisely, how is its velocity w relative to A
computed from u and v ?

It is immediately obvious that an answer to this question will
depend on the definitions of the measurements of length and of simul-
taneity in the two systems A and K’. Let us assume that these two
measurements are defined in a certain manner in K’, and thercfore,

that the body has the velocity v relative to K*.  Its velocity relative
to K will then be w.  If we change the definitions for the two measure-

ments in A’ and consider a body which now has the velocity v relative to
K’, this body will have a state of motion different from that of the

first and it will therefore have a different velocity w* relative to K.
Consequently its velocity w* must be calculated differently, in terms of

# and ; from the velocity w of the first body. We can therefore give
an addition theorem corresponding to the second meaning of * having
at the same time" only if we state how length and time measurements
are to be performed in K and K.

[t can easily be shown how these measurements have to be performed
in order to obtain addition theorem (1). For this result we must
require:

(1) Simultaneity and the measure of time in K’ are to be defined so
that every clock in K’ always shows the same time as that clock
in K which it is passing at that moment. In other words: the
time of KA’ is identical with the time of K.

(2) The length of a distance !" in A’ is to be measured by that
distance ! of K which is the projection of I’ on K on the basis of
the simultancity of K. In other words: the measurement of
length in K’ is identical with that of K.
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It can casily be scen that the vector-addition theorem (1) follows
logically from these conditions, since they define the so-called Galilei-
transformation

Xe = X'at Ul «a=1,2,3 i =1 {2)

in which the components #, of w are defined according to the above
rules.!

The problem is essentially different for the relativistic theory of
space and time. It defines the measure of time, simultaneity, and the
measurement of length in K’ in a different fashion, requiring that the
relativistic light-geometry be established in K’ as well as in K. Since
this requirement is equivalent to the use of the Lorentz transformation
for the transition from one system to the other, we obtain a different
addition theorem for the relativistic light-geometry. This theorem is
derivable from the Lorentz transformation; and we shall present it

— —
here for the simple case where # and v are equidirected:?
u+tv

1wy (3)

W =
1+

Like additional theorem (1), this theorem is logically necessary, but it
rests on different assumptions.

We may also consider this addition theorem as an empirical result, if
we define the metric in K’ not light-geometrically, but with the aid of
clocks and rigid rods. Then (3) states: if lengths and time intervals
are measured in K and K’ by the same kind of natural clecks and rods,
and if simultaneity is defined for both systems according to Einstein’s
formula (1, § 19), then addition theorem (3) holds for the second kind
of definition of “bhaving at the same time’ two velocities. This is
obviously an empirical law, since it concerns clocks and rods the
behavior of which cannot be determined a priori.  On the other hand,
it is clear that this law has no other empirical content than that
expressed by the correspondence between light-geometry and matter-
geometry, With this formulation we have exhausted the empirical
content of the relativistic kinematics as far as concerns measuring
instruments.

1 See A., §§ 14-15, where the Lorentz transformation is derived via the Galilei-
transformation and where it is explained that the difference between the two
transformations is merely dcfinitional.

2 For the general case see M. v. Laue, Relativitits-Prinzip, Vol. 1. Braun-
schweig 1913, p. 46.
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Finally, retaining the second meaning of ““having at the same time”
two velocities, we can give the addition theorem another interpretation
by using the following rule for the measure of velocity in K*.  Let us

erect in K a mechanism that would give a body the velocity v if it were
fired in K, e.g., a cannon with a certain powder charge. If this cannon
is transported to K’ and fired, then we say that the shell has the velocity

- . — .
vrelative to K. Since K’ moves with the velocity u relative to K, how

can w be calculated from wand v? The velocity in K’ is not defined by
clocks and rods, but by the transport of a firing-mechanism. Therefore
the question arises: to what definition of the space-time metric in K’
does this arrangement correspond?

Relativistic mechanics claims that this arrangement corresponds to
the relativistic definitions for mecasurements in K’, while classical
mechanics claims that it agrees with those definitions for measurements
in K’ determined by conditions (1) and (2) above (p. 207). Thesc are
two entirely different assertions about the world. The theory of
relativity states that under the same physical conditions in K’ the same
velocity will be produced relative to the relativistic metric, while the
classical theory maintains that the corresponding velocity is the same
only if the measurements in K’ are performed according to rules (1) and
(2). For the theory of relativity, the relativistic metric of K’ is the
normal system.

This analysis supplies additional empirical content for (3); the
composition of velocities that are produced by a series of physical
mechanisms satisfies the addition theorem (3). For this reason a
repeated operation of firing mechanisms will never produce the velocity
of light, although each firing from an already moving mechanism will
increase the velocity. The velocities will approach the velocity of light
asymptotically; this result can be inferred from (3) by simple calcula-
tion.1

The last assertion goes beyond relativistic statements about space
and time in the narrower sense, and leads into relativistic physics; the
principle of relativity therefore contains statements not only about
space-time measuring instruments but also about all physical
phenomena in general. The pursuit of this aspect of the theory of
relativity does not lie within the scope of this book, which is restricted
to the problems of space and time.

1 It can easily be shown that if ¥ < ¢ and v < ¢, then also w < ¢
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B. Gravitation-Filled Space-Time
Manifolds

§ 34. THE RELATIVITY OF MOTION

Considering now the problem of motion, we turn to a treatment of the
problem of space which is historically speaking much older than the
geometrical treatment of the problem. Whereas the latter approach
developed only after the invention of non-Euclidean geometry in the
beginning of the 19th century, the relativity of motion had already
attracted attention at the time of Newton and Leibniz, Even at that
time there was a dispute between relativists and antirelativists,
and the well-known correspondence ! between Leibniz and Clarke, a
follower of Newton, became the talk of the day. Whoever reads
those letters today finds in them many of the arguments and objections
which are known from modern discussions of the problem of motion.

That the relativity of motion was defended at such an early date is
due to its conspicuousness. Motion is change in position; it is clear,
however, that it cannot be observed unless it is a change in position
relative to a certain body and not relative to an ideal space point. Is
it meaningful, under these circumstances, to speak of absolute motion
or of motion relative to space, if motion relative to other bodies only
can be observed? The distinction between what is observable and
what exists seems reasonable at first, but becomes very doubtful on
closer inspection; there is a strong fecling that it is meaningless to
postulate differences in objective existence if they do not correspond to
differences in observable phenomena. Leibniz expressed this idea in
his principle of the identity of indiscernibles, from which he derived a
theory of the relativity of motion, which even today forms the basis of
the theory of relativity. According to this principle there exists only
a motion of bodies relative to other bodies, and it is impossible to
distinguish one of these bodies as being at rest, because rest means
nothing but rest relative to another bedy, i.e., rest is itself a relative
concept. We shall call this conception kinematic relativity. Motion
as a kinematic process, as a change in spatial distances, is relative, since
all kinematically observable phenomena are the same whether one or
the other of two bodies is assumed to be at rest. The cosmologies of

1 See A. Buchenau and Ernst Cassirer, G. W. Leibniz Philosophische Werke (4
vols.): Hauptschriften zur Grundlegung der Philosophie (2 vols., Leipzig, 1924)
vol. I, p.120 f.
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Copernicus and Ptolemy are kinematically equivalent; both of them are
descriptions of the same facts, and Ptolemy’s epicycles of the planets
are the kinematic equivalents of the circular orbits of Copernicus.

Even this early discussion of the problem of motion, however, deals
already with another kind of question, namely the dynamic problem of
molion. It was Newton, the father of mechanics, who introduced
criteria of motion other than kinematic ones into the discussion.
Discovering the quantitative relation between motion-producing forces
and a kinematic magnitude, the acceleration, he could in turn use force
as a measure of acceleration, i.e., the state of motion. Newton there-
fore denied the relativity of motion. According to him it is not true
that all observable phenomena are the same regardless whether we
consider one or the other of two bodies as being at rest, becausec
differences appear as soon as dynamic phenomena are included in the
observations. The measurement of the effect of a force therefore
permits the determination of a state of motion relative to space. This
leads Newton to the concept of absolute space which “in its own
nature, without relation to anything external, remains always similar
and immovable.”” ! He certainly recognized the difficulties involved
in speaking of such an unreal structure whose ‘‘parts cannot be
sensually perceived’’ !; but with his basic law of dynamics

Force = Mass X Acceleration

he was able to indicate other means to determine motion relative to
space and at the same time the state of absolute space itself. If we
observe the relative or ‘*apparent’’ motion of an observable body, i.c.,
its motion relative to the observer, and measure the effective force,
we can calculate the absolute motion of the body. With the aid of the
laws of dynamics we can therefore determine the state of motion of
the unobservable absolute space in terms of observable phenomena.

Newton developed these ideas mainly with reference to rotation.
If we imagine a rotating disk in empty space, then it is kinematically
impossible to determine its state of motion. This is possible, however,
as soon as we take account of dynamic phenomena. An observer
located on the disk could measure a centrifugal force %, i.c., the pressure
that drives a body fastened to the disk toward the rim, and calculate
from it the velocity of the rotation by the formula # = mew?r. Newton
demonstrated in a very ingenious fashion how one could also determine
the direction of the rotation. Carrying through his idea for our

1 Newton, Naturalis Philosophiae Principia Mathematica, Definitions.  English
translation by Motte and Cajori, Berkeley, 1947, p. 6.
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example, let us imagine a second smaller disk in the center of the first,
rotating relative to it. On this second disk the centrifugal force will
be greater or smaller depending on whether the two disks rotate in the
same or in opposite directions. That direction of rotation of the second
disk which causes an increase in the centrifugal force is therefore also
the direction of rotation of the first disk.

Newton distinguishes consequently between the real and the apparent
motion of a body. This distinction is not always obvious, and Newton
regards it as the task of mechanics to develop methods that allow us to
carry through the distinction between real and apparent motion in all
cases. ‘‘...how we are to obtain the true motions from their causes,
effects, and apparent differences, and the converse, shall be explained
more at large in the following treatise. For to this end it was that I
composed it."” ! These concluding words of the introduction to
Newton’s main work illustrate the contrast that may exist between the
objective significance of a discovery and the subjective snterpretation given
to it by its author. \Whereas the physical system of Newton’s
dynamics has become a basic part of science, which, though trans-
formed by later developments into a higher form of knowledge, will
always be retained as an approximation, his philosophical interpretation
did not survive. It is only by passing through a state of absolutism
in the theory of space, however, that we have been led to the deeper
insights we have today. Only by disproving the Newtonian arguments
were the logical conceptions developed that issued in the general idea
of relativity and went beyond relativistic kinematics to a relativistic
dynamics.

Even Newton’s contemporary opponents, Leibniz and Huyghens,
took exception to his view. They repeatedly returned to the problem
of supplementing relativistic kinematics by a relativistic dynamics.
Leibniz tried to reach this aim by rejecting the Newtonian gravitation
as an action at a distance and attributing gravitation as well as inertia
to the motion of masses relative to the surrounding ether. He would
argue, for instance, that the appearance of centrifugal forces on a disk
isolated in space proves its rotation relative to the ether and not
relative to empty space.? He furthermore states expressly the

10p. cit., p. 12.

2 This view is not precisely formulated by Leibniz, but it may legitimately be
extrapolated from a passage in his Dynamics (Gerhardt-Pertz, Leibnizens mathe-
matische Schriften, VI, 1860, p. 197) and also from his defense of the relativity of
motion in the exchange of letters with Clarke.
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aequipollentia hypothesium, the equivalence of hypotheses, for the
description of a state of motion even for dynamic processes,! without
however giving a mathematic proof. Yet his philosophical system
led him to limit his dynamic relativity, for he wrote to Huyghens:
““that to every object there corresponds a certain amount of motion,
or, if you wish, force, in spite of the equivalence of the assumptions.”
He believes that for every motion there is some unique subject from
which the motion originates, and comes to the conclusion *“ that there
is more in nature than what geometry can determine, and this is not
the least of the reasons which I use in order to prove that besides
extension and its various aspects, which are something purely
geometrical, we must recognize something higher, namely a force.”?
Therefore we cannot regard Leibniz' views as a consistent theory of
the relativity of motion. He was unable to refute Newton'’s arguments.
Neither was Huyghens able to refute them, although he found a very
interesting interpretation of the centrifugal force, which however, can
no longer be maintained.?

It was Ernst Mach who discovered the argument that can be
constructed against Newton's theory of centrifugal force and which
leads to a relativistic dynamics. Mach deals with the patl experiment
described by Newton. A pail half full of water is suspended by a rope
and is put in a state of rotation by twisting the rope. In the beginning
the pail will not drag along the water, but will rotate alone. Gradually,
however, it will drag along the water, and the surface of the water will
assume the well-known hollow shape, which is due to centrifugal force.
When the pail is stopped, the water continues to rotate and retains
its parabolic surface. Newton concludes that the centrifugal force
cannot be explained by a relative motion, since a relative motion exists
between the pail and the water at the beginning as well as at the end
of the process, while the centrifugal forces appear only at the end. If
the pail rotates while the water is at rest, there is no centrifugal force.
If, however, the water rotates while the pail is at rest, there exists a
centrifugal force.

! Gerhardt. op. cit. p. 507.

2 See Reichenbach, ' Die Bewegungslehre bei Newton, Leibniz und Huyghens,"”
Kantstudien 29, 1924, p. 432, where a detailed treatment of this problem is given.
[The English translation of this paper will be included in the forthcoming volume
of Selected Essays to be published by Routledge and Kegan Paul, London.— M.R.)

3 Reichenbach, op. cit., pp. 434f.
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Mach replies that Newton overlooked the fact that the surrounding
masses of the earth and of the fixed stars have to be taken into
consideration. The water rotates not only relative to the pail but also
relative to these large masses, which may be considered as the cause of
the centrifugal force. The centrifugal force therefore does not indicate
a rotation relative to absolute space, but only a rotation relative to the
masses of the universe. If we consider the water with its hollowed
surface as being at rest, then the carth and the fixed stars rotate around
the water. In this conception the centrifugal force is a dynamic
gravitational effect of rotating masses.. Such a force of traction
originating in the rotation of masses can very well be conceived. A
moving electric charge—as Einstein argued later—produces forces that
do not exist when the charge is at rest.

What is new in Mach's interpretation is the idea that the inertial
force can be interpreted in the relativistic conception as a dynamic
gravitational effect.  Relativity can be extended to dynamics if forces are
reinterpreted relativistically. The same force that affects a body K as
the result of the rotation of K according to one interpretation, affects
it according to the other interpretation as the result of the rotation of
Kj.  We thus arrive at a complete reinterpretation of the concept of
force (although Mach was not fully aware of it). Forces are not
absolute magnitudes, but depend on the coordinate system. In
physics there are both kinds of magnritudes; electric charge and entropy
are invariants, i.c., magnitudes independent of the coordinate system;
velocity and acceleration are covariants, i.e., depend on the coordinate
system. With Mach’s solution of the problem of rotation, the
gravitational field is deprived of its absolute character and recognized
as a covarian! magnitude which varies with the state of motion of the
coordinate system. This result, which represents the most significant
aspect of Mach’s view, expresses for the first time the basic idea of the
principle of general covariance.

Mach draws a very interesting conclusion from his considerations.
Not only the large masses of the heavenly bodies, but also smaller
masses, must have dynamic gravitational effects, though to a corre-
spondingly smaller degree. If we were to give the walls of the
Newtonian pail a thickness of several miles,! then its rotation around
the stationary water would produce a hollowing of its surface similar
to that of the rotating water, but of a smaller degree. This idea was

L E. Mach, op. cit., p. 232.
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tested later experimentally by Friedlinder! on the fiywheel of a
rolling mill, which should produce in the neighborhood of its axis a
centrifugal field that would affect bodies not participating in the
rotation of the wheel. The effect was not demonstrable, however, as
it fell below the limit of accuracy. Yet Mach’s claim is retained in the
modern theory of relativity.

This consequence of the ideas of Mach shows, on the other hand, that
the dynamic relativity of motion is more than a philosophical principle,
since it leads to observable consequences. Although these con-
sequences appear reasonable, we cannot say a priort whether they will
be true, since this can only be decided by an experiment. We must
therefore investigate Mach’s solution of the problem of rotation in more
detail.

Let us consider two world-systems (Fig. 36), cach of which consists

Fig. 36. Illustration of the problem of rotation.

1 Dr. Benedict and Immanuel Friedlinder, Absolute oder relative Bewegung,
published by Leonhard Simion; Berlin 1896. These experiments were performed
in 1894 by Immanue! Fricdlinder by means of a torsion balance. He states that
he obtained the effect as expected, but was not sure whether it might not have
been due to other causes. Incidentally, Friedlinder is much clearer than Mach
regarding the need for an empirical decision of the problem of the relativity of
motion. He also recognizes **that the correct form of the law of inertia is found
only if relative inertia, as a mutual effect of masses, and gravitation, which is also
a mutual effect of masses, are reduced to one unified law’’ (page 17).
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of an earth Ey and Es and of a fixed star shell ¥y and Fg, respectively.
The two systems are a great distance apart, but light signals can be
sent back and forth to determine their relative states of motion. Let
us now assume the state of motion to be as follows, using one or the
other of the following two interpretations for its description (the axis
of rotation is the dotted line):

Interpretation I:  E; rotates, F; is at rest

Es is at rest, Fa rotates

Interpretation II: K, is at rest, F) rotates

Es rotates, Fa is at rest.

These two interpretations are kinematically equivalent. Are they also
dynamically equivalent? Mach’s theory asserts that they are, but it
actually says more than that. According to the theory, it must be
true that if centrifugal forces appear in E; then centrifugal forces must
also appear in Ej, since both earths are in a state of motion relative to
their respective fixed stars. This is an empirically verifiable assertion.
Let us assume that it is not satisfied and that centrifugal forces appear
in Ey alone. Does this disprove dynamic relativity?

The example we have constructed corresponds to the theory of
Newton, and Newton would say that it compels us to accept inter-
pretation I and establishes absolute space. Closer examination will
show, however, that this claim is exaggerated; interpretation II can
also be carried through dynamically. Interpretation I states dynamic-
ally: if E rotates relative to absolute space then centrifugal forces will
appear. Therefore there are centrifugal forces in E; and not in E.
Interpretation II states on the other hand: if the fixed star shell F
rotates relative to absolute space, it produces dynamically a gravita-
tional field in E. There are therefore attraction forces in £; and not
in E;. The inferred state is the same in either case and therefore
neither interpretation is dynamically incorrect. We find that if the
condslions are realized which were assumed by Newlon, there exists
absolute space, but ils state of motion cannot be determined.

We obtain the following result. Mach’s idea (Mach'’s principle in the
wider sense) of considering mechanical forces as covariant magnitudes,
to be interpreted as inertia or dynamical gravitation according to the
state of motion of the coordinate system, permits the application of
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dynamic relativity under all conditions. However, it does not exclude
absolute space. This exclusion is accomplished only by a further
assertion, Mach's principle in the narrower sense, connecting the
appearance of centrifugal forces exclusively with the relative motion of
masses, excluding therefore the state described above and requiring
centrifugal forces in E; as well as in Eo. But this principle is
undoubtedly empirical.

Mach’s (and also Einstein's) relativity theory of dynamics is based
therefore on the superposition of two principles, one epistemological
and one empirical. The epistemological principle states that every
phenomenon is to receive the same interpretation from any given
moving coordinate system. The observable phenomena therefore do
not single out any state of motion. The empirical principle states that
all physical phenomena depend only on the relative position of bodies
and not on the positions of these bodies in space. Two similar systems
differently oriented in space must therefore show the same physical
phenomena.

Even though attempts were made to assign a purely formal meaning
to the relativity theory of dynamics according to which the relativistic
interpretation describes reality, but has no claim on truth, such an
untenable distinction msunderstands the significance of the Mach-
Einstein theory. The relativity theory of dynamics is not a purely
academic matter, for it upsets the Copernican world view. [t is
meaningless to speak of a difference in truth claims of the theories of
Copernicus and Ptolemy; the two conceptions are equivalent descrip-
tions. What had been considered the greatest discovery of western
science compared to antiquity, is now denied its claim to truth.
However much this fact may caution us in the formulation and
evaluation of scientific results, it does not signify a regression in the
historical development of science. The theory of relativity does not
say that the conception of Ptolemy is correct; rather it contests the
absolute significance of either theory. It can defend this statement
only because the historical development passed through both of them,
and because the conquest of the Ptolemaic cosmology by Copernicus
gave rise to the new mechanics, which in turn gave us the means to
recognize also the one-sidedness of the Copernican world view. The
road to truth has foilowed in this case the purest form of the dialectic
which Hegel considered essential in every historical development.

Of course, it would be an overestimation to interpret Mach's ideas as
the completion of the synthesis.  When Mach replied to Newton that
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centrifugal forces must be explained by means of relative motion alone,
he did not formulate a physical theory, but only the beginning of a
program for a physical theory which must eventually deal with all
mechanical phenomena, not only centrifugal force. Above all it must
explain relativistically the phenomena of motion in a gravitational field,
e.g., the motion of planets. The greatest achievement of Newtonian
mechanics was that it gave a dynamic foundation to the Copernican
world view. While from the point of view of kinematics there existed
no difference between the universes of Ptolemy and Copernicus,
Newton decided in favor of Copernicus from the point of view of
dynamics. It was only for this particular world description that his
theory of gravitation offered a mechanical explanation, The com-
plicated planetary orbits of Ptolemy, on the other hand, did not fit
into any explanation. If we wish to establish the equivalence of both
world conceptions, we must find a theory of gravitation sufficiently
general to explain the Copernican and also the Ptolemaic planetary
motion as a gravilational phenomenon. Herein lies the great achieve-
ment of Einstein, compared to which the ideas of Mach appear only as
preliminary suggestions: Einstein has indeed found such a compre-
hensive theory of gravitation; and it is with this discovery, which places
him on the same plane as Copernicus and Newton, that the problem of
the relativity of motion has been brought to a conclusion.

§ 35. MOTION AS A PROBLEM OF A
COORDINATIVE DEFINITION

Before we continue the development of the theory of gravitation,
i.e., the physical part of the principle of relativity to which we are led
by dynamic relativity, let us add a remark about its epistemological
aspects. We are now in a position to give a rigorous formulation to
the philosophical status of the epistemological assertions of the theory
of relativity on the basis of previously developed concepts.

Why can motion only be characterized as relative? This question
leads again to the concept of coordinative definition; the unobservability
of absolute motion indicates the lack of a coordinative definition.
The customary presentations have not always made this problem clear.
If it is agreed that only relative motion is observable and is therefore
the only objective phenomenon, this statement, which is based on the
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principle of the identily of indiscernibles, is questionable, because it
assumes a metaphysical character. If we cannot recognize a difference,
does it mean that there actually is no difference in the objective
phenomena? This view overlooks the fact that purely logical
considerations are involved. The question which system is in motion
is not a defined question, and therefore no answer is possible. We are
not dealing with a failure of knowledge but with a logical impossibility;
the two conceptions which we are to distinguish cannot be formulated
meaningfully, and consequently an answer that decides for one of them
would be meaningless. To ask for the state of motion of a body is
possible only if we have previously defined which system is to be the
rest system; a coordinative definition of rest must therefore be given
before we can even ask a question about a state of motion. This
statement explicates the phrase *the relativity of motion.” We found
in § 33 that this rclativity, which depends on the arbitrariness of a
coordinative definition, applies even if the dynamic relativity of Mach
cannot be carried through and the dynamic effects depend on the
orientation of the coordinate system in space. The problem of motion
thercfore leads to the discovery of a new coordinative definition for
space in addition to the coordinative definitions for unit length and the
comparison of lengths, namely, the coordinative definition of rest.

It is for this reason that the idea of simplicity cannot be used to
decide Dbetween the Ptolemaic and Copernican conceptions. The
Copernican conception is indeed simpler, but this does not make it any
“truer,” since this simplicity is descriptive. The simplicity is due to the
fact that one of the conceptions employs more expedient definitions.
But the objective state of affairs is independent of the choice of defini-
tions; this choice can result in a simpler description, but it cannot yield
a “truer” picture of the world. That these definitions, e.g., the
definition of rest according to Copernicus, lead to a simpler description,
of course expresses a feature of reality and is therefore an objective
statement. The choice of the simplest description is thus possible only
with the advance of knowledge and can in general be carried through
only within certain limits. One description may be simplest for some
phenomena while a different description may be simplest for others;
but no simplest description is distinguished from other descriptions
with regard to truth. The concept of truth does not apply here, since
we are dealing with definitions.

By basing the relativity of motion on the need for a coordinative
definition, we arrive at a more fundamental relativity. The
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coordinative definition of rest for an entire coordinate system is
generally not accomplished by mere reference to a small region. Sucha
definition would presuppose the concept of rigid bodies, which permits
the restriction of the definition of rest to the state of motion of three
points,! which would then determine the state of motion of the entire
system. In general, however (i.c., if rigid bodies are not referred to),
we must define a special state of rest for each point. We can then
define an entire point system as a rest system even if its individual
points change their mutual distances by comparison with rigid bodies.
For example, if we define a rubber band which is stretched (in the
customary sense) as being at rest, this definition will never lead to
contradictions. The preference for the definition of rigidity in terms
of rigid bodies is based again merely on descriptive simplicity, In
order to understand this procedure, it may be remembered that the
usc of rigid bodies enables us to define the unit length in terms of a
single space point and to extend it to other space points by the transport
of rigid rods. The same procedure is applicable to the definition of rest
in terms of three points in space; rest at other points in space is then
defined in terms of rigid-rod connections with the original three
points. This particular kind of definition is, of course, not logically
necessary.

The result attained by Mach and the earlier relativists has some-
times been formulated by saying that only the relative motion of the
earth and stars, not their individual motions, is an objective fact.
Our present considerations force us, however, to go one step further
and assert a relativity of relative motion. Using a crude picture, let us
consider the earth as attached to the fixed stars by rubber bands. \We
can now define the continually stretching rubber bands as being at
rest, and in this manner {ransform away the relative motion within the
carth-star system. Therefore even this relative motion is not an
absolute fact; it applies only to certain specific coordinate systems,
namely those that can be realized by rigid bodies. 1f we therefore
speak of an “objectively recognizable” relative motion, this can only
mean a relative motion with respect to rigid bodies as defining relative
rest.

! Even these three points cannot be given arbitrarily; they must satisfy three
Testricting conditions on their nine coordinates, which prescribe the mutual
distances between the points. If we think of these nine space coordinates as
functions of time, only six of these functions can be given arbitrarily. The
assertion that a rigid body has six degrees of freedom is equivalent to this
statement.
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To clarify this situation, let us use an example chosen for simplicity
from the two-dimensional domain. In an inertial system K of finite
extension—we may think for instance of a Newtonian inertial system—
let the normal space-time measurements be defined according to
Einstein. Let us imagine radii » drawn from a point 1, which cover
the plane in all directions (Fig. 37) and moving points P on every

Fig.37. Anexpanding point system that can be defined as rigid.

point P of this plane. Let us assume that all these points P’ begin to
travel along their respective radii away from P at the same time
{ = 0 (defined in K in the sense of Einstein’s definition of simultaneity).
The velocity v of each point is uniform and v = 7o¢, where g is a
general constant and re the distance of the point Py at the time ¢ = 0.
The equation of motion of each point is therefore given by
r = rogt+ro (1)
Points lying on a circle around P; at the time / = 0 will always have
the same velocity, but points lying on larger circles will move away
with correspondingly higher velocities, so that the distances between
the circles as well as their circumferences are continually increasing.
Only the point P’;, which lies on the point P), will remain at rest
{(ro = 0). The points P’ therefore form an expanding point system
when compared with a rigidly connected system. Yet we can dcfine
the system of the points P’ as being internally at rest; then we have
defined away the relative motion of the points 7. System K of the
points P which was previously called rigid, is no longer rigid; its points
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move towards P;.  This system K is therefore rigid only if we use rigid
bodies for our definition of rigidity.

The chosen example has another peculiarity. System P’ was chosen
to show quite normal properties if the light-geometry is applied to it.
We can define a time measure for a clock at P; such that the time
PP’ Py remains constant for light signals from Py, although P’ travels
away from Py when viewed from K. System K’ will then satisfy the
light-axioms 1V, 1 and 1V, 2. We can also define the light-geometric
measure of space so that the distance between any two points P’
remains constant, although it constantly increases when viewed from
K. The only difference these measurements will show compared to
those in K is that the geometry of the system P’ will be non-Euclidean.
It is however static, i.e., independent of time, and it is impossible to
detect from light-geometrical measurements that a relative motion is
taking place between these points. But we may infer from the non-
Euclidean character of the geometry that we are not in an inertial
system and that the system is not rigid in the sense of Euclidean light-
geometry, especially not in the sense of matter-geometry. We there-
fore have in the class of systems determined by the light-axioms I-1V
a more general definition of rigidity. It is clear, however, that even
these systems are special cases and that a system of differently expand-
ing points can also be defined as being internally at rest. We are again
dealing with nothing but a definition.t

§ 36. THE PRINCIPLE OF EQUIVALENCE

We now turn to the consequences of dynamic relativity, which goes
beyond the epistemological relativity. For this purpose we must
analyze Einstein's theory of gravitation, since Einstein adopted
Mach’s idea of dynamic relativity and developed it further. Whereas
Mach restricted his investigations to rotation, Einstein applied the
principle to all kinds of motions; consequently his formulation is
superior. He was able to give this general formulation by transforming
the ideas of Mach into a differential principle.

Einstein expressed his principle of equivalence in the form of a thought
experiment. Let a mass m be suspended by a spring in a closed
compartment such as an elevator (Fig. 38). A physicist in this

1 For a more detailed discussion of this example sce A., pp. 49 and 128.
Another example of a system of radially expanding points is given on p. 60 in A.,
in which the light-geometry is Euclidean. In regard to the replaceability of rigid
rods by the definition of rigidity of the light-geometry, see § 27 of the present book.
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§ 36, The Principle of Equivalence

compartment observes suddenly that the spring expands. He can
casily verify this expansion by using a measuring rad. The increase

bT l“

Fig. 38. Equivalence of acceleration and gravitation.

in the tension of the spring indicates a stronger pull of the mass m.
How can the physicist find the cause of this pull? He could give two
explanations.

Explanation I. The compartment has received an upward accelera-
tion (in the direction of arrow &) from some external
force. The effect of the inertia of the mass m is
therefore a downward pull opposite to the direc-
tion of the acceleration.

Explanation II. The compartment has remained at rest, but a down-
ward directed gravitational field g (arrow g) has
arisen and therefore exerts a stronger pull on the
mass m.

It is impossible to decide experimentally between these two
explanations inside the compartment. This is still true if we permit
the physicist to look out of a window, since he will observe only
kinematic phenomena, and these do not enable him to decide between
the two explanations. It might be objected that explanation II
requires the appearance of large observable masses below the compart-
ment, but this is true only if static gravitational fields are assumed.
As soon as we admit dynamic fields in Mach’s sense, the gravitational
field g can be attributed to a motion of the surrounding masses.

What is the basis of this indistinguishability? According to
Einstein, its empirical basis is the equality of gravitational and inertial
mass. This new distinction must be added to the usual distinction
between mass and weight. There are therefore three concepts:
inertial mass, gravitational mass, and weight.

The first distinction originated with Newton's discovery that the
weight of a body depends not only on the body itsclf but also on the
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distance at which the body is located relative to the attracting mass.
A mass m (Fig. 39) resting on a spring balance will exert a different
force (measurable by the tension of the spring, which is indicated by

ls
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Fig. 39. Measurement of gravitational mass.

its length) on the support, according to the distance of the apparatus
from the center of the earth. This fact is expressed by the formula

T = m? (1)
which rcsolvcs the force F exerted by a body on its support into the
intensity g ¢ of the earth’s gravitational field (the vectorial nature ofg gis
usually ignored and it is written “g") and a proportionality factor m
due to the body itself. The structure of formula (1) is analogous to
that of the formula

F=¢E @)

of clectrostatics, where the mechanical force I* results on the one hand
from an intensity E. which is independent of the attracted body and
characterizes the field, and on the other hand a proportionality factor e
which is interpreted as the electric charge of the body. Correspond-
ingly we might call m the gravitational charge.! This factor m is the
gravitational mass of the body, i.e., the constant that expresses the
cffect of gravity upon it.

The mass of the body has also a quite different effect. If a carriage
supporting the mass m is put in motion on a horizontal plane by the
release of a compressed spring (Fig. 40) then the force F of the spring

will produce a certain acceleration b which determines the velocity
with which the carriage continues to roll horizontally after the push.
The following equation applies to this relation

— —
F=mb (3)
1 H. Weyl, op. cit., p. 225.
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It turns out that in this equation m has the same value as that
in equation (1). This is an empirical statement which we can
imagine to be tested as follows. Assume objects of different materials,
which, according to Fig. 39, show the same compression of the spring
and are then pushed, according to Fig. 40, by a spring under the same

Fig. 40. Measurement of inertial mass.

tension. It can be shown that the push will give them equal velocities.
This result is not self-evident. It is conceivable, for example, that
volume would have an influence on inertia and that among the masses
of equal weights those having a greater volume would reccive a smaller
velocity in the experiment of Fig. 40. This question can be decided
only by experience.

The principle of the equality of inertial and gravitational mass,
which incidentally is also the reason for the equality of the velocities
of falling bodies (a body which is more strongly attracted by gravity
has to overcome a correspondingly greater inertia) has becn confirmed
to a high degree by experiments. It is mentioned explicitly by
Einstein as an empirical principle constituting the basis of his principle
of equivalence.

The equivalence of inertia and gravity is the strict formulation of
Mach'’s principle in the narrower sense. It implies that every pheno-
menon of inertia observable in an accelerated system can also be
explained as a gravitational phenomenon; thercfore it cannot be
interpreted to indicate uniquely a state of motion. Conversely, we
can use the principle of equivalence to fransform away that gravitational
field which was considered an absolute datum in classical mechanics.
A freely falling elevator is a system in which the gravitation of the
earth is transformed away. Any object in it when pushed would
assume a rectilinear, force-free motion in the sense of the law of inertia.

The possibility of ‘' transforming away " is subject to certain essential
restrictions, Generally speaking, we can transform away gravitational
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fields only in infinitesimal regions. Let us consider for example the
radial ficld of the earth (Fig. 41). If we let a rigid system of cells
{the dotted lines of the figure) move in the direction of arrow b with an
acceleration g = 981 cmsec?, the earth field will be transformed away
in cell a but not in any of the others. 'We can now make the following
statement: for any given small region & we can always specify for the
system of cells an accelerated motion which will transform away the
gravitational field at 5. We may therefore say that any gravitational
field can always be transformed away in any given region, but not in
all regions at the same time by the same transformation.
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Fig. 41. Local *‘transforming away" of the gravitational field.

This principle takes the place of the Newtonian concept of inertial
system. By inertial system! Newton understands those astro-
nomically determined systems in which the law of inertia applies, i.e.,
those systems that move uniformly relative to absolute space. It can
be shown within the framework of Newton's theory that one can
obtain local inertial systems by transforming away the gravitational
field, although these systems are in a different state of motion provided
that the equivalence of inertial and gravitational mass is presupposed.
The gravitational field, which as such is still present, is compensated in
these local systems by their acceleration relative to absolute space and
the resulting inertial forces. According to Einstein, however, only
these local systems are the actual inertial systems. In them the field,
which generally consists of a gravitational and an inertial component,
is transformed in such manner that the gravitational component

1 This term was introduced by L. Lange, * Uber die wissenschaftliche Fassung
des Galileischen Beharrungsgesetzes', Wundts Philos. Studien, 1885, Vol. 11,
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disappears and only the inertial component remains. There are,
strictly speaking, only local inertial systems. The astronomical
inertial systems of Newton can at best be approximations which
gradually change in the neighborhood of stars. Only because distances
in space are large compared to the masses of the stars, and because the
stars have very low speeds, are astronomical inertial systems possible
as approximations.

\We must now formulate this idea more precisely. Above all we
have to state exactly what is meant by an “actual” inertial system,
which for the time being has only a more or less intuitive meaning.
Let us investigate first how the local inertial systems result according
to Newton. Newton's equation for the motion of a mass point in a
gravitational field is given by

=g (1)
If we now relate the x-coordinate to a freely falling system, i.e.,
introduce the transformation

-
X =x"+ '2’ (2)
y=y
then
F=itg
and (1) becomes
=0 (3)

which is the equation of motion in an inertial system. Within
mechanics there exists no difference between the two kinds of inertial
systems, and it would be a play on words to argue that one or the
other of the two is an “‘actual” inertial system. If we take into
account, however, exira-mechanical phenomena, there will be a
difference: whereas according to Newton the astronomical inertial systems
Jorm the normal systems for all phenomena, Einstein maintains that it is
the local inertial systems which form the normal systems. We shall study
the resulting difference in the example of the motion of light.
According to the Newtonian theory only the astronomical inertial
systems are the normal systems for the propagation of light. Only
in them does light travel in straight lines, while its path is curved in a
local inertial system. The motion of a light ray which moves parallel
to the y-axis is given in the Newtonian inertial system by the differential
equation
=0
y=¢

4
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These equations are valid according to Newton even if there is a
gravitational field, as for example on the surface of the earth. The
earth is embedded (for short intervals of time) in an astronomical
inertial system upon which the gravitational ficld of the earth is only
locally superimposed. With respect to light, this gravitational field
does not exist at all. If we now apply transformation (2) to these
cquations, they become

Y]

X' = —gl

. (5)
Relative to K’, light no longer travels along straight lines, because its
x'-coordinate is no longer a linear function of time.

According to Einstein, however, the local inertial systems are the
actual inertial systems for all other phenomena. In the case of the
light ray, for instance, the equation of motion must be linear in the
local inertial system K’, and the differential equations must therefore
be:

¥=0
o (6)
¥y =c
If we now go in turn with transformation (2) to the system K which is
stationary on the earth’s surface and consequently at rest in the
astronomical inertial system, the equations will become
x =gt
. (7)
It is relative to this system that light is now curved.

We shall illustrate the train of thought that leads from (6) to (7)
by the path of a light ray; this will bring out the purely kinematic
basis of the inference. Let us imagine a compartment (Fig. 42) at
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Fig. 42. Bending of a light ray as a consequence of the principle
of equivalence.

rest on the carth. Relative to the local inertial system it will perform

an upward accelerated motion. Let us also assume that a light ray
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enters the compartment through a slit on the left-hand side. We can
now determine its path within the compartment if we assume that the
local inertial system is at rest, and if we construct the motion of the
light ray relative to the compartment by superimposing the straight
line path of the light ray upon the accelerated motion of the compart-
ment. The different consecutive positions assumed by the compart-
ment are indicated by the square brackets of Fig. 42. The end of the
light ray is a little farther to the right for each successive position of
the compartment, corresponding to the marks on the dotted line. It
can now casily be seen that these marks have different positions
relative to the compartment in its various locations. On the right-
hand side we have drawn the same process relative to the compartment
as a rest system and indicated the marks this time in their relative
positions in the compartment. The path of the light ray is thercfore
a curved line relative to the compartment. This is a purely kinematic
effect. It derives from the fact that the horizontal motion of the light
is uniform, while the vertical motion of the compartment is accelerated.
Since we have started from the assumption, however, that light travels
in straight lines relative to the local inertial system which falls freely
relative to the earth, we have now arrived at the far-reaching physical
consequence that light assumes a curved path relative to a system
which rests on the earth: there is a curvature of light in the gravitational
field of a mass center.

It is irrelevant in this case whether the mass center itself is resting
in an astronomical inertial system, since this inertial system no longer
constitutes a normal system in the neighborhood of the mass center.
Indeed, it is no longer reasonable to speak here of an inertial system
with a superimposed gravitational field. The astronomical inertial
system is destroyed in the neighborhood of the mass center and cannot
be extended from the surrounding space to the region of the mass field
without losing its inertial character. Its functions have been taken
over by the local inertial system to which it cannot be rigidly attached.

In these assumptions we find the core of the general theory of
relativity. It is a genuine physical principle which, with the inclusion
of all nonmechanical phenomena in the characterization of the local
inertial system, states a physical hypothesis that goes far beyond the
experience stated in the equivalence of inertial and gravitational mass.
Einstein's hypothesis corresponds to a methodological procedure
frequently used in physics. Although the hypothesis does not follow
logically from the empirical evidence but claims much more, it is
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assumed in the hope that the observation of further derivable
consequences will confirm it.  After the special theory of relativity had
formulated the laws of clocks, measuring rods, the motion of light, etc.,
for inertial systems, the new hypothesis could now be formulated by
the statement that it is not the astronomical inertial systems, but the
local inertial systems, for which the special theory of relativity holds.
The gravitation-free ideal case required for the special theory of
relativity is therefore not realized in the astronomical inertial systems,
but in the local inertial systems. We may thus speak of the principle
of local inertial systems, which states that the local inertial systems are
those systems in which the light- and matter-axioms are satisfied.! With
this hypothesis Einstein introduces the general theory of relativity,
and the special theory of relativity thus becomes the limiting case of
the general theory.

For the sake of completeness, we shall now show how the same
inferences that lead to physical consequences regarding light also lead
to similar consequences regarding clocks. We shall again consider a
kinematic effect that results from the accelerated motion of a clock
relative to an inertial system, and infer from it an effect in the
gravitational field. The kinematic effect with which we are concerned
is the Doppler effect.

Let us first consider the Doppler effect that results from uniform
motion (Fig. 43). Let us assume that an observer is moving in a

6]

Fig. 43. Doppler effect as a result of uniform motion.

1 Strictly speaking this should read: ’in which these axioms are satisfied to a
higher degree of approximation”’. Cf. A., § 34.
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straight line with uniform velocity away from U;. Whenever the
clock Uy completes a period, it sends out a signal which will reach the
observer at increasingly distant points. The intervals between the
various light signals are therefore longer for the observer than the unit
intervals of the clock Ug which he carries with him. For him clock U,
runs slower than Us.  Let us now consider a similar process in the case
of accelerated motion (Fig. 44). The two clocks Uy and Up are
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Fig. 44. Doppler effect as a result of accelerated motion.

connected by a rigid rod, and the system which they form has an
accelerated motion. U, again sends signals after each unit period.
The first signal leaves A; and reaches Uz when Uj has reached A,.
The second signal leaves Uy at B) and reaches Uz at Bs, etc. The
distances A4z, B Bg, C1Cs. .. will become longer and longer, and
an observer who moves with Uz will thus experience a Doppler effect
in the sense of a retardation of Uy. In either case there is therefore a
retardation of one clock relative to the signals which arrive from the
other clock. Whereas in the case of uniform motion, only one of the
clocks is in motion while the other is at rest, the effect will appear in
the case of accelerated motion even when the two clocks are at rest
relative to each other, provided the rigid system which they form moves
as a whole. The latter case permits reinterpretation in terms of the
principle of equivalence. Two clocks which are at rest in the gravi-
tational field of a mass center are in an accelerated motion relative to
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the corresponding local inertinl system. Our consideration will
therefore lead directly to the assertion that a gravitational field
produces a retardation of those clocks which are located in regions that
have a higher absolute value of the gravitational potential. In the
case of atom clocks, there would be a red shift of the spectral lines,
because a retardation of the frequency manifests itself as a shift of
the wave-length in the direction of the red end of the spectrum.

It should be noted that this effect is independent of the retardation
of clocks discussed in § 30.  We have used for its derivation nothing
but the Doppler effect. The Doppler cffect was also known in the
classical theory of time, which does not include however the retardation
of clocks discussed in § 30.  The retardation of clocks in a gravitational
field must thercfore occur if the principle of equivalence alone is
correct, regardless whether there is an Einsteinian retardation of
clocks for uniform motion. This latter effect shows only in the
quantitative calculations of the retardation of clocks in a gravitational
field, where it appears as a small correction factor.

This last result is due to the fact that the Doppler effect can be calculated
as the superposition of two effects, namely, the classical Doppler effect and the
Einsteinian retardation of clocks. Conversely, we can recognize from this result
that the Einsteinian retardation of clocks in uniform motion has nothing to do
with the Doppler effect.

The bending of light and the retardation of clocks are direct
consequences of the principle of equivalence, and they demonstrate
very clearly the hypothetical character of the principle since they are
cempirically confirmable phenomena. The third of the so-called
Einstein effects, namely the advance of the perihelion of planetary
orbits, does not follow immediately from the principle of equivalence,
but from Einstein's theory of gravitation based upon it, especially
from the field equations to be mentioned in § 39.

§ 37. EINSTEIN'S CONCEPT OF
GRAVITATION

Continuing the investigation of the principle of the local inertial
systems, we are led to a concept of gravitation that is much more
complicated than that of Newton.

According to Newton the gravitational force is given by the
1}

. mma . .
cxpression = ; this formula resulted from the fact that he considered
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the gravitational field as superimposed on an inertial system, a
conception that enabled him to measure and describe the field in terms
of the coordinates of the inertial system. The given expression for the
gravitational force holds only if the system of reference is an inertial
system. In Einstein’s conception, however, the gravitational field
cannot be measured relative to an inertial system, since the gravita-
tional field is no longer considered as a phenomenon superimposed upon
the inertial system, but as a region in which there exists no extension
of the astronomical inertial systems. If local inertial systems are
sought within such a region, gravitation must be transformed away
locally, and consequently it is impossible to find an inertial system
relative to which a gravitational field could exist and be measured.
Einstein’s gravitational ficld must therefore be formulated without
reference to a unique coordinate system.

This assumption agrees with the ideas of Mach, who looked upon
gravitation as a covariant magnitude, the expression of which
transforms with the coordinate system. In every system of reference
deviating from the local inertial systems, a formulation of the gravita-
tional field must be possible. Furthermore, no system is distinguished
from the others as the one relative to which we could measure a
“true” gravitational force. We must therefore look for a mathe-
matical expression for gravitation sufliciently “elastic” to achieve
such a general characterization.

A scalar theory of gravitation can no longer accomplish this task.
Such a theory characterizes the gravitational state at every point by a
single number, the pofential; and the gravitational force will then be
characterized by the pofential gradient which can be calculated for every
point from the potential field; thus no further parameters are required.

The new theory has to accomplish considerably more. Let us take
a less simple system of reference, c.g., a rotating disk.  All mechanical
phenomena observable on the disk must be interpretable, according to
our principle, as gravitational effects. The centrifugal force, which
increases with the first power of the distance from the center, might
still be represented by a law of potential, although it would not
correspond uniformly to the fundamental differential equation of a
potential field, d¢ =0, since the center constitutes an exception to
this condition. This force, however, is not the only one effective on
the disk. An observer located on the disk would also notice the
effects of the so-called Coriolis force, which exerts a lateral pull on
moving objects, for instance, the deviation to the right of a projectile
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under the influence of the rotation of the earth. The new mathe-
matical expression for gravitation must be comprehensive enough to
account for both the centrifugal and the Coriolis force, and this task
cannot be accomplished by a scalar potential.

For this reason we have to use a fensor potential, which means that
the gravitational state of a point is no longer characterized by a single
parameter, but by a set of parameters, a system of tensor components,
which accounts for all forces occurring. The simple case of the
Newtonian field, in which one parameter is sufficient, is then contained
in the new conception as a special case. It is reasonable to assume
that the Newtonian field can occur only as an approximation and will
never be strictly realized. That astronomers have managed so far
with a single parameter for each point (e.g., in the earth’s field) is due
to the fact that one of the tensor components predominates over the
others and hence has been the only one noticed so far. The new
expression therefore formulates not only the covariance of gravitation
but also leads to a qualitative and quantitative change of the gravita-
tional field even in ““normal”’ cases, which should be noticeable in very
precise measurements. This consideration shows that we are dealing
in Einstein’s theory of gravitation with a physical theory which is
suggested by epistemological considerations but not derivable from
them.

According to this theory, the gravitational state at a point is best
compared with the state of tension existing, for example, in a beam of
a bridge. In every supporting member of a bridge there is a state of
tension producing stresses in the individual volume elements. This
state cannot be characterized simply by the coordination of a force,
i.e., a vector, to every point, but requires a more complicated formula-
tion. If we assume that the beam is cut along a slanted plane, the two
halves will shift relative to each other, i.e,, obey a force. The magni-
tude and direction of this motion will depend on the direction of the
plane along which the beam has been cut ; each cut, therefore, determines
a specific force.  For this reason we cannot determine the state of the
internal stresses at a point by coordinating to it a single vector. The
situation is much more complicated. For each point there are
infinitely many such coordinated vectors, one for each plane element
that passes through the point. This situation can be simplified by
means of the concept of tensor component. We do not require
infinitely many vectors: it is suflicient to specify three surface elements
and their corresponding vectors. Then we can calculate the vector
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corresponding to any other plane through this point according to the
laws of the transformation of components. Since each of the funda-
mental three vectors is given by three components (in a three-dimen-
sional space), the state of the internal stresses of a beam requires
3x3 = 9 specifications for each point. Furthermore, it is shown in
mechanics that these nine tensor components must satisfy conditions
of symmetry which reduce the number of independent specifications
to 6.

The gravitational field must be conceived in a similar fashion. The
characterization is complicated by the fact that it must also account
for the state of motion of mass points. A mass point carried by a
gravitational field does not remain at rest, like the volume elements of
the beam, but falls “down.” The representation must also include
changes in time, and the gravitational field, therefore, is characterized
by a space-time tensor, not by a space tensor. Such a space-time
tensor has 4 x4 = 16 and not 3x3 = 9 components. These can be
reduced, as before, to 10 independent numerical terms, because of
conditions of symmetry. To make the analogy with the beam
complete, we have to use the Minkowskian four-dimensional repre-
sentation, in which the state of a mass point at rest is represented by a
verlical straight line, the world-line of the point. Under the influence
of a tensor field this straight line will bend just like the beam of
a bridge, but such a curved world-line is that of a point in motion.
For this reason the motion of a point can be characterized by a tensor
field.

The concept of weight will also be subject to certain changes. In
Newtonian mechanics, weight results from the single gravitational
force which pulls the body down at all points. In Einstein’s mechanics,
on the other hand, the body is in a “'state of stress’” due to the
gravitational field; it is subject to tension and compression in all
directions. These may now be combined in a resultant which we call
the weight. Newtonian mechanics knows only this resultant.

Conversely, the given presentation makes it clear why, through the
four-dimensional tensor characterization, the gravitational field
becomes a coordinate magnitude, i.e., a quantity varying with the
coordinates. We have characterized the tensor by its 4 X 4 components
and not by the infinite number of vectors of which it is composed. If
we change the coordinate system, we also change to a different set
of fundamental components of the tensor, i.e., among the infinite
number of vectors we choose a different set of fundamental components.
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In three dimensions this would mean that the three basic surface
clements have been chosen differently. In the four-dimensional case
it includes also the state of motion, since the slanted direction of a
rising world-line indicates motion. The introduction of a coordinate
system in a different state of motion signifies therefore merely the
resolution of the tensor into a different set of components.

This consideration leads to a distinction which we have touched upon
several times before and which expresses a basic idea of modern science.
The system of the tensor components is covarsant, i.e., it has a different
numerical composition for cach coordinate system. Yet we express in
this fashion a state that is independent of the coordinate system, i.e.,
an tnvariant state. The tensor as a whole is an suvariant magnitude.
We can recognize this property from its representation by means of
components, since the components can be calculated for every coordinate
system, if they are known for one. It is unfortunate that the physical
terminology does not reflect this well-defined mathematical distinction.
By *‘gravitational field”” we understand the system of components of
the tensor in each case; this makes the gravitational field a covariant
magnitude. No particular term has been accepted for the invariant
tensor field as a whole. It might best be called the metrical field, in
accordance with some ideas which we shall discuss later; in fact, this
term has occasionally been used with this meaning. In this terminology
the gravitational field is the particular system of components into which
the metrical field has been resolved.

This representation explains why the gravitational field can be
transformed away. For this purpose, one resolves the metrical field in
such a manner that the components, the gravitational potentials,
become independent of the coordinates, i.e., become constants (this is
always possible at least for local regions); then there exists no gravita-
tional gradient. The disappearance of the gradient is then called
“the disappearance of the gravitational field.” There are actually
three concepts involved in this problem: the tensor as a whole or the
metrical field, the particular set of tensor components or the gravita-
tional field in the wider sense, and finally the particular set of gradient
coefficients of the tensor components or the gravitational field in the
narrower sense.  The latter two are distinguished from cach other as the
concepts of potential and of gradient and can therefore be distinguished
as gravilational polential field and gravitational gradient field. Only the
gradient field can be transformed to zero, in which case the potential
field becomes constant.
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In the mathematical representation, the metrical field is given by the tensor g,
the gravitational potential field by the particular set of components guv, and
the gravitational gradient field through the Riemann-Christoffel symbols F;y.

F) T
which are obtained from the 'S'——F' The Tuv do not form a real tensor, only a
T

linear tensor, and can therefore all at once be transformed to zero by nonlinear
transformations.
A fourth concept has occasionally been introduced. We set g = guv +vprn

where g,,, are the normal orthogonal values of the g,,,, and we refer to the g, as

the inertial field and only to the y,, as the gravitational potential_ﬁeld. The I‘;v
may then be considered as the derivatives of the y,,, since the guv as constants
do not contribute to the gradient field. This resolution into inertial and gravita-
tional field is an adaptation to the terminology of Newtonian mechanics, however,
and is therefore hardly appropriate.

Finally, we can give an exhaustive formulation of the ideas of
dynamic relativity using the concepts developed above.

For any given coordinate system there exists a certain gravitational
field. For any coordinate system in a different state of motion, there
exists a different gravitational field. If we wish to carry through a
general relativity of all coordinate systems, i.e., a general application
of relativity to kinematically equivalent descriptions of states of
motion, the gravitational field must be correspondingly specified for
every coordinate system. The coordinate systems themselves are not
equivalent, but every coordinate system with #/s corresponding gravita-
tional field is equivalent to any other coordinate system together with
its corresponding gravitational field. Each of these covariant
descriptions is an admissible representation of the énvariant state of the
world.

§ 38. THE PROBLEM OF ROTATION
ACCORDING TO EINSTEIN

We shall now investigate the problem of rotation, on the basis of
Einstein’s idea that a special gravitational field has to be assumed for
every coordinate system.

If we consider, on the one hand, the earth as rotating, this motion
must be relative to one of the Newtonian inertial systems which can
be introduced as an approximation. Relative to this coordinate
system there exists no gravitational field, only an inertial field. If we
consider, on the other hand, the earth to be at rest, there must be a
tensorial gravitational ficld relative to a system of axes to which the
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earth is rigidly connected. This gravitational field manifests itself as
a rotational field, which might be compared with the rotational field
of a three-phase electric current whose three phases run through a
correspondingly divided coil. Just as such a field whirls iron filings
in its interior, so the tensorial gravitational field moves the fixed stars
around in a circle. The stars will thus move with the same velocities
around the axis of the field. At the same time, light rays, which are
deflected in the gravitational field like heavy bodies, are rotated.
Only the introduction of such a rotational field leads to the dynamic
equivalent of the rotating coordinate system. A number of objections !
that have been raised against this conception will be discussed in the
following paragraphs.

1. The equivalence of rotating coordinate systems introduces
velocities above the velocity of light.  Points of the coordinate system
that lie farther out will have increasingly higher peripheral velocities

and points which lie outside of a circle with radius r = = (w is the
w

angular velocity) will therefore have a peripheral velocity wr greater
than ¢ relative to the coordinate system. The planet Neptune will
already have a velocity greater than that of light if we consider the
earth at rest; the fixed stars will have even greater velocities. This con-
sequence appears to contradict a requirement of the theory of relativity.

The conclusion is erroneous, however, since we are here dealing with
a problem in the general and not in the special theory of relativity.
In the special theory we can maintain the velocity 3-1010 cm/sec. as
the limiting value because we allow only certain coordinate systems
relative to which all velocities are to be measured. If we admit
arbitrary coordinate systems, the number 3.101® cm/sec. can be
exceeded. The limiting character of the velocity of light, however,
can be maintained even in the general theory of relativity, yet the
assertion is formulated differently. Given any two mass points, light
signals will be the fastest connection between them. Light is the
Jastest messenger; it moves faster than any other means of communi-
cation from the same place and at the same time. We formulated this
property above with the aid of the concept first-signal. This principle
is satisfied even if we assume that the coordinate system is rigidly
connected to the carth. A light signal sent from the planet Neptune

1 See also the discussion between Wulf-Reichenbach-Anderson in Astron.

Nachr. Vol. 213, Nos, 5083-84, 5107, 1921; Vol. 214, No. 5114; Vol. 215, No.
5154, 1922.
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§ 38. The Problem of Rotation according to Einstein

along a tangent to the planet’s orbit moves faster than the planet
itself and will run away from it. Here light has an even greater
velocity, although the planet itself already exceeds the velocity
3.10'%cmysec. This value has therefore no significance if completely
arbitrary space-time measurements are admitted.

In addition there results another restriction from the limiting
character of the velocity of light.  The system of axes rigidly connected
to the earth can ideally be extended indefinitely, but outside the circle

r = - it is impossible to realize the axes materially. Outside this
w

circle there can be no material points which are at rest relative to the
coordinate system; in this case, the coordinate system is no longer a
real system.!  Neptune has its high peripheral velocity therefore only
relative to ideal rest points, but not relative to points which can be
realized materially. This restriction is due to the fact that in the
immediate neighborhood of Neptune, as at every point, the special
theory of relativity holds in infinitesimal regions. This requirement
leads to an important distinction. Not all kinematically possible
systems can be realized by material structures at rest relative to them.
We must therefore distinguish between real and unreal systems (see
§ 41).

2. According to the general relativity of rotation, we can consider
not only the earth but also any given rotating system, e.g., a merry-
go-round, as the rest system. This conception, however, has absurd
consequences. The horse, which in the usual interpretation pulls the
merry-go-round, must in the second interpretation be able to put the
earth, even the universe, in motion by means of treading, since now the
merry-go-round remains at rest. How can the horse have the strength
to do so?

This objection overlooks the fact that, in the relativistic conception,
the rotation of the stars is due to a gravitational rotational field, and
not to the horse. The latter has an entirely different task: it prevents
the merry-go-round from following the rotational field and taking part
in the general rotation. We see that even according to the relativistic
interpretation, the horse has to perform a task determined by the mass
of the merry-go-round and not by the mass of the stars. If an elevator
glides down slowly and a fly inside crawls upward so that it remains
at the same level relative to the building, it has to transport only its own
mass—it does not have to *“push down” the elevator.

1 See § 45 of this book and A., § 46.
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3. Even if the horse of the merry-go-round does not need the
strength to rotate the stars, it is still the cause of this rotation, since the
rotation of the stars relative to the merry-go-round begins only when
the horse begins to run. The starting of the horse must therefore be
the cause of the rotational tensor field. A long time, many years,
must then pass before the effect of the field will reach the fixed stars,
due to the limiting velocity of causal propagation. But we know that
this is not the case.

This objection is not answered by the remark that velocities above
that of light are possible in gravitational fields. According to our
previous discussion, any effect originating on the earth cannot reach
Sirius faster than a light signal, and light would take a good deal longer
than our example permits. The mistake must therefore arise in a
different manner.

The error is due to the fact that the causal question has been posed
incorrectly. The objection starts from the assumption that we must
find a cause for every change that occurs relative to the coordinate
system. This assumption leads to the consequence that for every
change of the coordinate system there must be a change in the causal
chains, and that we must look, in our example, for a causal chain
from the horse to the fixed stars. On this requirement the
causal chain, like the gravitational field, would be a covariant concept.
This consequence, however, constitutes the mistake: the cause-effect
relation §s not a covariant bul an invariani concepl. Changes of the
coordinate system will not affect the status of the causal chains; they
are invariant sequences which will always connect the same identical
point events, independent of the kind of description. In our example,
the causal sequence goes from the hcrse to the merry-go-round and not
to the fixed stars; and that remains true if we use a coordinate system
for which the merry-go-round is at rest.

If we now look for the cause of the gravitational rotational field, we
must look for the dynamic equivalent of this field in a kinematically
different conception, namely the usual one. In this conception the
fixed stars are at rest and determine an inertial field which pervades
the entire space and lends inertia to every moving mass point. The
same causal connection applies to the relativized conception: the
inertial field corresponds to the gravitational rotational field, which
again must be caused by the fixed stars. Through their motion the
rotating fixed stars produce a rotational field that in turn perpetuates
their rotation. The same relations that represent the inertial field as
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an effect of the masses of the stars, represent in the relativized
conception the rotational field as an effect of the masses of the stars,
That we speak sometimes of an inertial field, at other times of a
rotational field, is only a difference in description, not a difference in
the facts described. We must therefore not look for a difference in
these facts, if we go from one description to another. It is meaningless,
therefore, to look for a cause of the origin of the rotational field at the
moment when the merry-go-round begins to move. If we continue
to relate all measurements of space to the merry-go-round, we must
describe the rest of the world in a different language.  We are compelled
to do so because of a cause affecting the merry-go-round and not the rest
of the world. With the choice of a different language we do not imply
that anything has changed in the rest of the world, but only that a
change has taken place between the world and our system of reference.

4. A further objection maintains that the rotational field is an
“imaginary” or '‘fictitious” force field; we cannot demonstrate its
real existence, and it is not real like ordinary gravitational fields. This
objection is based on a misinterpretation of covariant concepts. The
state of affairs described by the covariant concept of gravitation can
be represented differently in different coordinate systems. Each of
these descriptions presents the objective state in a particular way.
The totality of these descriptions, however, defines an invariant
situation, whereas one description gives only onc component of the
situation, so to speak, namely, its projection on a particular coordinate
system. Among these components there is no difference with regard
to truth. Just as we can demonstrate the ordinary gravitational field
of the carth by means of the pressure which a body exerts on its
support, we can also demonstrate the rotational field objectively by
means of the centrifugal and Coriolis forces.

§ 39. THE ANALYTIC TREATMENT OF
RIEMANNIAN SPACES

Before we continue our discussion of the problem of gravitation, we
will insert a section carrying the mathematical treatment of general
geometry a little further. Familiarity with these mathematical
methods is indispensable for an epistemological study of space. It will
be seen that the mathematical development is not as difficult to
understand as is commonly believed by the nonmathematician.
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Chapter III. Space and Time

We shall use here the analytic treatment of the problem of space that
was introduced by Riemann and Gauss (§ 2), developing briefly the
basic ideas of their mathematical methods. Let us imagine a plane
subdivided by a network of curves which are numbered. Then we can
indicate the position of every point of the plane by means of the small
plane figure in which it lies. Point P of Fig. 45, for example, lies in
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Fig. 45. Specification of a metric for curvilinear coordinates.

the plane figure 4—5/1—2. If we wish to give its position more
exactly, we merely have to subdivide the mesh of the network further;
thus we might estimate its position as 4.7/1.9. The curved lines form
a coordinate system since they supply a numbering of all points in the
plane. And this is all we can demand of a coordinate system.

We ask: how long is the diagonal ¢ of the coordinate cell under
consideration? If we had used rectilinear orthogonal coordinates, as
on ordinary graph paper, instead of curvilinear coordinates, this question
could be answered easily. Since the coordinates of the endpoints are
(5. 1) and (4, 2), their distance is given by

V(542 (2—1)2
according to the Pythagorean theorem. This answer, however, does
not apply to curvilinear coordinates, since these ccordinates are nothing
but identification numbers, like the numbers on houses, and do not
refer to a measure of length. How can we avoid this difficulty?

Let us call the actual lengths of the sides of the coordinate cell a and ;

these two sides together with the diagonal ¢ form a skew triangle.
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Such a description considers a and b as straight lines; this approximation
becomes more accurate the finer the network. The following calcula-
tions should therefore be understood to be correct for the limiting case
a =b =20. According to the “extended theorem of Pythagoras” we
may now write
c? = a®+b%—2ab cos ¢ (1)
If we now let the variable x; range over the numbers going to the
right and the variable x2 over the numbers going upwards, then a and b
will be in some relation to the coordinate differences dx; = (5—4) and
dxs = (2—1). They are of course not identical with these coordinate
differences, since these differences are derived only from identification
numbers, not from a measurement of distances. The length of the
segment @ is not equal to 1 as is the coordinate difference dxy; it is
smaller. We must therefore write
= adx) b= ﬁd.‘l’z (2)
where « and B are factors. Substituting according to (2) in (1), we
obtain
c2 = a2dx)2B2dxa2—2aP dxy dxg cos ¢ (3)
in which a, 8 and cos ¢ are numbers that are characteristic for the cell
containing P. In different cells of the network these numbers would
have different values, while the expression (3) would remain the same.

We must therefore consider these numbers as functions of the position.
Using the abbreviation

o =gn P =g —oafcosd =g =gan 4
and replacing ¢? by ds2, we may write (3) in the generalized fundamental
metrical form

ds? = g, dx,dx, p,rv=12 (5
If we let x and v take on the values 1 and 2 independently of each other,
we have four terms, which together with (4) give us expression (3).
Therefore (5) is a sum! consisting of four terms.

The expression ds is commonly referred to as “the line element of
the plane.” The numbers g,, indicate how, at a given place, the length
of the line element is to be calculated from the coordinate differentials.
Since the g,, are functions of the position, they are to be written as
Euv(¥1, x2). These functions determine the metric. If the g, are given
for every point of the plane, we can calculate the length 4s for any

1 Note again the rule mentioned on p. 172 that every index occurring twice
is to be summed.
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curvilinear or straight-line segment, if we know the coordinates of all
the points through which the line passes. This length is equal to the
sum of the many ds’s which may be placed along the line, and therefore

ds = f st - f ix/m (6)

This mathematical treatment has the following significance. It
divides the function of the customary orthogonal coordinate system
into two parts which are quite different. It leaves the topological
Junction of numbering to the coordinate system, but assigns the metrical
Junction of measuring lengths to the melrical coefficients g,,. 1In this way
the mathematical treatment divides the description of a plane into a
topological and a metrical part and makes possible the analytic treat-
ment of the metric.

This mathematical achievement is of greatest significance for the
epistemological problem of space. The method shows that in addition
to the metrical function usually associated with the *'coordinates
of the graph paper,” the coordinate system has an important topological
function. It consists in the assignment of identification numbers to
every point, which can of course be accomplished by curvilinear as well
as by rectilinear coordinates. In spite of the arbitrariness of the
numbering, something very important is thus achieved, since the
numbering determines the mutual neighborhood relations. If three
points 4, B, and C lie along a line so that B lies befween A and C,
this fact is determined by the position of the points and the line,
relative to the coordinate system. To give an example: if we know
that in a certain street Mr. X lives in No. 37, Mr. Y in No. 45, and
Mr. Z in No. 61, we also know that Mr. Y lives between Mr. X and Mr. Z.
But from the given information we know nothing about the respective
distances between their houses, since the houses may be located at
different distances along the street. We speak of the lopological
function of the coordinate system because it determines the order of
the befweenness relation.

In contrast to this important role of the description of a plane, the
metrical function of the g,, plays a subordinate role. It cannot change
the topological foundation determined by the coordinate system; it
merely adds to it a metrical superstructure. In this role, however, the
form of the g,, becomes important for what is commonly referred to as
the Gestalt of the plane. We can understand this best through the
following mathematical considerations.
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In the example of Fig. 45 we began with a plane. This fact is
expressed analytically by a property of the g,,, as we shall see when we
investigate transformations to other coordinate systems. Let us
imagine that a second coordinate system has been introduced and that
the position of the new family of lines is given as a function of the old
coordinates, such that we can write

x1 = filx'n, ')
vg == fa(x'y, X'2) )
Xz == fa(x'y, X2
where the functions f are completely arbitrary. We now add the
restriction that the transition to the new coordinates must not change
any of the metrical relations; this transition, therefore, leads only to
a different form of description.  We must then specify a new systemg’,,,
of metrical cocficients relative to the new coordinates x’, such that the
old relations of congruence are preserved. If two line scgments are
equally long when measured by the old g,,, in the old coordinate
system, they must still be equally long when measured by the new g’
in the new coordinate system. This requirement leads to the condition
that
ds? = g, dy,dx, = go, dx, dx’, (8)
We can therefore say that ds? is an invariant of the transformation, and
we can show from (8) how the new g’,, are to be calculated from the old
ones.
This proof is not difficult. It follows from (7) that the differentials
transform linearly:
dy, = asdx’y ay — %,‘; 9)
Substituting (9) on the left side of (8), we obtain, using the identity
with the right-hand side:

, éx, ox,
8 or = a“.la é?rguv (10)
(10) is the so-called law of transformation of tensors, and g,, is therefore
called a fensor. This term denotes nothing but a magnitude which
transforms according to (10) when we go over to a new coordinate
system.

We are now able to express analytically the characteristic property
of Fig. 45, namely, that it describes the relations of a plane. If we
had chosen rectilinear orthogonal coordinates, the line element would be

ds? = dx)2-}-dxs?
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This means that relative to the normal coordinate system the g,,
satisfy the matrix

gn g1z 1 0
g1 g2 0 1 (n

We can now introduce the following requirement: since the surface
considered in IYig. 45 is a plane, there must be a transformation (7)
that changes the g, of the curvilinear coordinates into the normal
form (11).

This requirement expresses a property of the system g,,. It can be
shown that the system g, has this property only because it was
constructed originally for a plane. If the construction of Fig. 45 had
been carried out on the surface of a sphere, we would have obtained a
system g, for which there is no transformation into the normal
matrix (11). We shall study these relationships in more detail,
because the mathematical development can be given easily.

Let us assume that the four functions g,, are given. How shall we
formulate the condition that they are to be transformed into a normal
matrix? This requirement obviously amounts to the demand for a
coordinate transformation (7) satisfying the equations:

;ﬁf E%:gllv :glar = {[1) (1) (]2)
Expression (12) represents four equations for the four partial derivatives
of the functions in (7). The number of variables corresponds to the
number of equations, but since the variables are functions, not numbers,
we must add the Cauchy-Riemann conditions of integrability
v, &,
ox'ex’, T ax',ox, (13)
Expression (13) represents four more equations, and we have now cight

P

Xy
o'y
determination, equations (12) and (13) cannot generally be solved.

We may restate our results as follows: any given system g, can be
transformed into another system g’,, by means of) (7)). Transformations
of this kind, starting with a definite set g,,,, do nofgive us all conceivable
systems, however, but merely a limited class.  All systems of this class
are geometrically equivalent to the initial g,,, and the class as a whole
characterizes a definite geometry. Other classes)\similarly constructed,
would characterize another geometry. A specia] class is the class
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which contains the normal system (11); it is the class of Euclidean
geometry.

The question now arises whether there exists a special characteristic
of the class of Luclidean geometry. Mathematicians have shown that
it is possible to formulate such a criterion. For this purpose one has

0w

to form a certain mathematical combination of the g,,. ax
o

, and

R
0%,0%,
analogous to (10). R,., is therefore a tensor of rank 4. We can
recognize directly from (10) a very important property of all tensors,
namely, that if all components of a tensor are zero in one coordinate
system, they will all be zero in every coordinate system. This result
follows immediately because all terms disappear in the summation of
expression (10). Since it can be shown that R, vanishes for the
normal system, it follows that every system of the Euclidean class is
characterized by the condition

Ryor =0 (14)
R,.er is called the Riemannian curvature tensor. It is a measure of
curvature.l
One thing can easily be shown: if we restrict ourselves to the require-
ment that the g,,, shall assume the normal form (11) for one single point,
this requirement can always be satisfied by a suitable choice of the
coordinate system. The integrability conditions disappear for this

, which is called R, and which transforms according to rules

#

- . . . . - . ox,
limited requirement, since in this case it is no longer the functions 37'“
o

but their numerical values at a specific point, which are subject to
conditions (12). Thus there exists no longer an overdetermination.
However, the normal system cannot be realized for all points by means
of the same transformation; if we extend a coordinate system that
satisfies the conditions for one point, generally it will not satisfy these
conditions for the other points. In the general case, the system of the
g, can thercfore be transformed only in infinitesimal domains into
form (11) of the system of the plane. In this way we formulate
analytically the property of curved surfaces, namely, that their infinit-
esimal elements can be treated as planes, just as an infinitesimal element
of a curve can be conceived as a straight line. The shape of curved

1 1n the two-dimensional case, the tensor Ru.qe can be replaced by a single
number R, the so-called Gaussian measure of curvature.
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structures differs from the shape of straight structures only in large
dimensions, while their infinitesimal elements have the same form.
This intuitively evident rule finds its corresponding expression in the
analytic representation of the shape of the surface. Conversely, the
formulation of geometry with the aid of metrical functions g, may be
characterized as the extension of the concept of geometry to such cases
in which Euclidean geometry holds only in infinitesimal domains.

Because of this analytic treatment, it is now relatively easy to
extend our considerations to three-dimensional space or even to a
manifold of an arbitrary number of dimensions. For three dimensions,
we only have to vary the index, in our previous formulae, from 1 to 3
in order to achieve an analytic treatment of space. We owe this
method to the genius of Riemann, who gencralized the Gaussian
treatment of surfaces. We may refer here to § 2 for greater detail.
The occurrence of the normal form of the g,,, in the infinitesimal domain
means, for the three-dimensional case, that every Riemannian space
is Euclidean in infinitesimal domains. Curved space is thus composed
of plane differential elements, just like curved surfaces.

To deal with the four-dimensional space-time manifold we require
a minor change, since its metric is of the indefinite type, as we have
shown in § 28 and §29. The normal form of the g,, then becomes

1000
— lo100
=10 01 0 (13)
0 0 0—1

However, this makes hardly any difference in the analytic treatment.
The values in infinitesimal domains now assume, of course, the indefinite
form (15). We can comprise all these formulae by one expression,
varying the index from 1 to 4:

ds? =guvdxudxv Hev, 0,1 — 1...4 (16)
X =x,(x"1. .. %) (17)
_ox,,, . Ox, ﬁi
(18) dx“ = Wadxa Bor = é?; ax,’g,.y (19)

How are we to ascertain the metric of the four-dimensional space-
time manifold by means of physical measurements? For this purpose
we need:

1. A coordinate system, i.e., all point events must be numbered.

2. The 10 metrical functions g, relative to this coordinate system.
248



§ 40. Gravitation and Geometry

We must now consider this problem from the physical point of view.
For the time being we shall not study the first of these two tasks, but
shall simply assume that such a numbering is given. Pursuing the
second task, however, we shall be led into the theory of gravitation.

§40. GRAVITATION AND GEOMETRY

We ended our discussion of the problem of gravitation in § 37 with
the statement that the special theory of relativity can apply only in
infinitesimal domains. We have previously characterized the space-
time relations of the special theory of relativity by the fact that the
geometry defined by clocks, measuring rods, and light assumes the
indefinite tvpe metric in the special form of (1, §29). In the general
case this gcometry holds only in infinitesimal domains; a more general
geometry, of the kind developed in the previous section and charac-
terized by a system of g,., holds for gravitational fields.

In order to carry through this idea, let us recall the example of the
curved surface. If human beings live on a curved surface the geometry
of which they want to determine, they must first introduce a system of
coordinates. Their choice of a coordinate system is not limited by
restrictions of a metrical kind. Let us imagine that they carry around
infinitesimal measuring rods which they use to define the relation of
congruence on the entire surface. If they place a unit rod at a point
P, then its ends will determine a certain coordinate difference dx,. If
they now combine the dx, according to the special formula

dx 2 4-dxg? = ds?
then the resulting ds? is by no means equal to 1. They would first
have to introduce *‘correction factors” g,,, such that

gz, dx, = ds? (1)
becomes equal to 1. This is very easily accomplished; many different
choices of the numerical factors lead to this result. If we require,
however, that ds2 be equal to 1 for the same g, and any direction of
the rod rotated in P, the g, will be determined uniquely. We might
imagine that the g, are found by experiment. The numbers g,,, of the
individual points can then be combined into functions.

It is casily recognized that this procedure results in an over-

determination. If the rod is placed in the direction of the line

x2 = const., then dve = 0 and (1) reduces to gudxi®. Since this
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expression is to be equal to 1, it will determine g1;. In the corre-
sponding fashion we find g2z, by placing the rod in the direction of line
x; =const. If we add one slanted direction, this experiment will
determine g1» = go1. It must therefore be an axiom, i.e., a matter of
truth or falschood, that the g, thus obtained will satisfy the condition
ds? =1 for all positions of the unit rod. This axiom must of course
be considered an empirical law. If it were not confirmed, we would
be left with two alternatives. The first of these makes use of the fact
that the axiom is satisfied only in infinitesimal domains and that
therefore every procedure using finite rods is liable to contain an error.
We would assume, therefore, that the unit rod was not chosen
sufficiently small and would claim that the axiom would be satisfied
if the rod were shortened. The g,, would then have to be treated
within the original point region, not as constants, but as functions of
the position, and the original length of the rod would be calculated
not as ds, but as fds. Whether this assumption is correct can be
decided, since it is possible to test whether the hypothesis is better
satisfied as the rod becomes shorter. We shall then infer inductively
whether the axiom can be maintained in the limiting case. If it should
turn out that the desciibed method is inadequate, a second alternative
would be left. We would have to repeat the above process with line
elements of higher order, since line elements of second order did not
accomplish the task. We might start first with line elements of the
fourth order
dsd = g, odx dxdxdx, (2)

We would thus have a greater number of metrical coefficients available
and we could adjust them to a greater number of conditions. The
higher the order of the line element, the more adaptable it will be to
the actual conditions in nature. The fact that line elements of the
second order prove to be sufficient indicates a property of reality. It
actually says nothing more than that measuring instruments obey
Euclidean geometry in infinitesimal domains.

Here again an empirical statement is to be added to a coordinative
definition to guarantee that the definition be unique. However, this
fact does not deprive the coordinative definition of its definitional
character; rather, the determination of the g,, for a given coordinate
system is a physically meaningful and definite task only if the co-
ordinative definition of congruence has previously been given. We now
have to give an analogous development for the space-time manifold.
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The coordinative definition of congruence is again given in terms of
clocks, rods, and light, just as in the special theory of relativity. The
interval ds2, realized by these measuring instruments, will be defined as
the unit and after a coordinate system has been chosen, the correspond-
ing g,. are calculated. We thus construct a network of infinitesimal
unit widths. The clocks supply ds? = — 1, the measuring rods
ds?2 = + 1, and light ds? = 0. Through experiment we discover at
every point those numbers g, by which the coordinate differentials
must be multiplied in order that the interval will equal 1. The num-
bers g,, are again combined into functions.

This method is the same as that used in the special theory of
relativity, where we constructed the metric by means of a coordinative
definition based on clocks, measuring rods, and light. However, there
the coordinates were chosen in such a way that the g,, satisfied the nor-
mal matrix (15, § 39). We showed in § 27 how this choice of the special
coordinates is to be carried out. If we now admit arbitrary coordinate
systems, the normal matrix will no longer suffice, and the more general
form (1) must be employed.

Obviously, more than a definition is involved in this procedure. As
before, the system of the g,. for one point is determined by a certain
number (10) of positions of the interval; that the other positions
introduce no contradictions must be stated as an additional axiom.
Since the slanted positions of the interval are equivalent, in the
geometrical interpretation, to different states of molion of the measuring
instruments (see § 29), the axiom constitutes an assumption about the
behavior of moving measuring instruments. The axiom is already
partially expressed in the special theory of relativity, where it is
formulated in the matter-axioms and asserts that the measuring
instruments of uniformly moving systems adjust to the relativistic
light-geometry. In the general theory we must extend this axiom to
include accelerated measuring instruments.  This extended formulation
states that the metrical behavior of a body depends only on its velocity,
not on its acceleration. If, for instance, a clock in accelerated motion
has the same velocity as a uniformly moving clock at the precise
moment when the two pass each other, then the two clocks will show
the same flow of time during this common infinitesimal period of time.

Whereas we have so far dealt only with the determination of the
space-time geometry of gravitational fields, we shall now investigate
an additional feature of the theory. It is asserted that the metrical
tensor g,, is identical with the tensor of the gravitational field which we
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found to be necessary for the characterization of gravitation (cf. § 37).
This conclusion follows directly from the principle of equivalence.

If we establish a metric at one point in a local inertial system K’, the
&'sr will satisfy there the normal matrix. If we now describe the same
local world region from an accelerated system K, the g,,, of this system
can no longer satisfy the normal matrix, since they will result from the
&'s» by a transformation which does not belong to the Lorentz trans-
formations and which will therefore destroy the orthogonal form
(1, §29) of the line element. The g,, will therefore characterize the
state of acceleration of K. If they characterize the state of acceleration
of K, however, they must also characterize the gravitational field which
exists for K because of the principle of equivalence. The metrical
tensor must therefore also be the gravitational tensor.

We may clarify this relation in the following manner. If we go from
an inertial system to an accelerated system by means of the trans-
formation (17, §39), the coefficients of the equation of the trans-
formation will contain the acceleration a. This magnitude enters
through the %x—x: into the g,, and the g, contain thercfore the
acceleration a of the chosen coordinate system. And since, conversely,
a can also be interpreted as the intensity g of the gravitational field,
the g, contain also this magnitude, and are therefore a measure of the
gravitational state existing for this coordinate system. In a simple
form, this idea is found even in the Newtonian theory: because of the
identity of gravitational and inertial mass, we can identify the
gravitational field g with the acceleration of freely falling bodies.
Therefore it is unnecessary to distinguish between the two magnitudes,
which originally were conceptually distinct.

One might now ask whether this new assertion contains anything
factual. Does gravitation mean more than what is expressed by the
metrical function of the tensors g,,? It does indeed. Gravitation can
also be recognized by the appearance of forces, by the bending of
elastic beams, and the motion of mass points (planets). The factual
import of the new claim lies in the fact that the same physical
magnitudes that determine the motion of mass points and the bending
of beams also determine the length of rods, the peried of clocks, and
the path of light. This assertion is, of course, of extraordinary
physical importance. Since we combine the behavior of measuring
instruments under the concept of metric, and the appearance of forces

of the kind mentioned under the concept of gravitation, we may
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formulate the new assertion as the fdentification of metrical and gravita-
tional field and refer to the field that pervades the entire space as the
melrical field. This identification is a consequence of the principle of
equivalence.

We must now point out a difficulty closely connected with this result.
The identification just mentioned is based primarily on the fact that
the geometry of the theory of relativity includes the dimension of
time. If we interpret the g, which result from the transition from a
normal to another system, as the gravitational ficld, we think of a
transformation of the state of motion. Since transformations of the
state of motion are not the only coordinate transformations of four-
dimensional space-time manifolds, however, the identity of the metrical
tensor and the gravitational tensor says more than was originally
expressed by the principle of equivalence. Even purely spatial
coordinate transformations must now be interpreted as transformations
to new gravitational fields. If we change to three-dimensional polar
coordinates, for example, while the time coordinate remains unchanged,
the g, will assume a form different from (15, §39).! For these
coordinates there must therefore exist a gravitational field. Pure
time transformations which leave the space coordinates unchanged and
therefore do not constitute a change in the state of motion but stand
for a redefinition of simultaneity, e.g., the definition of simultaneity
given by (1) in § 27, will also cause a deviation of the g,, from the
normal form and produce a gravitational field. Through the identi-
fication of the g, system with the gravitational field the concept of
gravitation receives another, though inessential, extension which goes
even beyond the introduction of dynamic gravitational fields. But in
virtue of this comprehensiveness the concept of gravitation becomes
accessible to the mathematical treatment by means of Riemannian
geometry.

If we wish to avoid this all too general concept of gravitation, we
may use the concept of the metrical field. Allg’;,-systems derived from
a g,-system by means of coordinate transformations are merely
different resolutions of the same tensor into different sets of components.
This tensor, the metrical field, is therefore independent of specific

1 Setting r = x1, ¢ = ¥2 and @ = x3, the g,, become:

10 0
g =0 x° 0
00 212 cosxg

. . NP
It can easily be seen that the partial derivatives ;:'
o

do not vanish throughout.
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coordinate systems. If we now identify the gravitational field with the
metrical field g, polar coordinates and systems that have a differently
defined simultaneity will have the same gravitational fields as the
system {rom which they resulted through transformation. We can
thus retain the intuitively plausible property of the gravitational field,
namely, its independence of such coordinate transformations. This
statement means, of course, that we will also have to accept the
consequence that transformations of the state of motion will not change
the gravitational field either, since they too leave the metrical field
invariant. All these difficultics can be avoided if we remember that
the earlier concept of gravitation is now divided into two separate
concepts. One of these is the metrical field, which has taken over from
the earlier concept of gravitation the property of being independent of
the coordinate system; the other is the actual system of components of
the metrical field, which has taken over the remaining properties of the
earlier concept of gravitation and which is therefore commonly referred
to as the gravitational field. We should not be surprised to find that
this narrower concept of gravitation refers to fields that cannot
properly be subsumed under the carlier concept of gravitation,

We have to pursue our analysis further. Since we are able to show
that the metrical field of space is at once a manifestation of gravitation,
there arises the possibility of asking for a cause of the metrical field. It
has not been customary to ask this question, because the geometry of
space has commonly been accepted as a fact requiring no causal
explanation. A cause of gravitation was known, however. Ever since
Newton, gravitation has been looked upon as the effect of masses. To
this conception was added Mach’s idea that the masses are also the
cause of inertia. If gravitation and inertia are now combined to form
the field g,,,, one must conclude that the cause of the field g,,, and there-
fore also the cause of geometry, is to be found in the distribution of
masses, and that there must be a law of nature stating how the g,
field is related to the distribution of matter.

In classical mechanics this law is given by Newton's equation

mym
== 3)
or the corresponding differential law
A4 = 2np 4)

the so-called Poisson equation. It states how the matter p determines
the gravitational field ¢. In Einstein's theory of gravitation, the
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tensor field g, takes the place of the scalar field ¢, and instead of the
scalar mass p we have the matter tensor T, which represents the density
of mass as well as the internal tension of matter. Guided by this
analogy, Einstein guessed, so to speak, at the new law:

Ru—3guR = —«T,, (5)

On the left hand side of (5) we find a complicated function of the g,,,
which isabbreviated by thesymbols “R,,""and *'R"'; x is a constant. This
law implies (4): it stateshow the gravitationalstate g,,, is to be calculated
from the distributicn of matter 7,,.  Since g,,, however, also represents
the metrical tensor in contrast to the classical gravitational function ¢,
(5) states something essentially new compared to (4): it stales how the
geometry of the unsverse is determined by the distribution of maller.
Einstein’s field equations assert therefore a new law of nature, the
existence of which was not suspected before.

Equation (5) represents the most fundamental idea of Einstein’s
theory of gravitation in the physical as well as the philosophical sense.
Let us first study its physical significance. Equation (5) is the key
to the previously mentioned relativity effects: the bending of light and
the retardation of clocks in a gravitational field. Since the behavior
of clocks and light is determined by the g,., and since T, represents the
masses of the stars, these effects can now be calculated rigorously
from (5). The considerations outlined in § 36, based on the Newtonian
theory of gravitation, can at best be approximations. Furthermore,
expression (5) implies a change in the physical content of the law of
gravitation. It differs from (4} even if we consider the g,, only as
gravitational functions. This is evident, since in (5) the gravitational
field at each point.is characterized by 10 parameters, whereas in (4)
only by one Relation (5) can therefore contain the Newtonian
gravitational field ¢ only as an approximation. It can indeed be shown
that this approximation is realized when all components of g,,, with the
exception of g44, approximate the normal form, in which casc g43 = ¢.
If we were to calculate from (5) a purely gravitational process, e.g., the
motion of a mass point around a mass center, the result would differ
slightly from that calculated from (4). Einstein's planetary motion is
therefore different from that of Newton; it asserts a slight rotation of
the elliptic orbit in addition to the elliptic motion. This consequence
is strikingly confirmed by the advance of the perihelion of the planet
Mercury, a phenomenon that has been known for a long time.

Let us now turn to the question of what is new in the identification of
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gravitation and metric from the philosophical point of view. It has
occasionally been said that this conception deprives gravitation of its
physical character and that gravitation therefore becomes geometry.
We shall now investigate whether this conclusion is justified.

We have learned in § 6 about the difference between unsversal and
differential forces. These concepts have a bearing upon this problem
because we find that gravitation is a universal force. It does indeed
affect all bodies in the same manner. This is the physical significance
of the equality of gravitational and inertial mass. If gravitational and
inertial mass were not equal, we would not be able to look upon the
paths of freely falling mass points as (four-dimensional) geodesics, since
different geometries would result for the various materials of the mass
points. Furthermore, due to the influence of gravitation upon light,
light may be regarded, in this geometry, as a realization of ds? = 0,
and the gravitational effect on infinitesimal clocks and rods is such that
they may be considered as realizations of ds? = 4-1. This universal
effect of gravitation on all kinds of measuring instruments defines
therefore a single gecometry. In this respect we may say that gravita-
tion is geometrized. We do not speak of a change produced by the
gravitational field in the measuring instruments, but regard the
measuring instruments as " free from deforming forces” in spite of the
gravitational effects.

However, we have seen that for geometry, as for all other phenomena,
we must pose the question of causation. Ewven if we do not introduce
a force to explain the deviation of a measuring instrument from some
normal geometry, we must still invoke a force as a cause for the fact
that there is a general correspondence of all measuring instruments. We
have expressed this idea in § 31 by means of the concept of adjustment.
In this sense we must ascribe to the gravitational field the physical
reality of a force-field. We regard this force-field as the cause of
geometry itself, not as the cause of the disturbance of geometrical
relations. We can even demonstrate physically the existence of this
force-field: since the gravitational field is measured by the same
measuring instruments as those used for geometry, these measuring
instruments are at once indicators of the gravitational field. We are
therefore reversing the actual relationship if we speak of a reduction
of mechanics to geometry: it is not the theory of gravitation that becomes
geomelry, but it is geometry that becomes an expression of the gravitational
Jield.  The theory of relativity did not convert a part of physics into
geometry. On the contrary, even more physics is involved in geometry
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than was suggested by the empirical theory of physical geometry: the
geometry of the universe is not only a fact that can be ascertained
empirically, but also a fact to be explained by the effects of forces. In
addition to the problem of the measurement of physical space, known
since Gauss, Riemann and Helmholtz, Einstein introduced the problem
of a scientific explanation of physical geometry, which finds its mathe-
matical solution in the gravitational field equations.

According to Einstein’s theory, we may consider the effect of
gravitational fields on measuring instruments to be of the same type
as all known effects of forces. This conception stands in contrast to the
view which interprets the geometrization of physics as an exclusion
of forces from the explanation of planetary motion. This view is
based on the laws of motion of a mass point. In classical mechanics
these laws state that a force-free point travels in a straight line.
Einstein substitutes *‘the straightest line” for “a straight line.”
Since, however, the characterization of the gravitational field is
contained in geometry, these laws include even the case when the point
is subject to gravitational forces. Planetary motion and the motion of
a force-free point are thus combined into a single law, which states
that a mass point moves along the geodesic. This result suggests a
purely geometrical conception of gravitational motion. Accordingly,
the planet does not follow its curved path because it is acted upon by a
force, but because the space-time manifold leaves it, so to speak, no
alternative path. Its motion resembles that of a sphere rolling on an
irregular surface along some definite curves.

This view is correct, inasmuch as we have to consider, in accord
with the principle of action by contact, the planetary action to be
caused by the state of the metrical field in the immediate neighborhood
of the planet, thus relinquishing the Newtonian concept of action at a
distance, which moves the planet around the sun as though by a string.
On the other hand, not only is the metrical field determined ! by distant
masses through a genuine physical process of causal propagation, but
the effect of the metrical field itself on the planet may be interpreted
as a genuine physical force guiding it on its path. A causal deter-
mination of the orbit by the nature of space is not compatible with our
customary physical concepts. If a sphere rolls on a material plane,
it is only a schematization to say that the geometry of the plane

1 Changes in the metrical field due to changes in the distribution of matter
propagate only with the speed of light, not instantancously.
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influences the path of the sphere. We know that a more detailed
investigation would reveal the presence of molecular force-fields,
which affect the molecules on the surface of the sphere and thus force
it into a definite path. Geometrical effects reduce therefore, even in
classical physics, to dynamic effects. Even in empty Euclidean space,
in which a mass point travels in a straight line according to the law of
inertia, we must not think of this path as an effect of the geometry
that permits the mass point to travel on the shortest path, Even here
the guiding gravitational field, whose tensor g, is reduced to the
normal form, manifests itself and, due to its force, compels the mass
point to travel along a definite orbit.

The combination of gravitation and geometry therefore does not
force us to renounce dynamical conceptions, but teaches us that such
conceptions are applicable even to those cases treated previously in a
purely geometric fashion. It is no longer possible to assume a geometry
of space independent of physical realities. Geomelric measurement is a
handling of indicators; therefore, the melric of the tndicalors is ab once
the measure of the field that determines thesr adjustment.

§ 41. SPACE AND TIME IN SPECIAL
GRAVITATIONAL FIELDS

We shall now give a more detailed description of the geometry of the
gravitational field. For this purpose we refer to §27, where we
characterized gravitation-free space by certain specializing axioms that
permitted the choice of selected coordinate systems. It turns out that
the construction in § 27, which starts with the elementary concept of
time order and leads to the complete metric, is of fundamental
importance: the levels of this construction are levels of increasing
generalization of the gravitational field if we proceed in the opposite
direction and gradually omit the specializing axioms. The space-
time properties of the gravitational field at each level are thus given by
those axioms which are still satisfied on that level.

The first step toward this generalization consists in the omission of
axiom V,! which postulates the possibility of the choice of a coordinate
system with Euclidean light-geometry. The space characterized by
the remaining four axioms (I-IV) corresponds to the space of the
static gravitational field. Again, as in the case of the gravitation-free

! [The numbers refer to the statement of the axioms in A.—M.R.]
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space, we must add the condition that it must be possible to connect the
space points of the coordinate system by rigid rods. The light-axioms
alone will again be insufficient to give an exhaustive determination of
the state of motion. In the language of the Riemannian geometry, the
static gravitational field is characterized by the fact that the g,, no

longer assume the normal form g, (15, § 38), but are still of a rather
simple kind because they are given by functions of the space coordinates
alone, independent of time, with the additional condition that the
&at (@ = 1, 2, 3) vanish.

In such a gravitational field, space and time still have very simple
properties, like those of the gravitation-free case except that the space-
geometry is non-Euclidean. Time, on the other hand, retains the
special property that Einstein's definition of simultaneity (2, §19,
with ¢ = }) leads to a symmetrical and transitive synchronization, as
we showed in § 27 prior to the introduction of axiom V. We may
therefore understand by the time of a static gravitational field the same
as we did by the time of an inertial system. A difference exists only in
that transported clocks deviate not only relative to the simultanesty of
the systemn but also relative to the unit of time transmitted by the light
signal. The unit of time can therefore no longer be transported, yet
the difference between the transported unit and the projected unit
depends only on position and not on the path of transport.

This statement is a consequence of the fact that the clock indicates
the interval, which reduces to

—g44dx42 == ds2? (l)

for a clock at rest. If g4 is different at the two points P and P’, then
the corresponding dx; must also be different, since the unit clock
supplies the same ds. If we now call dxy the unit of the coordinate
time at P, and dx’4 the time unit at P’ which was transmitted by means
of light signals from P according to (1, § 27), we then have

dxa dx's = Vg'sy T Vg 2)

This formulation is a rigorous derivation of the retardation of clocks in
gravitational fields (the red shift), which was mentioned briefly in § 36.
It states merely that the unit of the time coordinale cannot be
transported. The measure of a time interval at P is not given by dx;,
however, but by V, gas dx4; and since this measure is everywhere
realized by clocks, the measure of a time interval is obviously transport-
able. This peculiarity is more clearly characterized in a different
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fashion. One might try to define a time coordinate such that equal
measures of time would correspond everywhere to equal dxy, i.e., ga4
would become equal to —1. Though we can at first combine this rule
for the measure of time with an arbitrary definition of simultaneity
which satisfies the inequality for ¢ given in (3, § 19), simultaneity would
gradually shift in such a manner that later this inequality would be
violated and events would be simultaneous that are not indeterminate
as to their time order. The time thus introduced would therefore
violate the basic topological requirement of time measurement. We
may therefore say that it is impossible to define in a gravitational field
a titne coordinate that corresponds everywhere directly to the measure
of time.

Let us now proceed to measurements of space. Spatial congruence
is given by the characteristic length of rigid rods.  Since the events that
are simultaneous at both ends of the rod in the sense of the natural
length are also simultaneous in the sense of the coordinate time in a
static gravitational field, we have for the characteristic length dx3 = 0,
and ds2 reduces to

do? == gogdxdxg «,$=1273 3)

This means that spatial congruence is defined directly by the rigid rod.
Two rods equal in length when compared at one place are also called
equally long when located at different places. As in the case of the
time unit of the clock, this definition of congruence applies only to the
measure of the segment determined by the rods, while the respective
spatial coordinate differentials dx; (@ =1, 2,3) are everywhere
different. It is impossible, therefore, to construct a spatial coordinate
system that eliminates this difference between the rod and the
coordinate differentials throughout.

Space measurements and time measurements behave therefore in a
parallel fashion. Measuring instruments still supply the measure of
length, but they can no longer be used to define a uniform coordinate
system. In gravitation-free fields the two concepts coincide; there,
clocks and rods supply a measure as well as a normal coordinate system.
In the gravitational field we can no longer construct a normal coordinate
system. Instead, the measuring instruments supply the g, that
correspond to the chosen coordinate system.

These relations have a peculiar consequence regarding the velocity
of light. Let us imagine the Michelson experiment (see Fig. 29)
to be performed in a gravitational field, with the arms of the apparatus
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extended so far that they go beyond the region in which the special
theory of relativity applies with a sufficient degree of approximation.
The two arms are to be equally long in the sense of (3), i.e., when small
measuring rods arce placed along the arms, they mark off an equal
number of segments on both arms. It can be shown that then the
round-trip times of the light signals along the two arms become unequal,
thus

ABA#ACA 4)

Therefore the matter-geometrical equality of distances no longer
coincides with the light-geometrical equality. (The two expressions in
(4) would be equal only if the arms of the Michelson apparatus became
infinitesimal.) In gravitational fields, the velocity of light is no
longer constant, and light no longer travels along the shortest path in
space. In a static gravitational field however, the velocity of light is
still independent of both time and the direction in which a given
distance is traveled. We cannot say, of course, that the light-
geometrical definition of the equality of length (10, § 27), which would
make the velocity of light constant even in this case, is incorrect.
Since the light-axioms I-IV, 2 are still satisfied, the light-geometrical
definition can be carried through consistently in the static gravitational
field, but it would contradict the matter-axioms. The ds? defined by
the transport of clocks and rods would no longer agree with that defined
by light. The choice of the definition is arbitrary. Einstein prefers
the matter-geometrical definition for reasons of descriptive simplicity.

These geometrical relations supply a good example of a case where
the ““natural” definitions of the spatial metric do not always lead to the
same metric. The light-geometrical definition of length presents a
standard just as simple and natural as that given by the matter-
geometrical one. Whereas the two coincide in the gravitation-free
field, they no longer do so in a gravitational field. We shall find a
similar discrepancy upon further generalization.

Let us now take the second step in our generalization by omitting the
round-trip axiom IV, 2, according to which there exist coordinate
systems in which the time needed to travel around a triangle is equal
in both directions. The space characterized by the remaining light-
axioms corresponds to the sfationary gravitational field. Again we
must add the condition that it be possible to connect all space points
of the coordinate system by rigid rods, in order to obtain a sufficient
specification of the coordinate system. In the language of Riemannian
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geometry, the stationary gravitational field is given by the condition
that the g, are still independent of time, but that in contrast to the
static field, the ga4 (¢ = 1, 2, 3) do not vanish.

The latter property has the consequence that time determination
becomes more complicated. The velocity of light is now different
along the two directions of a given segment. We can recognize this
fact from the failure of the round-trip axiom, since it is only this axiom
that renders transitive the synchronization constructed according to
Einstein’s definition. If the axiom is no longer satisfied, then the
definition of synchronization will not be satisfied for two clocks each
set relative to a central clock (using € = }). This result means that
there is no definition of time according to which it is possible for the
velocity of light everywhere to be equal in both directions along the
same segment.

An example of a stationary system is given by a circular disk that
rotates relative to an inertial system K. For this disk, we can obtain
a rather simple definition of time if we set up a clock at its center and
synchronize from there all clocks on the disk, with ¢ =} (1, §27).
Two clocks on the perimeter of the disk will then have relative to each
other a different ¢ which, however, is constant in time and depends
on the respective positions of the clocks. This definition of time is
therefore quite plausible. It is, incidentally, identical with the
Einsteinian definition of time in K, i.e., every clock on the disk always
shows exactly the same time as that particular clock of K over which it
happens to be located at that moment.

It is important to note that in stationary systems even space
measurements assume some very complicated properties. The character-
istic length ds of the unit red, which represents an inferval, is no longer
identical with the spatial length do of the rod according to (3), because
the length de is measured by two events that take place at the two ends
of the rod and are simultancous in the sense of the simultaneity of
stationary systems. However, since this simultaneity does not agree
with Einstein’s ¢ = }, the events are not simultaneous in the sense of the
the characteristic length. This fact leads to the consequence that the
spatial congruenceof stationarysystemsisno longer defined by rigid rods.
A correction factor 1 dependent on both position and direction must be
included. In contrast to the static field this result means not only a
difference in the spatial coordinate differentials determined by the rod
but also a difference in the measure of length determined by the rod.

1 This correction is connected with the so-called circle paradox. See A., § 44.
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Two rods equally long when compared at one place are no longer
equally long when they are apart (although they would always be
found to be equally long when compared at one place after having been
transported along different paths). The spatial geometry of stationary
gravitational fields is therefore no longer based on the definition of
congruence in terms of rigid bodies.

The variation of the unit in transport can be interpreted as the
effect of a force which would then have the property of a universal
supplementary force. This definition of congruence seems to be in
conflict with our previous considerations of § 5 and § 6, according to
which universal forces were excluded by definition. The present
situation, however, is more complicated: whereas Einstein’s definition
of the ds? in terms of clocks and rods excludes universal forces from the
Jour-dimensional manifold, such forces now are unavoidable in three-
dimensional space.

If conversely we were to define spatial congruence on the rotating
disk by rigid rods under exclusion of universal forces—which is of
course also permissible—we would then introduce universal forces
into the four-dimensional space-time manifold, and Einstein’s realiza-
tion of the ds? would thus have to be renounced. There appears
therefore a discrepancy between two natural definitions of the metric
within matter-geometry itself. Due to this fact, the transforming away
of universal forces is no longer completely in our hands. This result
shows that there are limitations to the arbitrariness of definitions.

§ 42. SPACE AND TIME IN GENERAL
GRAVITATIONAL FIELDS

Finally, we shall study the most general gravitational ficlds, omitting
axiom IV, 1, which postulates the existence of stationary systems in
which the time ABA of the path of a light ray is constant for any
pair of points. In the language of the Riemannian geometry, these
are systems with arbitrary g,, ! that change with position and time.

How are we to conceive the spatio-temporal metric of such a mani-
fold? Here we are faced by a world of the mavre pet, where actually
everything is in a state of continuous flux. If we were to measure the

1 We would have to add certain conditions in terms of a determinant which
assert the indefinite character of the fundamental quadratic form. See A., § 48.
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diameter and circumference of a circle, their quotient today would not
be the same as that of tomorrow. Indeed, if we were to make a material
circle of some wire, it would no longer be a circle tomorrow, having
been bent by fluctuating gravitational fields. Static structures are
therefore impossible in this world, which bends and shifts everything
with time. The concept of rigidity loses its meaning in this world, in
which only rubber bands would be “solid” bodies that do not break.
We recognized earlier (§ 34) the relativity of the concept of relative rest,
and we showed that the rigidity of solid bodies is merely a convenient
definition of relative rest. Certain coordinate systems have the
property that all their points can be connected by rigid rods and that
the points thus connected retain their identity through the course of
time. These special properties disappear in the most general
gravitational fields. We could, of course, still define a framework of
iron beams as internally at rest, defining away in this fashion its internal
motion. This would be possible so long as the fluctuations of the
metrical field were not strong enough to exceed the elastic limit of the
material and tear the framework. However, we would also find that a
corresponding framework made of copper beams, which had originally
been equal in size and shape to the first, would assume a different size
and shape after some time. Its points must therefore have moved
relative to the first framework. Hence solid bodies would therefore no
longer define a unique coordinate system as internally at rest, due to
differences in their clastic properties. We thus lose the possibility of
defining a geometrical state as rigid in terms of solid bodies, since this
definition was based primarily on the uniform behavior of different
materials. There is therefore no longer a geometry of rigid bodies.
Similar complications arise for light-geometry. Light rays can no
longer be defined as straight lines, because their paths back and forth
do not coincide. A straight line from 4 to B would be different from
the straight line from B to 4. Even the points through which the light
ray travels in one direction from A to B will vary with time. Light
also lcses its uniqueness with respect to time, since there is no longer
a specific definition of simultaneity on the basis of which the velocity
of light is constant. In whatever manner we set our clocks, not only
will the velocity of light generally be different at different points but
it will also have different values for different line elements through the
same point—and even these values are subject to change in the course
of time. There is therefore no light-geometry in these most general
gravitational fields.
264



§ 42. Space and Time in General Gravitational Fields

It seems reasonable to ask whether there is anything left which
might be called geometry. If there are no rigid bodies, then our
previous definition of physical geometry, as the system of the relations
of rigid bodies, loses its applicability; and if there is no light-geometry
either, then light cannot take the place of the rigid body in the
coordinative definition of geometry. The coupling of geometry and
gravitation that follows from the theory of relativity has therefore a
peculiar consequence. Its greatest success consisted in its explanation
of geometry, in which it revealed the behavior of measuring instruments
as an effect of a gravitational ficld. But this conception subjects
geometry to the variability of gravitational phenomena, and geometry
loses its definiteness in fields in which the adjustment of measuring
instruments is not uniform. Is it reasonable, then, to speak of a
geometry in such gravitational fields?

Let us first sce how a physicist solves the problem. He makes use
of the applicability of the special theory of relativity to infinitesimal
domains. In small regions—which incidentally arc quite large with
respect tb the human organism, since deviations from the geometry of
the special theory of relativity appear only in astronomical dimensions
—he can determine the metrical relations with sufficient accuracy
according to the methods of the special theory of relativity. He can
use the light-geometry, and he will find a sufficient number of rigid
bodies. He can avail himself of these bodies if he assumes that the
axioms are satisfied for limited regions of space only, and, since the g,
are regarded as variable in time, if he limits himself to small time
intervals. He would therefore consider only large-scale phenomena as
fluctuating. He might now determine even a large-scale metric by
treating the fluctuating phenomena in such a fashion that the metric
corresponds everywhere, in infinitesimal domains, to that of the special
theory of relativity. He would therefore describe the path of light
rays and the motion of the planets in terms of correction factors such
that in turn these physical processes would define a metric corresponding
everywhere in infinitesimal domains to the special theory of relativity.
This method yields a physical geometry for large dimensions, which, of
course, does not contain “direct’ realizations of the geometrical
elements; it would be defined by “indirect connection’ to physical
reality. We can thus impose upon this flowing world a conceptual
system that makes the chaos appear as an ordered flow. Geometry
would then be that conceptual framework which brings order into the
chaos.
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This definition of physical geometry is, of course, very abstract. It
is constructed by reference to infinitesimal domains, and we must admit
that the concepts of space and time seem to be meaningful only for
these domains. Its space-time determinations would therefore not
express the rclations of the behavior of large physical objects, but
merely describe the behavior of these physical objects relative to
infinitesimal measuring instruments. This conception leads to a
considerable limitation of the original meaning of the concept of
geometry.

We must therefore ask whether it is perhaps possible to establish
between large-scale structures in such a world relations that might be
regarded as geometrical.  This possibility is suggested by the idea that
the relation to infinitesimal measuring instruments will entail certain
relations between the large-scale structures themselves. We therefore
must try to discover these large-scale relations. The task can indeed
be carried out.  Mathematically speaking, this problem is the same as
asking for the integral properties of a Riemannian geometry which is
known to correspond to Euclidean geometry in the differential domain.

The answer to this question is found in the concepts of topology
which we have used earlier (§ 12 and §21). Although the metric of
Riemannian spaces is completely arbitrary, their topology is quite
definite, inasmuch as the basic topological properties are common to
all Riemannian spaces. There may be some variations, of course, in
the fopological form, which may be that of a sphere, a torus, an open
space, etc. However, these are merely special cases independent of
which there is a common topological basis given by the condition that
every Riemannian space must be ' plane in its smallest elements,"” i.e
correspond to the special theory of relativity. It is this topological
property that is common to all curved surfaces; all of them are con-
structed from ‘‘infinitesimal planes” and are therefore topologically
related. We can formulate these common topological propertics, as
will be seen presently, by characterizing them as properties of " cut-out
regions.”

Let us consider a torus. A torus cannot be mapped on a plane
topologically (in a one-to-one correspondence and a continuous fashion)
because it has a different topological shape. We can, however, cut
out of the surface of the torus a region that will become topologically
equivalent to a bounded region of the plane, under a suitable choice of a
boundary. The curvature does not matter in this case. The impos-
sibility of a one-to-onc and continuous mapping applics only to the
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torus as a whole, not to a cut-out region. Since all curved surfaces
behave in this fashion, we can topologically map the cut-out regions of
any surface directly upon any other. Thus we have a method to
eliminate differences in topological shape: we shall call two manifolds
topologically related if we can everywhere cut out regions from them
which are topologically equivalent.

It is important to note that this statement does not employ the con-
cept of infinitesimal domain, since we are not saying that the statement
applies to finite regions only in the sense of an approximation and is
strictly valid only in the limit. The statement applies rigorously to
finite regions. This characterization of common topological properties
differs from the formulation referring to *'planeness in the smallest
elements,” or to ' Euclidity of the smallest clements,” although it is
mathematically equivalent to the latter. The latter characterization
contains metrical concepts and can therefore be applied only in the
limit. The characterization in terms of cut-out regions, however,
uses exclusively a topological concept, namely that of one-to-one and
continuous mapping, which can be strictly satisfied for non-vanishing
regions. If we speak of “‘cut-out regions,” we shall always mean
nonvanishing finite regions. One should also note that we merely
say that such regions can be cut out, since of course not every cut-out
region has the described properties. IFor the sake of convenience we
shall adopt the rule that to say “a space has such and such propertics
in cut-out regions’ means that such regions can be cut out,

Our problem is now reduced to finding the topological properties of
the cut-out regions in the space-time manifold of the most general
gravitational field. The answer to this question is very simple: they
are the same topological properties as those displayed by the space-time
manifold of the infinitesimal domains. Any curved surface is in its
cut-out regions topologically equivalent to the plane. Similarly the
space-time order in the cut-out regions of the most general gravitational
field must be topologically equivalent to the space-time order of the
special theory of relativity. This is the key that opens the door to the
characterization of the geometry of the gravitational field.

We have already discussed the topological properties of the space-
time order in our analysis of the special theory of relativity. We
found there that the concept of time order is of primary importance and
that it can be reduced to the concept of the causal chain. The causal
chain proved to be the basic topological element of time order. The
concepts earlier, later, and simullaneous revealed themselves as ordering
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concepts by means of which we were able to characterize the most
general properties of causal structure. Continued investigation showed
furthermore that even spatial order can be based on the causal chain.
We found there that the definition of spatial distance (§ 27) amounts to
saying that a space point is farther away when the causal propagation
takes more time to reach it. When we used these concepts in the light-
geometry for the definition of the spatial metric, we first laid down their
topological basis in the form of a special coordinative definition. Tt
was the concept of spatial betweenness which was thus supplied by the
causal propagation. There can be no doubt that this conception
reveals the basic meaning of the topology of space. It contains the
answer to the question what is actually meant by the order of spatially
adjacent regions. That we call Sirius very distant and the sun
relatively close means nothing other than that a causal chain
originating with us will reach Sirius much later than the sun. The
“light-year” of the astronomer, which was originally introduced as a
matter of expedience, corresponds to the logical archetype of all
measurements of length.  Time, and through it causality, supplies the
measure and the order of space; nol time order alone, but the combined
space-time order reveals itself as the ordering schema governing causal
chains and thus as the expression of the causal structure of the universe.

The system of causal ordering relations, independent of any metric,
presents therefore the most general type of physical geometry, namely
the type realized by large objects even in the most general gravitational
fields. If rigidity and uniformity were to disappear, the causal chain
would still remain as a type of order. The causal chain is the real
process that constitutes the immediate physical correlate of the purely
ordering geometry of Riemannian spaces. Although everything is in
continuous flux, there is a structure discernible in this flux. It is
striated and can be resolved into chains that define a strict topological
order. The analysis of the concepts of space and time, which was
carried through by the theory of relativity and which has culminated
in the denial of any metrical importance of geometry, has clarified the
cognitive significance of the concepts of space and time. The order
of causal chains is ultimately reflected in all space-time determinations.

The causal theory of space and time, to which we were led by the
epistemological study of the foundations of space-time theory, con-
stitutes the foundation also of the relativistic theory of gravitation.
Only this theory can reveal the physical structure into which space-
time order relations can be embedded even when all of the metrical
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properties of the space-time continuum are destroyed by gravitational
fields. While we thus see in the causal theory of space and time the
philosophical result of the theory of relativity, we wish to point out
that this idea of a causal space-time order was conceived long before
the advent of the theory of relativity. It was none other than
Leibniz who developed in his *Initia rerum mathematicorum meta-
physica™ the basic ideas of this conception.! The new development is
not a direct continuation of the work of Leibniz, who naturally did not
know anything about the relativity of simultaneity. The author’s
development 2 of the causal theory of space and time was undertaken
without knowledge of the corresponding work of Leibniz. It is the
more remarkable that Leibniz, this genuine philosopher, was able to
understand the nature of scientific knowledge to such an extent that,
two hundred years later, a new development of physics and an
analysis of its philosophic foundations confirmed his views.

C. The Most General Properties of
Space and Time

§ 43. THE SINGULAR NATURE OF TIME

We shall now praceed to develop more precisely certain conclusions
derivable from the causal theory of space and time that express very
general properties of spatio-temporal order. A mathematical formu-
lation will again provide us with a convenient approach to this
problem. The fundamental topological properties of the special theory
of relativity are expressed in the fundamental form of the metric,
namely in its indefinite character and in its four-dimensionality. e
shall discuss both of these factors in our presentation, devoting the
present section to the indefinite character of the metric.

The indefinite character of the fundamental metrical form expresses
the singular nature of time. We have pointed out, however, in § 29
that this characterization does not give us an exhaustive description
of the nature of time. It expresses a distinction between space and
time, but does not give us a complete comprehension of the peculiar

1 See also H. Reichenbach, * Die Bewegungslehre bei Newton, Leibniz und
Huyghens,”” Kantstudien 29, 1924, p. 4211.

2 Physikal. Zeitschr. 22, 1921, p. 683; and in more detail in A.  Similar ideas
were developed by K. Lewin, Zischr. f. Phys. 13, 62, 1923 and by R. Carnap,
Kantstudien 30, 1925, p. 331.
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characteristics of time.  An additional essential property of time is its
directionalily. This specific feature is based on the fact that time—
and time alone—is the dimension of the causal chains upon which we
have based our theory of space and time. Time is the direction of the
grain of the manifold along which the causal chains extend, whereas
space reflects only the neighborhood relations between the coexisting
causal chains. The direction of the causal chains is also the direction
of the world-lines of objects which remain identical with themselves
and which therefore represent special cases of causal chains. These
lines exhibit most clearly the singular character of time. The atoms
of a material rod located next to each other on a spacelike world-line
are said to be different from one another; they are, of course, linked
by dynamic bonds, but these forces merely combine them into a
complex without destroying their individuality. The points of a time-
like world-line, in contrast, are referred to as states of the same object.
The atom of yesterday and the atom of today are identical, whereas
the atom at the left end of the rod is different from the atom at the right
end. We may denote this kind of identity by the term genidentity,
introduced by K. Lewin.! Let us take, for example, a structure as
complicated as the human organism. Mr. A of yesterday and Mr. A
of today are identical, but not Mr. A and Mr. B. If this decisive
difference did not exist between space and time, we could consider the
continuation of yesterday's Mr. A to be today’s (or even yesterday's)
Mr. B, and we could construct the world-line of a human being running
through several different individuals.

The theory of genidentity has received quite a blow from the
criticism of the concept of substance, which was brought about by a
reconsideration of the ether theory. Accordingly it is no longer
necessary to consider the world-lines of a material ficld as striated in a
definite direction; the choice of the grain includes a certain amount of
arbitrariness. If the state of a field is graphically represented in
the customary fashion, asin Fig. 46, then the vertical lines as well as the
dotted slanted lines may be considered as the world-lines of the
individual ““field particles.”” Particle A, may thus be considered as
genidentical with Ao, A3...as well as with By, C3, Dy. . . . Nature
does not supply a unique rule in this case. Einstein saw in this fact
the collapse of the old concept of substance.2 This means only (and

! K. Lewin, Der Begriff der Genese, Berlin 1922.

® A. Einstein: Sidelights on Relativity . 1. Ether and Relativity. 11. Geometry
and Experience. london, 1922.
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that is how it is formulated by Einstein) that tere are material fields
in which this arbitrariness exists. Einstein thus wishes to charac-
terize the metrical field that propagates gravitational forces.  On the
other hand, there are also material fields in which there is a natural

Iig. 46.  Arbitrariness of the striation of world-lines in a
continuous ficld.
striation; an example is atomic matter, the world-line bundles of which
can by no means be considered as arbitrary in the sense of Iig. 46.
We shall not pursue the significance of the concept of genidentity at
this point, since this question would lead us away from our immediate
problems of space and time into the problems of existence, which need
not be referred to in this investigation because time preserves those
properties with which we are concerned even in continuous fields,
according to Fig. 46. The world-lines of Fig. 46 can be chosen
arbitrarily only within the timelike cone, i.c., they cannot exceed a
certain slope.  Even continuous fields single out the dimension of time
as uniquely suited to the concept of genidentity, a concept that can
never be satisfied by spacelike world-lines.

The concept of genidentity is, consequently, closely related to the
concept of causality. Different states can be genidentical only if they
are causally related. This conception agrees with our definition of
causal connection, which considers the causal chain a signal, i.e., the
transmission of a mark. To speak of a recognition of the same mark
implies a striation of the space-time manifold.  Not all world-lines can
be interpreted as lines of the progress of a mark. At the same time,
however, our characterization of causality by means of the mark
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principle is sufficiently broad to include the arbitrariness in the choice
of the lines of genidentity diagramed in Vig. 46.

If we now ask how the topological properties of time are to be
characterized in more detail, we may point to §21 and §22 which
contain the answer to this question. The laws formulated there as
axioms of time order and time comparison contain those properties of
time order that survive even in the most general gravitational fields.
The fundamental concepts earlier, later, indeterminate as lo lime order
are therefore left unaffected by the relativistic analysis of the concepts
of space and time. These fundamental concepts constitute the core
of the physical order of time. We notice that the fntuitive basis of time
order has been retained. The relativistic theory of gravitation does
not destroy the intuitive character of time.

As explained, the validity of the topological axioms of time order can
be asserted in gravitational fields only for cut-ou! regions. The structure
of the world as a whole cannot be determined so long as the validity of
special relativity in the infinitesimal is the only mathematical basis
assumed. The holistic properties are not determined, if the description
is restricted to infinitesimal regions; the topological character of the
universe remains an open question. In particular the possibility
remains that for the universe as a whole the axiom of the nonexistence
of closed causal chains (p. 139) may fail. Mathematically speaking,
it is possible to conceive a world in which the special theory of relativity
applies in infinitesimal domains without exception, yet in which causal
chains may be closed in the world as a whole.

Fig. 47. A two-dimensional world, without singularities, con-
taining closed time-lines.

To understand this result let us consider a graphical representation
of a two-dimensional world, with one space and one time coordinate,
drawn on the surface of a cylinder (Fig. 47). The time coordinate
corresponds to a line encircling the cylinder, while the space coordinate

corresponds to a line going to infinity in both directions, parallel to the
272



§ 44. The Number of Dimensions of Space

axis of the cylinder. Such a manifold has no curvature and satisfies
the special theory of relativity in every respect in finite cut-out regions.
Only as a whole it has the peculiarity that time lines may be closed.
A light signal L will travel like a spiral to infinity, yet it may be
reflected (at S) so as to return to its starting point.

This simple model demonstrates strictly that closed timelike world-lines can
exist in a world in which the special theory of relativity holds without singularities.
Our proof is based on the idea that the Minkowskian geometrical representation
of the indefinite metric accomplishes a one-to-one coordination between the
definite and the indefinite metric and that a surface possible in a definite space
will correspondingly lead to a coordinated surface in the indefinite space.  This
proof answers one of the questions posed in A., § 48.  The proof of the satisfaction
of axiom 1, 1 in real systems (A., p. 148) is thus shown to be invalid by this madel.
The proof overlooks the fact that the existence of closed world-lines demands
only an *'apparent singularity** (A., p. 142) of the coordinate system, such as the
singularity of the coordinate system of Fig. 47 at the origin of the time axis.

We described earlier (p. 141) the peculiar experiences that would
result from the existence of closed causal chains. The general theory
of relativity envisages such experiences as possible provided that no law
regarding the order of space and time is recognized other than the
special theory of relativity in infinitesimal domains. It may be
advisable to consider this law insufficient and to exclude topological
structures like that of Iig. 47 by a special axiom. At present, the
evidence indicates that the time order is not closed.

These results exhaust the contribution of the theory of relativity to
the problem of time. The theory of relativity has demonstrated the
connection between the concepts of time and of causality and has led
to the formulation of the general axioms of the order of time. A
further penetration into the nature of time will be possible only if we
subject the concept of causality to a more detailed analysis. This
topic will have to be discussed in another publication.!

§ 44. THE NUMBER OF DIMENSIONS OF
SPACE

Let us now turn to the second of the above-mentioned basic properties
of the fundamental metrical form. Itsindefinite character is expressed
by the uniqueness of time. Now we shall investigate the significance
of the number of its dimensions. Since one dimension is distinguished

1 [See H. Reichenbach, The Direction of Time, University of California Press,
Berkeley, 1956—u.R.]
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from the others by virtue of the uniqueness of time, we can restrict
our investigation to the three dimensions of space.

Various views have been expressed with regard to this question. It
has been answered mostly in a subjective sense. The three-dimension-
ality of space has often been looked upon as a function of the human
perceptual apparatus, which can visnalize spatial relations only in this
fashion. Poincaré tried to find a physiological foundation for this
number; according to him two of the dimensions are due to the
retinal image, the third to the “effort of accommodation which must
be made, and to a sense of the convergence of the two eyes.”” 1 Even if
this physiological explanation were tenable, it completely overlooks
the fact that the number 3 of dimensions represents primarily a fact
concerning the objective world and that the function of the visual
apparatus is due to a developmental adaptation to the physical
environment. This conception is supported by our account of physical
geomelry. In the present section we shall deal with the objective
significance of the three-dimensionality of space.

We have previously shown (§ 12) that the topological properties of
space are more directly determined by objective facts than its metrical
properties. We showed that the redefinition of a geometry into a
different topological type leads to causal anomalies. The same
consequence applies to the number of dimensions, which is also a
topological property. Two manifolds of different dimensionality can
never be mapped upon one another in a continuous one-to-one trans-
formation. The introduction of a different number of dimensions into
physical space by means of a transformation—which is just as possible
as the introduction of a different geometry—would destroy all existing
causal laws. It is the characteristic of three-dimensionality that it and
only it leads to continuous causal laws for physical reality. This
empirical result describes a property of reality and constitutes the
objective meaning of the statement that space has three dimensions.

We saw earlier that measurements of space are reducible to measure-
ments of time and that in the most general gravitational ficlds, where
no geometry of rigid bodies exists, the order of space can be defined only
as the structure of causal chains. Now we can come to a deeper
understanding of the connection between the dimensionality of space
and the concept of causality. In §27 we formulated definition 10
according to which a spatial distance is measured by the time a light

1 Science and Hypothesis, Dover Publications, Inc., New York 1952, p.53. See
also p. 68.
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ray requires to traverse it. If we now ignore the measure supplied by
this definition, it will reduce to the more precise form of definition ¢
(p. 169) of the concept between, whose properties are determined
especially by axiom G. It has the same meaning as the principle of
action by contact: causal effects cannot reach distant points of space
without having previously passed through the intermediate points.
Through the above definition of befween the principle of action by
contact becomes the more fundamental principle of spatial order: the
neighborhood relations of space are to be chosen in such a way that
the principle of action by contact is satisfied. This principle expresses
the prescription which our concept of causality yiclds for the topology
of space.

This rule determines the dimensionality of space as will be shown by
the following consideration. First, it must be taken as an empirical
fact that there is at least one dimensionality satisfying the principle of
action by contact. If, however, there is such a dimensionality, there
can be only one. Transformations to other dimensionalities always
violate the principle of action by contact, because there are no
continuous one-to-one transformations between spaces of different
dimensionalitics. This result is the basis for the determination of the
number of dimensions. Let us now pursue this idea in more detail by
means of a very simple example.

There are instances in physics where we work with spaces of a higher
dimensionality, namely, whenever we use a so-called parameter space.
Let us think, for example, of the state of a cloud of molecules as it
occurs in a gas. The state of the gas is determined at any time ¢ when
the three coordinates of each of the n molecules are known, i.e., by the
specification of n points in the three-dimensional coordinate space.
Instead, we may consider all of the coordinates as dimensions of a
3n-dimensional space, which is called the parameter space. The state
of the gas is then given by one point in this 3n-dimensional space.
These descriptions are evidently equivalent: either of them can always
be translated into the other. In spite of this fact we consider the
parameter space merely a mathematical tool with no objective reference,
whereas we regard the three-dimensional space as the real space.  What
is the justification for this distinction, which is ordinarily accepted as
self-evident without further explanation? Isit not true that equivalent
descriptions correspond equally to reality?

The answer is that these descriptions are not equivalent descriptions.
The principle of action by contact decides in favor of the description in
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terms of the coordinate space. We shall explain this idea by the use of
an example in which the parameter space has such a low number of
dimensions that it can be diagramed in the customary fashion (Fig. 48).
Let us consider two independent mass points moving on a straight line.
In this case the coordinate space is one-dimensional and the parameter
space is two-dimensional. The state of the point system at a given
time is determined by the two coordinates x; and x; of the mass points.

P' P!
¢

Ll

Fig. 48. DPropagation of a disturbance in the parameter space.

Hence, the location of the points is given either by the two points
P1and p2 in the 1-dimensional coordinate space or by a single point P
in the parameter space. Formally speaking, we may conceive the
motion of the point system either as the motion of two points in a
1-dimensional space or as the motion of a single point in a 2-dimensional
space. But if we now introduce the principle of action by contact, the
descriptions cease to be equivalent.

Let us consider a disturbance in the 1-dimensional space, such as a
sound wave originating from point p;. According to the principle of
action by contact, it will gradually travel from $, in both directions.
What would be its configuration in the 2-dimensional parameter space?
Every point P of the plane corresponds to a combination of two points
Pipr onthe xyaxis.  All combinations py py lie on the straight line py P.
Since the disturbance acts at py, it must therefore affect all points on
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the line p1 P simultaneously and the propagation of the disturbance will
be represented by a lateral shift of the line py P in the direction of the
arrow. At the same time, however, there must also occur a horizontal,
symmetrically located, disturbance front p)P, since pp will also be
disturbed as soon as it approaches the area of the disturbance.
Whereas the disturbance spreads from a center in the coordinate space,
it does not have a central point in the parameter space, but affects
immediately two intersecting straight lines. This fact shows that the
“real space”” in this example is 1-dimensional; only in the 1-dimensional
space can the principle of action by contact be maintained, while in the
2-dimensional space infinite velocities of propagation exist along the
intersecting straight lines.

Besides this interpretation, there exists another in which we do not speak of
infinite speeds of propagation along the straight line, but of a preestablished
harmony. Whenever a disturbance originates in a point on one of the straight
lines, it originates at the same time also in all of its other points, because there is
a corresponding cause for the disturbance at every point. These two inter-
pretations are cquivalent and constitute the same violation of the principle of

causality. The satisfaction of the principle of action by contact excludes,
therefore, preestablished harmony. See also p. 65.

We must now formulate this analysis in more detail. The transi-
tion from the coordinate space to the parameter space involves a
certain arbitrariness, and we must now specify the presupposition
according to which the point disturbance in the coordinate space is
transformed into a line disturbance in the parameter space. If p) lies
within the region of the disturbance, its path will be deflected.
Consequently, the path of the combination point P will also be deflected.
and it is irrelevant in this case whether pg is affected by the disturbance.
If we now require that a deflection of P can occur only if P lies within
the domain of disturbance in the parameter space, it follows necessarily
that the disturbance in the parameter space must occur along a line
and cannot be restricted to the immediate neighborhood of a point.

This disturbance has a second peculiarity. At first it has no effect on
the state of motion of pg since it affects only ). In the 2-dimensional
parameter space, it can therefore affect the point P of the system only
in a certain limited fashion, namely, the disturbance can change only
the x; coordinate and not the xp coordinate of P.  If PP’ is a segment
of the undisturbed path of I?>, and PP” is the corresponding segment
of the disturbed path, then the points P’ and P~ lying on the same
horizontal line must correspond to simultaneous events. The path
of P receives from the linear disturbance only a sideward bulge
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perpendicular to the front of the disturbance. The central disturbance
spreading in all directions in the coordinate space will be linear and will
spread unidirectionally in the parameter space.

If, on the other hand, the process of the disturbance were centrally
oriented in the 2-dimensional space, it would not be oriented in the
same way in the 1-dimensional space. If we consider a disturbance
spreading centrally from P, it will be represented in the 1-dimensional
space by two disturbances which affect p) and ps simultaneously and
spread centrally from each of these points. Between these two
disturbances there would exist an action at a distance: if the point
$1 should enter one of the regions of disturbance, it would be disturbed
only if simultancously the distant point p» were located in the other
region of disturbance.! A central action by contact in the parameter
space would thercfore lead to an action at a distance in the coordinate
space. In this case we would say that the 2-dimensional space is the
“real one,” while the 1-dimensional space is merely a mathematical
tool.

As was pointed out before, the described difference in the causal
propagation of the two spaces is based on the fact that no continuous
one-to-one transformation is possible between spaces of different
dimensionalities. There can only be a transformation that changes
the elements of the space, i.e., a point in the 2-dimensional space
corresponds to a combination of points in the 1-dimensional space, and
a point in the 1-dimensional space corresponds to a straight line (or a
pair of intersecting straight lines) in the 2-dimensional space.

An extension of these considerations to higher numbers of dimensions
is easily accomplished. If the coordinate space is 3-dimensional, and
the parameter space #-dimensional (2 > 3), then a disturbance in the
coordinate space which obeys the principle of action by contact is
represented in the parameter space by intersecting hyperplanes moving
sideward, which can again be disturbed only in a limited fashion and
which will cover, in the course of time, a cylindrical region having a
3-dimensional cross-section. A centro-symmetric disturbance in the
coordinate space corresponds therefore to a group of cylindrical and
unidirectional disturbances in the parameter space. Conversely, a

centro-symmetric disturbance in the parameter space would be

1 This follows because the combination point P lies in the region of the
disturbance of the paramecter space only under these conditions. The above-
mentioned requirement that P is disturbed only under these conditions is here
obvious, since otherwise we cannot speak of action by contact in the parameter
space.
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equivalent in the coordinate space to a number of separate disturbances
connected at a distance.

Let us now imagine schematically that an observer wants to deter-
mine experimentally the dimensionality of space. He will try to
combine the parameters of the observed events into one space and test
whether the principle of action by contact is satisfied in this manifold.
If it is not, he will try a different combination of parameters, i.e., a
different dimensionality of the parameter space, testing thus various
parameter spaces until he finds onc that has the desired property.
This space he will call the coordinate space. If we consider the
coordinate space as a special case of a parameter space, we may
formulate the results of our considerations as follows:

The principle of action by contact can be satisfied only for a single choice
of the dimensionality of the parameler space; that particular parameter
space in which it is satisfied 1s called the coordinate space or ' real space.”

This formulation expresses the requirements on which the coordina-
tive definition of the topological space is based. The topology is there-
fore basically subject to the same qualifications as the metric: without a
coordinative definition it is not determined, and therefore we cannot
regard it as an absolute datum. The metric of a space becomes an
empirical fact only after the postulate of the disappearance of universal
forces is introduced. Similarly, the topology of space becomes an
empirical fact only if we add the postulate of the principle of action
by contact. This idea was first considered in § 12, where we dealt with
the topological character of space and recognized that it is determined
only if we add the postulate of the disappearance of causal anomalies.
This result fits into our present more general requirement, according
to which not only the topological character but also the neighborhood
relations are determined only if the postulate of action by contact
is assumed. A recognition of the arbitrary components in the
various descriptions clarifies the objective nature of topology. That
the requirement of the principle of action by contact can be satisfied
at all, and in particular, that it is satisfied in a Riemannian space of
three dimensions, is a physical fact not dependent on arbitrary defini-
tions. The statement that physical space has three dimensions has
therefore the same objective character as, for instance, the statement that
there are three physical states of matter, the solid, liguid, and gaseous slate;
il describes a fundamental fact of the objective world.

Just as in the case of the metric, one can proceed, after recognizing
that the three-dimensionality is a physical fact, to the question of its
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explanation, i.e., one can now search for a cause of the three-dimen-
sionality of space. One might try, for instance, to regard the three-
dimensionality as a consequence of certain conditions of equilibrium of
matter. This conception would be justified if the three-dimensional
order of matter could be shown to be the only stable order. Any
such proof presupposes certain laws of nature which can be formulated
tndependently of the dimensionality of space. Such a proof might read:
If space has » dimensions, and it is a general law of nature that the
attraction between masses varies inversely with the (u-1)th power of
their distance, then the dimensionality of space must be n = 3, since
otherwise the motion of the planets and also the arrangement of the
masses of the stars would not be stable. Of course, this idea cannot be
carried over into Einsteinian geometry, where the Newtonian force of
attraction no longer plays a primary role and occurs only as an
approximate solution. The proof could also be based on a more
general assumption, such as the following: If the field equations of
matter contain only differentials of second order or less, space must
have three dimensions. We mention these examples, which of course
are not intended to represent confirmed laws of nature, nor laws for
whose future confirmation we see any chance, merely in order to express
the basic idea of such an explanation of the dimensionality of space.
This explanation, like any other explanation, can consist only in a
combination of two natural phenomena into one, i.e., in the derivation
of one from the other. The three-dimensionality would thus be
recognized as a logical consequence of certain fundamental properties
of matter, which in turn would have to be accepted as ultimate facts.
Any other attempt at explanation would be vain. The three-
dimensionality of space cannot be maintained as an absolute necessity;
it is a physical fact like any other, and therefore subject to the same
kind of explanation. Though some attempts have been made to
treat the problem from this point of view, as for instance by H. Weyl t
and P. Ehrenfest,? they have thus far not led to success.

We shall now turn briefly to the question of the visualization of spaces
of higher dimensionality. There can be no doubt that in a world of a
higher dimensionality the human power of imagination would adapt
itself to its environment and that man would have a visual picture of
this space analogous to his present three-dimensional visualizations.
When we try to imagine such a picture according to the rule given by
Helmholtz (p. 63), namely, by describing experiences in a four-

1 0p. cit., p. 285. 2 Ann. d. Phys. 61, 1920, p. 440.
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dimensional space (i.e., a five-dimensional space-time manifold), we
meet with certain difficulties. In such a space even the human body
would be four-dimensional, and its perceptual apparatus would
be very different. Instead of the two-dimensional retina of the
eye, there would be a three-dimensional retina.  Whereas the visual
experience of the third dimension, the “depth,” is now achieved
primarily by the combined effect of the two eyes and is therefore
qualitatively different from the experience of the other two dimensions,
the three-dimensional experiences in a four-dimensional space would
be as immediate as two-dimensional experiences in our three-
dimensional space. The combined efiect of the two three-dimensional
pictures on the retina would supply us with the visual experience of
the four-dimensional space. If we try to imagine such experiences in
terms of our present sensations, we shall find that there are certain
limitations. The new perceptual experience we wish to describe would
have new sense qualities that do not exist under the conditions with
which we are familiar.

We can thercfore indicate only indirectly what kind of experiences
would result in such a world. For this purpose we shall use the device
of substituting for the new, unknown sense quality a known quality.
Let us assume that the three dimensions of space are visualized in the
customary fashion, and let us substitute a color for the fourth dimension.
Every physical object is liable to changes in color as well as in position.
An object might, for example, be capable of going through all shades
from red through violet to blue. A physical interaction between any two
bodies is possible only if they are close to each other in space as well as
in color. Bodies of different colors would penetrate each other without
interference. In this fashion we have now coordinated to every point
of the three-dimensional space the one-dimensional continuous mani-
fold of color from red through violet to blue. Hence the combined
manifold of these states is four-dimensional. This manifold con-
stitutes a space in the proper sense because the principle of action by
contact is satisfied.

All properties of a four-dimensional space may now be inferred from
this illustration. The collision of two billiard-balls, for instance,
would occur as follows: the two balls approach the same three-
dimensional point, while at the same time their colors become more and
more alike. Only if they are close not only in space, but also in color,
will there be the sound of a collision. It may also happen that the
two balls are at the same point in space; but so long as their colors are
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different, they will penetrate each other. If they stay at the same
spot and their colors become gradually more alike, we shall finally
hear the sound of their collision at the moment when their colors are
identical. The fact that a closed three-dimensional surface no longer
encloses a spatial region will become clear from the following con-
sideration. If we lock a number of flies into a red glass globe, they
may yet escape: they may change their color to blue and are then able to
penetrate the red globe.

The human body would be differently built in such a world. It
would extend not only in the three dimensions of space but also in the
dimension of color. It would consist of similar bodies which penetrate
one another and are somewhat different in respect to color, thus filling
in continuous variation a small interval of color. The retina would
also consist of such interpenctrating layers.  Any bundle of light rays
striking the eye would have an additional dimension. If it were a
two-dimensional bundle in the three-dimensional space, it would be
three-dimensional in the four-dimensional space. We must here
imagine that every light ray is capable of assuming every color. From
a red pointt in space, a red ray will go to a red point of the retina. The
same point of the retina is “penetrated” completely by a blue ray
traveling from a corresponding blue point in space to the corresponding
blue point of the retina. The new sense quality can now be indicated
as follows. Since the corresponding red and blue rays are received
by different elements of the retina, we would perceive them as differently
located in space, just as we perceive the direction of rays as spatially
different in three dimensions if they hit different elements of the
retina. This difference in spatial localization, which was replaced in
our example by a difference in color, cannot be perceived by three-
dimensional human beings. The four-dimensional human being would
perceive the gradually increasing similarity of the colors of the billiard
balls as a change in spatial position, just as we experience the decreasing
distance between the balls in three dimensions as a change in their
positions due to the successive stimulation of different cells of the
retina. Thesc four-dimensional changes of position, of course, need
not be connected with the phenomenon of color, since we have used
color merely as a device.

Here we encounter a limit to our capacity for visualization. New
sense qualities cannot be predicted: we can only use substitutes for
them. This difficulty expresses the fundamental importance of
dimensionality. The visualization of events that take place in a
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metrically different space, or in a topologically different space of three
dimensions, is possible because these spaces are Euclidean in the
infinitesimal, and perceptual expericnces are therefore essentially
unchanged. An increase in the number of dimensions, however,
affects even the smallest regions and provides therefore a qualitatively
different experience.

\We can conceive special cases in which the space is four-dimensional, yet in
which the perceptual experience is not difierent from that in three-dimensional
space. Such a case would occur if the human body, as a three-dimensional
structure, were embedded in a four-dimensional space. In this case we can
imagine what the three-dimensionally constructed human eyve would see in the
four-dimensional space. This situation corresponds to one in which two-
dimensional human beings live in a three-dimensional space and are able to
perceive it.  However, since there seems to be a physical law that objects capable
of physical existence must have as many dimensions as the surrounding space, this
example corresponds to a world which cannot be physically realized.  Another
case would arise if space were four- (or more) dimensional in its smallest clements,
but three-dimensional as a whole.  This situation would correspond to the case
of a thin layer of grains of sand which, although each is three-dimensional if taken
individually, taken as a whole forms essentially a two-dimensional space.
Similarly, atoms which individually are higher-dimensional could cluster into
three-dimensional structures.  In such a world, a macroscopic structure would
have only the degrees of freedom of the three dimensions of space, while an atom
would have many more degrees of freedom.  Sense perceptions in such a world
would not be noticeably different from those of our ordinary world; and conversely,
it is in principle possible to infer from our ordinary experiences the higher-
dimensional character of the microscopic world.  Incidentally, it is not impossible
that quantum mechanics will lead to such results.

§45. THE REALITY OF SPACE AND TIME

Statements about the topological properties turn out to be the most
reliable ones we can make about the order of space and time; they
apply even to the most general gravitational fields. We said in § 39
that the Gauss-Riemann separation of coordinate system and metric
leaves to the coordinate system the function of characterizing the
topological propertics of a space. We may therefore regard the follow-
ing statement as the most general assertion about space-time order:
everywhere and at all times there exists a space-time coordinate system.

This result implies the fopological distinguishability of space and time.
In a space-time coordinate system one of the dimensions is to be
considered as time and the three others as space. The division into
timelike and spacelike directions is accomplished by the world-lines of
light. In Fig. 49 the dividing lines are drawn, in Fig. 49a for the special
theory of relativity, in Fig. 496 for the general theory of relativity.
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The second diagram differs considerably from the first in its metric,
while it is topologically equivalent to it. In both diagrams we have
indicated by a dotted line a timelike world-line (with arrow) and a
spacelike world-line (without arrow). It can easily be seen how the
angular regions traversed by these lines can be characterized topo-
logically with reference to the arrows of the world-lines of light:
timelike world-lines pass through the angular region between those
branches of the lines that have arrows, while spacelike world-lines pass
through the angular region between one branch with an arrow and one
without an arrow. If we were to draw in the same manner a set of
timelike and a set of spacelike world-lines, they would represent a
space-time coordinate system (a real system).

It is of course not necessary to describe a manifold of the type of
Fig. 49 by such a coordinate system. We could obtain a unique des-
cription also by means of two sets of spacelike lines. However, the
fact that a topologically divided coordinate system can be chosen
expresses a most important property of the physical world.

Fig. 49 a and b. The topological divisibility of a space-time
manifold.

We can visualize the situation regarding the space-time manifold as
follows. A space-time coordinate system is obtained if space points
are numbered in some continuous fashion and time is measured by
clocks the simultaneity of which is defined in such a manner that it
connects only events indeterminate as to time order (as described in
A., p. 152). But we could replace the time determination by a
completely different one. Let us suppose that all over the space there
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is a downpour of projectiles which are numbered consccutively.
Instead of the time indication we may then use as the fourth coordinate
the number of the projectile closest to the event to be described. The
coordinate system thus obtained is not a real system (its simultaneity
cross-section lies in the region of temporal succession), but it supplics
a unique determination of all of the events. We dealt with an unreal
system of a different kind in § 38, where we recognized that a rotating
system of axes becomes unreal beyond a certain distance from the
center. We therefore cannot say that the choice of a space-time
divided coordinate system is necessary; but that it is always possible
means the same as that the space-time manifold can be divided
topologically.

This result leads to the question whether the possibility of such a choice of
coordinates is derivable from the validity of the special theory of relativity in
infinitesimal domains. For the time being such a proof is possible only for cut-

out regions. Sce also A., p. 154.  The possibility of such a choice of coordinates
for the world as a whole would therefore have to be asserted as a special axiom.

The fact that an ordering of all events is possible within the three
dimensions of space and the one dimension of time is the most funda-
mental aspect of the physical theory of space and time.  In comparison,
the possibility of a metric scems to be of subordinate significance. It
is only the metric, however, which, in the general theory of relativity has
been recognized as an effect of the gravitational field. The essence of
space-time order, its topology, remains an ultimate fact of nature,
unaffected by these considerations. We must therefore content our-
selves with the statement that an ordering in terms of space-time
coordinates is possible. The explanation of topology would still be
incomplete even if we were to find the explanation of threc-dimension-
ality discussed in the previous section. The three-dimensionality
represents one of the topological properties of space and time, and any
explanation would have to start with the assumption that some
continuous order of space and time exists.

Other attempts have been made to explain the topology of space and
time. The coordinate system assigns to the system of coincidences,
of point-events, a mutual order that is independent of any metric.
This order of coincidences must therefore be understood as an ultimate
fact. The attempt has been made to justify this order as necessary;
it has been regarded as a function of the human perceptual apparatus
rather than of the objective world. Accordingly, it has been claimed
that sense perceptions supply directly only coincidences, and that the
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ultimate element of space-time order is determined by the character of
our sense perceptions. In this connection appeal is made to the
experimental methods of the physicist, in which coincidences of dials
and pointers play an important role.

This view is untenable. First of all, it is obvious that we cannot
regard the order of coincidences as immediately given, since the
subjective order of perceptions does not necessarily correspond to the
objective order of external events. It can serve only as the basis of a
complicated procedure by which the objective order is inferred. This
difference is due to the fact that perceptions form a one-dimensional
chain, while objective point events belong to a four-dimensional
manifold. We must therefore introduce rules for the construction of
the objective order; such rules have been formulated in the topological
coordinative definitions.

It is a serious mistake to identify a coincidence, in the sense of a
point-event of the space-time order, with a coincidence in the sense of a
sense experience.! The latter is subjective coincédence, in which sense
perceptions are blended; for instance, the experience of sound can be
blended with the impression of light. The former, on the other hand,
is objective coincidence, in which physical things, such as atoms,
billiard balls or light rays collide and which can take place even when
no observer is present.  The space-time order deals only with objective
coincidences, and we go outside the realm of its problems in asking
how the system of objective coincidences is related to the corresponding
subjective system. The analysis of this question belongs to that part
of epistemology that explains the connection between objective reality,
on the one hand, and consciousness and perception on the other. Let
us say here only that any statement about objective coincidences has
the same epistemological status as any other statement concerning a
physical fact.

It is therefore not possible to reduce the topology of space and time
to subjective grounds springing from the nature of the observer. On
the contrary, we must specify the principles according to which an
objective coincidence is to be ascertained. This means that we must
indicate a method how to decide whether a physical event is to be
considered as one, or as two or more separate point events. Such
methods are frequently employed by the physicist, although he is
usually not aware of this fact. He decides, for example, that the
movement of a particle in Brownian motion is to be represented not as

1 See also A., § 4, for this distinction.
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one coincidence, but as a great number of spatially and temporally
separate coincidences, whose integral effect is observed. The general
basis of all such procedures was explained in § 43, where we demon-
strated that the principle of action by contact is decisive for the
determination of the dimensionality of space. In the example given
there, we investigated the question whether a certain event is to be
considered as one point-event in a two-dimensional space, or as two
point-events in a one-dimensional space. Any such decision depends
on the question, in which coordinate system the principle of action by
contact is satisfied, although both systems appear at first to be equally
adequate. This procedure is used by the physicist to decide what
constitutes a point-event: occurrences are point-events, if the assump-
tion that they are point-events, in combination with observation, leads

to the conclusion that the principle of action by contact is satisfied.
Objective coincidences are therefore physical events like any others;
their occurrence can be confirmed only within the context of theoretical
investigation.  Since all happenings have until now been reducible to
objective coincidences, we must consider it the most general empirical
fact that the physical world is a system of coincidences. It is this fact
on which all spatio-temporal order is based, even in the most com-
plicated gravitational fields. What kind of physical occurrences are
coincidences, however, is not uniquely determined by empirical
evidence, but depends again on the totality of our theoretical knowledge.
The most important result of these considerations is the objectivity
of the properties of space. The realily of space and time turns out to be
the irrefutable consequence of our epistemological analyses, which have
led us through many important individual problems. This result is
somewhat obscured by the appearance of an clement of arbitrariness in
the choice of the description. But in showing that the arbitrariness
pertains to coordinative definitions we could make a precise statement
about the empirical component of all space-time descriptions.  Philo-
sophers have thus far considered an idealistic interpretation of space
and time as the only possible epistemological position, because they
overlooked the twofold nature of the mathematical and the physical
problems of space. Mathematical space is a conceptual structure, and
as such fdeal. Physics has the task of coordinating onc of these
mathematical structures to reality. In fulfilling this task, physics
makes statements about reality, and it has been our aim to free the
objective core of these assertions from the subjective additions
introduced through the arbitrariness in the choice of the description.
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A deeper understanding of this problem would of course be possible
only if we were to enter into a detailed analysis of the problem of
reality and description, i.e., the problem of physical knowledge in
general. It may suffice at this place to remark that the problem
concerning space and time is not different from that of the description
of any other physical state as expressed in physical laws.

If the properties of space and time reflect laws of nature, however,
their physical treatment requires an essential correction. We can
employ the concepts of space and time only so long as there are
phenomena that realize them. At present the existence of such
phenomena has been confirmed only for the macrocosm. All of the
physical concepts basic to the order of space and time, namely, rigid
bodies, clocks, causal chains, coincidences, refer to macrocosmic
phenomena. e cannot be sure that they can be extended to the
microcosm, i.e., the world of the interior of the atom. In addition to
the concept of coincidence, only the concept of causal chain has some
prospects for such an extension. If we have hopes that a space-time
order can be constructed even for the smallest elements of matter, this
optimism derives from the circumstance that it was the concept of
causal chain which proved to be the ultimate basis of the space-time
order of the macrocosm, when all other means to establish an order
had failed in the most general gravitational fields. A final decision
with regard to this problem must be postponed, however, until the
problem of matter, at present in the focus of scientific research, has
been solved.!

}[See H. Reichenbach, T'he Direction of Time, University of California Press,
Berkeley, 1956, Ch. V.—M.R.]

288



INDEX

absence of interior curvature, 54

absolute: space, 211, 216, 217; time,
146; transport time, 133

absolutism, 212

acceleration, 152, 211, 214

action at a distance, 65, 131, 212, 278

action by contact, 131, 132, 257, 275,
277 ff., 281, 287

addition theorem, 206

adjustment, 176, 201, 256

Adler, F., 130

advance of the perihelion, 232, 255

algebraic sum, 153

ampere, 118

analysis situs, 41

analytic, 100; trcatment of geometry, 6

and, 93

Anderson, 238

angular measurement, 115

a priori: character of geometry, 31;
epistemologically, 31; postulate, 77,
147; principles, 67; theoiy of space,
31; visual, 32

a prioristic philosophy, 77, 90; of space,
67

approximation, 29, 117, 129, 212, 227,
237, 255

artificial manifold, 81

atom clock, 119, 192

axiom, 1, 165; of the parallels, 2, 8, 87,
88

axiomatic: construction, 3; method, 2;
system, 97

badly drawn figures, 3, 47
bending of light, 255
Benedict, 215

between, 169, 244; axioms, 93; dcfini-
tion of, 275

betweenness, 268; order of, 60; relation
of, 60

Bieberbach, L., §

Blumenfeld, W., 85 ff,

Baohr, N., 123

Bolyai, J., 3, 5, 49, 57, 88

Bonola, R., 5

Buchenau, A., 210

Carnap, R., 92, 97, 269

Cassirer, E., 210

Cauchy-Riemann conditions of integra-
bility, 246

casual: anomaly, 65, 66, 79, 279; chain,
125, 134, 138, 139, 140, 142, 165, 189,
240, 267, 268, 270, 271 ; propagation,
113; relation, 136; thcory of time,
165; theory of space and time, 268;
structure, 146, 268

causality, 271

cause-effect relation, 240

cause: of gravitation, 254; of inertia,
254

cclarent, 98

central plane, 70

centrifugal: field, 121; force; 211, 233,
241

centro-symmetrical process, 162, 203

certainty, 1

c.g.s. unit, 118

change of shape, 22, 5§

characteristic: length, 187; time, 186

choice of the coordinative definition,
19

chord, 49
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Christoflel, 237

circle paradox, 262

circular: argument, 126; orbits, 211

circumference of the earth, 15, 34

Clarke, S., 210, 212

classical physics, 144

clock, 116, 230, 260; paradox, 192

closed: causal chain, 139, 272; curve,
60, 67, 140; space, 78; surface, 59;
system, 23, 118, 120; to a certain
degree of approximation, 119

coeflicient of expansion, 24

coefficients of heat expansion, 26

coghition, 16

Cohn, E., 205

coincidence, 124, 125

comparison, 15; of distant events, 124;
of neighboring events, 124, 125; of
rest-length of moving line-segments,
174

concatenation, 3

concave: surface, 78

conceptual definition, 15

congruence, 17, 54, 58, 84, 87, 100, 114;
definition of, 2; simple definition of,
17; spatial, 173; temporal, 174

connectivity, 59

consistent, 100; extension, 156

constancy of the velocity of light, 123,
164, 202

continuity, 66

contraction factor, 174, 198

contradiction, 4

convention, 17

conventionalism, 35, 36

convex: mirror, 55; surface, 74, 78

coordinate: space, 275, 279; system,
244, 249; time, 191

coordinative definition, 4, 5, 37, 88,
103, 114, 124, 127, 154, 174, 177,
218, 268; metrical, 15, 135; topo-
logical, 136

coordinative operation, 99

Copernicus, 211, 217, 218, 219

Coriolis force, 233, 234, 241

correction factors, 21, 33, 232, 262

covariant, 214, 233, 236, 240, 241:
magnitude, 214, 216

curvature: constant, 10; of degree zero,
10; of light, 229; negative, 10;
positive, 10; of space, 10; of the
surface of the sphere, 7

cut-out region, 267, 272, 285
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decagon, 44

deductive system, 92

definition, 16, 17; conceptual, 128;
explicit, 93; of meter, 128

degrees of freedom, 220

demonstrable science, 1

depth, 281

Descartes, R., xi, xiii

description of nature, 117

descriptive simplicity, 35, 117, 127, 168,
189, 219, 220, 261

determinism, 63

diagram, 102; of a gas, 104

diameter, 18

difference: apparent, 197; real, 197

different physical states, 19

differential forces, 13, 22, 24, 118, 119,
256

differential principle, 222

directionality, 270

divergence, 98

Doppler effect, 230, 232

drawing, 68

Driesch, H., 81, 85

earlier than, 136, 143, 267, 272

earth clock, 119, 121

Ehrenfest, P., 280

Einstein, A., 35, 36, 52, 67, 83, 124,
132, 176, 186, 218, 222, 227, 235,
234, 255, 257, 261, 270

Einstein: contraction, 196, 198; effects,
232; gravitational field, 233

Einsteinian space, 47

elastic propagation, 133

electric: bell, 139; charge, 214

electrodynamics, 152

electromagnetic wave, 204

electron, 122

element, 93

empirical theory of physical geometry,
257

enclosure, 68; relativity of, 68

Engel, F,, 5

energy, 23

entropy, 214

epicycles, 211

epistemology, xii, xv

equivalence of hypotheses, 213

equivalent descriptions, 217

errors of observation, 31

estimate by sight, 87

cther, 212, 270
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Euclid, 11, 93

Euclidean geometry, 30, 32, 38; as
simplest, 34, 247

Euclidicity, 267

example of twins, 194

exclusion of causal connection, 145

expansion factor, 174

extension, 181

exterior curvature, 53

family of spheres, 96

field: equations, 255; of force, 25; of
heat, 26

finite: interval, 145; limit, 132

finiteness, 59, 79

first comparison of length in kinematics,
154, 174

first-signal, 143, 144, 166, 169, 203, 238

five-dimensional space-time manifold,
281

Fizeau, A., 126

Flamm, L., 52

focal-plane shutter photograph, 160,
161, 165, 203

force, 13, 23, 25, 27, 211, 213; destroy-
ing coincidence, 27; exterior, 22;
interior, 22, 120

four-dimensional manifold, 110

four-dimensional space, 53, 281

four-dimensional  space-time  con-
tinuum: metrical structure of, 171

four-dimensionality, 269

Friedlinder, B. and J., 215

fundamental: circle, 69; geometrical
form, 243; metrical form, 269;
sphere, 70

Galileo’s transformation, 175, 176, 208

gas law, 102, 104

Gauss, K., 3, 7, 8, 9, 242, 257, 283

Gaussian measure of curvature, 247

genidentity, 270, 271

geodesic, 257

geometry : mathematical, 103; physical,
103, 106; of the spherical surface, 9;
and gravitation, 265

geometric empiricism, 36

geometrical: axioms, 1; form, 18; sum,
155, 156

geometrization of gravitation, 256

Gestalt, 244

Gorland, A., 36

gradient, 98

graphical representation, 102, 104, 190

gravitation-free spaces, 152

gravitation as universal force, 256

gravitational: charge, 224; ficld, 225,
255, 263; gradient field, 236; mass,
223, 224; potential field, 236; tensor,
252

great circle, 8

greater than, 136

greatest length, 157

heat, 12, 13, 24, 25

Hegel, W., xii, 217

v. Helmholtz, H., 35, 36, 63, 257, 280
Hertz, P., 36, 63

Hilbert, D, 4, 42, 92, 94, 101
Hillebrand, F., 85

holistic property, 46, 59, 62, 68, 272
Huyghens, C., 212, 213
hydrodynamics, 98

identical, 141

identification of metrical and gravita-
tional field, 233

identity, 124, 270; of gravitational and
inertial mass, 252 ; of individual, 142;
of light- and matter-geometry, 205

image-producing function, 39, 44, 34,
58

implication, 92, 93

implicational, 2

implicit definition, 89, 92, 93, 97, 103,
169

improper concept, 97

indefinite metric, 269

indeterminate as to time order, 144,
147, 183, 272, 284

indicator, 25, 258

indirect definition, 87

inertial: field, 237; mass, 223; system,
146, 152, 226, 227, 230

inference, 104, 125

infinitesimal domain, 247, 267

infinitesimal element of a curve, 247

infinity, 78; of space, 46

interior: curvature, 33; forces, 22, 120

interval, 183, 191, 262

intuitionism, 101

invariant, 186, 214, 236, 237, 240

Ives, H., 192

Kant, I., xi, xiii, 2, 6, 31, 36, 38, 39, 43,
46, 82 fi., 101, 109
291
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Kantian, 32

kinetic energy, 24, 203

Klein, F., 4, 47, 57, 79, 100, 101

Klein's Euclidean model of non-
Euclidian geometry, 4

Kopff, A., 193

v. Kries, J., 81, 98

Lange, L., 226

later than, 136, 143, 166, 267, 272

v. Laue, M., 208

law: of conservation of energy, 24; of
inertia, 116; of mechanics, 117

Leibniz, G., xi, xiii, 210, 212, 213,
269

length, 15; of moving line-segment, 154,
155

Lewin, K., 142, 269, 270

Liebmann, H., 5

light: axioms, 168, 175, 177, 188, 203,
208, 222, 230, 259, 261; clock, 117;
geometry, 172 fi., 201, 204, 208, 222,
258, 264, 268; ray, 72, 82, 103; wave,
202; year, 268

light-geometrical definition of length,
261

limit of velocity of causal propagation,
204

limiting character of the velocity of
light, 144, 238

line, 92

linear transformation, 172

line element, 243; of second order, 250

living organism, 194

Lobatschewsky, N., 3, 5, 49, 50, 57, 88

logic, 43, 47

logical: impossibility, 28, 44; proof, 2;
relations, 81

Lorentz, H., 195

Lorentz transformation, 146, 157,
172 fi., 182, 186, 189, 197, 198, 205,
208

Mach, E., 123, 213 fi., 225, 233, 254

main: circle, 70; radii of space, 10;
sphere, 70

manifold: four-dimensional space-time,
112; multi-dimensional, 111; of
tones, 111

mapping, 49, 50, 57, 59, 66, 68, 266

mark, 136, 271

mass point, 165, 257

masses of stars, 193, 227
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mathematical: geometry, 92; physics,
xii, xiii, xiv

matter: axioms, 175, 177, 186, 188,
201, 261 ; geometry, 208, 222; tensor,
255

measure of curvature, 247

mechanics, 152

Mercury, 255

merry-go-round, 239

metric: definite, 178; indefinite, 178;
of a space, 279

metrical: coefficient, 8, 33; field, 153,
201, 236, 257; form, 178; relations,
60; tensor, 251, 252; uniqueness of
light, 204, 205

metrogenic, 197, 200

metrokinematic, 197

Michelson experiment, 195, 201, 202,
260

Minkowski, H., 112, 134, 160, 164, 177,
182

mirror-image congruence, 109

monotonically increasing function, 166

motion: apparent, 212; of light, 152;
of a pendulum, 116; of planets, 252;
real, 212

Miiller, W., 194

natural clocks, 117

Neo-Kantian, xit, 31, 36, 38

Newton, 1., 210 fi., 226, 227, 232, 254,
255

Newtonian: inertial system, 166, 171;
law of gravitation, 132; principle of
relativity, 152; theory, 252; theory
of gravitation, 255

non-Archimedian, 5

non-contractible closed curves, 60

non-Euclidean geometry, 3; two-
dimensional, 9; visualization of, 48,
50, 82

non-Pascalian, 5

non-separating curves, 62

normal: causality, 67; system, 227

normative function, 39, 44, 54, 91

now, 110

now-points, 142

null lines, 180

number of dimensions, 273

objective meaning, 37
one-to-one correspondence, 93
optics, 153
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or, 93
arder of the line element, 250
order relations, 66

pail experiment, 213

parallelism of events, 65

parameter space, 275

Pasch, M., 42

peadulum clock, 119

pentagon, 39, 44, 84

perceptions, 40, 63, 72

perceptual space, 84, 83, 86, 91; paral-
lelism in, 85

period, 114

periodic processes, 115

perspective, 45, 55, 68, 78

Petzold, ]., 193, 205

phenomenclogical analysis, 113

philosophy of nature, xii

physical, 6; forces, 22; geometry, 37;
reality, 6; space, 106; states of
matter, 279

physics of everyday life, 21

plane, 7, 8, 53, 92, 245, 247

planeness in the smallest elements, 267

planetary orbits, 218

pocket watch, 120

Poincaré, H., 35, 36, 274

point, 92, 93, 96

point-cvent, 134, 145, 183, 202

Poisson equation, 254

polygon of thousand sides, 44

possible, 6

potential, 33, 233; gradient, 233

practical geometry, 7

precession of the carth’s axis, 118

preestablished harmony, 65, 66, 277

preserving coincidences, 27

principle: of causality, 85; of equiva-
lence, 222, 252, 253; of general co-
variance, 214; of the identity of
indiscernibles, 210, 219; of the limit-
ing character of the velocity ol light,
203, 205; of relativity, 209; of the
relativity of geometry, 33; of the
uniqueness of light, 203, 205

probability, 137

process, 115

Proclus, 3

projective geometry, 96

proof of consistency, 4

propagation of gravitation, 132

pseudo-problem, 5

Ptolemy, 211, 217, 218
Pythagorean theorem, 178, 242

qualititative propertics, 62
quantum theory, 123, 283

real: space, 273, 279; system, 239;
world, 6

reality of space and time, 287

really equal, 14

red shift, 232, 239

related system, 167

relation, 93; asymmetrical, 136; sym-
metrical, 1336

relative: concept, 97; product, 99; rest,
264

relativistic: dynamics, 212, kinematics,
208, 212; mechanics, 209

relativity: dynamic, 217 of geometry,
35, 66, 67 kinematic, 210; of relative
motion, 220; of simultaneity, 129,
205; of time, 124

rest: coordinative definition of, 219,
-length, 154, 157, 198; -system, 202

retardation of clocks, 191, 194, 255, 259

Riehl, A., 36

Riemann, B, 7, 9, 10, 35, 242, 248, 257,
283

Riemannian curvature tensor, 247

Riemannian generalization  of
metry, 88

Riemannian geometry; 254, 263; in-
tegral properties of, 266; metric of,
266; topology of, 266

Riemannian space, 55, 248, 279

right angle, 88

rigid body, 19, 22, 82, 103, 132, 133, 220

rigid system, 166

rigidity, 264

ring curve, 60

rotation, 211, 237

rotational field, 238

round-trip axiom, 167, 261

rule of consistency, 159

rule of consistent extension, 178

geo-

scalar: field, 255; potential, 234; sum,
1536; theory of gravitation, 233

Schelling, F., xii

Schlick, M., 14, 36, 63, 92

scholastic schema, 104

scientific philosophy, xvi
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second comparison of length in kine-
matics, 154, 174

self-consistent, 4, 6

self-evidence, 1, 2, 32, 202

sense qualities, 84, 86

shape of moving object, 161

signal, 12§, 271; chain, 138

significance of an example, 97

similarity transformation, 172

simplicity, 34, 135; of definition, 35;
of Euclidean geometry, 83

simultaneity, 123, 135, 162; definition
of. 128, 153; absolute, 129, 135; at
different places, 124; at the same
place, 124; relativity of, 129, 145,
146; transitivity of, 168; unique, 147

simultancous, 267

sound-geometry, 205

source of light, 164

space, 16; dimension, 182; mathe-
matical, 6; measurement of, 114:
physical, 6; real, 6; spherical, 76,
78; tensor, 235; twofold nature of, 6

spacelike, 183, 283, 284

space-time: coordinate system, 284;
metric, 165; objects, 183; order, 268,
283 ; tensor, 235

spatial: congruence of stationary sys-
tems, 262; depth, 75, 76; order, 268

speculative, xvi

spherical: mirror, 27 space, 67 ; surface,
59, 68; wave, 202

spring balance clock, 119, 120

Stickel, P, 5

standard meter, 15, 20

state of motion, 164; of the observer,
146

static ficld of gravitation, 72, 258

stationary: fields, 117, 261; systems,
262

stereographic projection, 59, 69, 97

straight line, 32, 169, 257; central, 69,
70

straightest line, 8, 72, 257

subjective coincidence, 286

subjective order of perceptions, 286

subjectivity of the observer, 146

substance, 270

surface: closed, 68; geometry, 53

surveying, 7

synchronization, 168;
259; transitive, 259

synthetic, 100

294

symmetrical,

synthetic @ priori: judgments, 43; of
pure intuition, 39
system of coincidences, 287

tacit assumptions, 41

tautology, 128, 129

technical impossibility, 28

tensor, 33, 245; field, 255; potential,
234

theorem, 1

theorem 4, 33, 66

theorems of similarity, 45

theory: of relations, 102; of sets, xiii;
of surfaces, 9

theory of relativity, xiii; general, 153,
205, 283; philosophical, 177;
physical, 177, special, 127, 135, 132,
153, 2086, 267, 268, 283

thermometer, 13, 24

time: axis, 184, 189; as fourth dimen-
sion, 110, 190; as experience, 113;
of an inertial field, 259; measure-
ment, 114; metric, 174; order, 136,
143, 267; order at the same point,
136; pure, 115; of a static gravita-
tional field, 259

timelike, 183, 283, 284

topological, 58; equivalence, 62; form,
266 function, 244

topologically: different, 59, 67; divided
coordinate system, 284; equivalent,
59, 79, 267; related, 267

topology of space, 279

torus, 42, 59, 266

transform away, 223

transformation: unique
tinuous, 59

translation, 99

transport synchronization, 133

triplet of numbers, 96

true length of moving rod, 158

truth, 2, 219; of the axioms, 2, 5, 101

and con-

unidirectional, 138

uniformity, 122; definition of, 117; of
time, 114, 123, 135

union of space and time, 160, 188

uniqueness, 14, 66; of present moment,
142; of time order, 142

unit: of length, 15, 128, 201; of time,
114, 135, 259
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universal: deformation, 78; field of
force, 32, 66; forces, 13, 22, 23, 24,
33, 65, 78, 118, 119, 256, 262, 263,
279

univocal, 33, 117, 134

unreal: sequence, 148; system, 239

vector calculus, 98

velocity, 214; above velocity of light,
148, 238; of light, 126, 164; of sound,
125

visual: angle,
geometry,
space, 103

visualization, 32; empirical, 83, 84; of
Euclidean geometry, 38, 58, 81, 84;

138;
104;

estimate, 179;
integration, 78;

form of, 83; geometrical, 101; of
non-Euclidean geometry, 48, 50, 82;
pure, 83, 98, 103; spaccol, 84, 91, 103;
of spaces of higher dimensionality,
280

watch, 115

wave-length of Cadmium light, 15

wave theory of light, 152

Weber-Wellstein, 97

weight, 223, 235

Weyl, H., 49, 201, 224, 280

world-geometry, 177

waorld-lines, 141, 142, 183, 270, 283;
spacelike, 270; timelike, 270

Walf, Th., 238
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Foreword by Albent Einstein. 532pp. 5% x 8%. 60205-2 Pa. $11.95

GENERALIZED INTEGRAL TRANSFORMATIONS, A.H. Zemanian. Gradu-
ate-level study of recent generalizations of the Laplace, Mellin, Hankel, K.
Weierstrass, convolution and other simple transformations. Bibliography. $20pp.
5% x 8%. 65375-7 Pa. $8.95
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THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of eleciric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 84. 65660-8 Pa. $18.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A
valuable addition 10 the literature on the subject, moving clearly from subject to
subject and theorem to theorem. 107 problems, answers. 336pp. 5% x 84.

63317-9 Pa. $9.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Her-
ach Papas. Graduate-level study discusses the Maxwell field equations, radiation
from wire antennas, the Doppler effect and more. xiii + 244pp. 5% x 8%.

65678-0 Pa. $6.95

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction
1o Generalized Functions, with Applications, A.H. Zemanian. Provides basics of
distribution theory, describes generalized Fourier and Laplace transformations.
Numerous problems. 384pp. 5% x 8%. 65479-6 Pa. $11.95

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation,
more. Ideal as classroom text or {or self-study. Problems. 477pp. 5% x 84.

64926-1 Pa. $12.95

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and
promotes understanding of specialized books, research papers. Suitable for
advanced undergraduate/graduate students as primary, supplementary text. 352pp.
5% x 8%. 64856-7 Pa. $9.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s
theory of electromagnetism and rigorously derives his general equations of field
theory. 1,084pp. 5% x 8%. 60636-8, 60637-6 Pa., Two-vol. se1 $23.90

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 84%.
65499-0 Pa. $8.95

HYDRODYNAMICAND HYDROMAGNETICSTABILITY, 8. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 84. 64071-X Pa. $14.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quanium mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 63069-2 Pa. $8.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced
students of ground water hydrology, soil mechanics and physics, drainage and
irrigation engineering and more. 335 illustrations. Exercises, with answers. 784pp.
6% x 9Y%. 65675-6 Pa. $19.95
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms,
polynomial approximation, Fourier approximation, exponential approxima-
tion, other 1opics. Revised and enlarged 2nd edition. 721 pp. 5% x 8%.

65241-6 Pa. $15.95

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in Equilib-
rium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equitibrium properties, defects and
disordered systems. Appendices. Problems. Preface. Diagrams. Index. Bibliog-
raphy. Total of 1,301pp. 5% x 84%. Two volumes. Vol. 165015-4 Pa. $16.95

Vol. 11 65016-2 Pa. $14.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad-
spectrum approach to important topic. Classical theory of minima and maxima,
calculus of variations, simplex technique and linear programming, more. Many
problems, examples. 640pp. 5% x 8%. 65205-X Pa. $14.95

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the
conceptual problem posed by the continuum. 156pp. 5% % 8%.  67982-9 Pa. $6.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; andon

transfinite numbers and properties of natural numbers. 115pp. 5% x 8%.
21010-3 Pa. $5.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt. Com-
prehensive treatment of orthogonal polynomials, hypergeometric functions, Hill’s
equation, much more. Bibliography. Index. 322pp. 5% x 8%4. 65214-9 Pa. $9.95

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear,
accessible introduction covers counting, properties of numbers, prime numbers,
much more. Bibliography. 380pp. 5% x 8%. 65620-9 Pa. $9.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 65067-7 Pa. $12.95

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and
Edwin R. Smith. Logarithms, sines, tangents, trig functions, powers, roots,
reciprocals, exponential and hyperbolic functions, formulas and theorems. 269pp.
5% x 8%. 60111-0 Pa. $6.95

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii +
885pp. 5% x 8%. 65227-0 Pa. $21.95
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HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowitz and
Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places.
1,046pp. 8 x 10%. 61272-4 Pa. $24.95

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W.
Dettman. Algebraically based approach 10 vectors, mapping, diffraction, other
topics in applied math. Also generalized functions, analytic function theory, more.
Exercises. 448pp. 5% x 84%. 65649-7 Pa. $10.95

A SURVEY OF NUMERICAL MATHEMATICS, David M. Young and Robert
Todd Gregory. Broad self-contained coverage of computer-oriented numerical
algorithms for solving various types of mathematical problems in linear algebra,
ordinary and partial, differential equations, much more. Exercises. Total of
1,248pp. 5% x 8%. Two volumes. Vol. I 65691-8 Pa. $14.95

Vol. 11 65692-6 Pa. $14.95

TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical
examples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%.

65582-2 Pa. $8.95

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new praob-
lems. 669pp. 5% x 8%. 65363-3 Pa. $15.95

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%.

60304-0 Pa. $4.95

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level ireatment describes mathematics of theory grounded in
the work of Poincaré, R. Thom, other mathematicians. Also important applications
1o problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%,
67539-4 Pa. $17.95

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.
Hill. Excellent basic text offers wide-ranging coverage of quantum statistical
mechanics, systems of interacting molecules, quantum statistics, more. 523pp.
5% x 8%. 65242-4 Pa. $12.95

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermo-
dynamics, statistical mechanics and kinetic theory in one unified presentation of
thermal physics. Problems with solutions. Bibliography. 532pp. 5% x 8%.

65401-X Pa. $12.95
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduatesin
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 64940-7 Pa. $18.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.

Standard text covers fundamentals of siatistical mechanics, applications to

fluctuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 8%.
65390-0 Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sanchez. Briel, modern treatment. Linear equation,
stability theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8X.

63828-6 Pa. $6.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr's model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $6.95

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, non-
singularity and inverses in connection with the development of canonical matrices
under the relation of equivalence, and without the intervention of determinamts.
Includes exercises. 237pp. 5% x 8%. 66810-X Pa. $8.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo 1o
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pa. $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH AP-
PLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial
differential equations applied 10 common problems in engineering and the
physical sciences. Problems and answers. 416pp. 5% x 8%. 65251-3 Pa. $11.95

BURNHAM'S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by
constellation: Andromeda o Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and
Pavo to Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp.
6% x 9%, 23567-X, 23568-8, 23673-0 Pa., Three-vol. se1 $44.85

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual siunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8%, 67628-5 Pa. $5.95

AMATEUR ASTRONOMER'S HANDBOOXK, J.B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives,
micrometers, spectroscopes, more. 189 illustrations. 576pp. 5% x 8. (Available in
U.S. only) 24034-7 Pa. $11.95
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SPECIAL'FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Fa-

mous Russian work treating more important special functions, with applications

to specific problems of physics and engineering. 38 figures. 308pp. 5% x 8%.
60624-4 Pa. $9.95

OBSERVATIONAL ASTRONOMY FOR AMATEURS, ].B. Sidgwick. Mine of
useful daia for cbservation of sun, moon, planets, asteroids, aurorae, meteors,
comets, variables, binaries, etc. 39 illustrations. 384pp. 5% x 84. (Available in U.S.
only) 24033-9 Pa. §8.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-wriuen treaiment
of extremely useful mathematical 100l with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. 64828-1 Pa. $8.95

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted
logician's lucid treatment of historical developments, set theory, model theory,
recursion theory and constructivism, proofl theory, more. 3 appendixes. Bibli-
ography. 1981 edition. ix + 283pp. 5% x 84. 67632-3 Pa. $8.95

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
10 the existing literature. . . .”'—Math Reviews. 490pp. 5% x 8%. 64232-1 Pa. $11.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Batce et al. Modern approach
developed by U.S. Air Force Academy. Designed as a [irst course. Problems,
exercises. Numerous illustrations. 455pp. 5% x 8%. 60061-0 Pa. $9.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8% 65191-6 Pa. $10.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo-
retical and experimental treatment of the uniform flow of air and viscous fluids past
two-dimensional aerofoils and three-dimensional wings; many other topics. 654pp.
5% x 8%. 65465-6 Pa. $16.95

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology,
psychology, economics. Many illustrative examples; over 250 problems. 260pp.
5% x 8% 65084-7 Pa. $8.95

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic

covers steady boundary layers in two- and three-dimensional flow, unsteady

boundary layers, stability, observational techniques, much more. 708pp. 5% x 8%.
65646-2 Pa. $18.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition,
Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces,
fundamental equations, geometry on a surface, conformal mapping, other topics.
Problems. 240pp. 5% x 8% 65609-8 Pa. $8.95
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ROTARY-WING AERODYNAMICS, W.Z. Stepniewski. Clear, concise text covers

aerodynamic phenomena of the rotor and offers guidelines for helicopter per-

formance evaluation. Originally prepared for NASA. 5387 figures. 640pp. 6% x 9.
64647-5 Pa. $15.95

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature,

wransformation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%.
63433-7 Pa. $9.95

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced under-
graduate and graduate students. Includes vector algebra, kinematics, transforma-
tion of coordinates. Bibliography. Index. 352pp. 5% x 8%. 65113-4 Pa. $9.95

A SURVEY OF MINIMAL SURFACES, Robert Osserman. Up-to-date, in-depth
discussion of the field for advanced students. Corrected and enlarged edition covers
new developments. Includes numerous problems. 192pp. 5% x 8%,

64998-9 Pa. $8.95

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Indispensable
reference for modern gear manufacture covers conjugate gear-tooth action, gear-
toath profiles of various gears, many other topics. 263 figures. 102 tables. 546pp.
5% x 8%, 65712-4 Pa. $14.95

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified
theory of mathematical concepts. Set theory and logic seen as tools for conceptual
understanding of real number system. 486pp. 5% x 8%. 63829-4 Pa. $12.95

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%.

65632-2 Pa. $14.95

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM,
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube:
learn their history, why they are impossible to solve, then solve them yourself.
128pp. 5% x 8%, 24297-8 Pa. $1.95

MECHANICAL VIBRATIONS, ]J.P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations toa variety of
practical industrial engineering problems. Numerous figures. 233 problems,
solutions. Appendix. Index. Preface. 436pp. 5% x 8%, 64785-4 Pa. $11.95

CURVATURE AND HOMOLOGY, Samuel 1. Goldberg. Thorough treatment of
specialized branch of differential geometry. Covers Riemannian manifolds, topol-
ogy ol differentiable manifolds, compact Lie groups, other topics. Exercises. 31 5pp.
5% x 8%, 64314-X Pa. $9.95

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excel-
lent historical survey of the strength of materials with many references to the
theories of elasticity and structure. 245 figures. 452pp. 5% x 8%. 61187-6 Pa. $12.95
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GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdifeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 8%.

63830-8 Pa. $8.95

MECHANICS, ].P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8%. 60754-2 Pa. $10.95

TOPOLOGY, John G. Hocking and Gail S. Young. Superb one-year course in
classical topology. Topological spaces and functions, point-set topology, much
more. Examples and problems. Bibliography. Index. 384pp. 5% x 84.

65676-1 Pa. $10.95

STRENGTH OF MATERIALS, J.P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.) plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x 8%. 60755-0 Pa. $9.95

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant,

intuitive approach to topology from set-theoretic 1opology to Betti groups; how

concepts of topology are useful in math and physics. 25 figures. 57pp. 5% x 8%.
60747-X Pa. $3.95

ADVANCED STRENGTH OF MATERIALS, J.P. Den Hartog. Superbly written
advanced text covers torsion, rotating disks, membrane stresses in shells, much
more. Many problems and answers. 388pp. 5% x 8%. 65407-9 Pa. $10.95

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of
recurrent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9 Pa. $8.95

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics,
statistical mechanics, thermodynamics correlated with descriptive chemistry.
Problems. 992pp. 5% x 84. 65622-5 Pa. $19.95

AN INTRODUCTION TO MATRICES, SETS AND GROUPS FOR SCIENCE
STUDENTS, G. Stephenson. Concise, readable text introduces sets, groups, and
most importantly, matrices to undergraduate students of physics, chemistry, and
engineering. Problems. 164pp. 5% x 8%. 65077-4 Pa. $7.95

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a
coherent set of chemical laws. 260pp. 5% x 8%. 61053-5 Pa. $7.95

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan
Kdrner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appen-
dices. Index. 198pp. 5% x 84. 25048-2 Pa. $8.95

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Thde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 tables. Bibliog-
raphies. Indices. Appendices. 851pp. 5% x 8%. 64235-6 Pa. $18.95
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DE RE METALLICA, Georgius Agricola. The famous Hcover ranslation of
greatest treatise on technological chemistry, engineering, geology, mining of early
modern times (1556). All 289 original woodcuts. 638pp. 6% x 11.

60006-8 Pa. $18.95

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory and design of sampling techniques for social scientists, industrial
managers and others who find statistics increasingly important in their work. 61
tables. 90 figures. xvii + 602pp. 5% x 8%. 64684-X Pa. $15.95

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLL: A
Classic Sixteenth-Century Illustrated Treatise on Technology, Agostino Ramelli.
One of the most widely known and copied works on machinery in the 16th century.
194 detailed plates of water pumps, grain mills, cranes, more. 608pp. 9x 12,
28180-9 Pa. $24.95

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Raobert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modemn welfare
economics, Leontief input-output, more. 525pp. 5% x 8%. 65491-5 Pa. $14.95

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E. Moses.
Clear introduction to statistics and statistical theory covers data processing,
probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8%. 65218-1 Pa. $10.95

THE COMPLEAT STRATEGYST: Being a Primer on the Theory of Games of
Strategy, J.D. Williams. Highly entertaining classic describes, with many illus.
trated examples, how to select best strategies in conflict situations. Prefaces.
Appendices. 268pp. 5% x 8% 25101-2 Pa. $7.95

CONSTRUCTIONS AND COMBINATORIAL PROBLEMS IN DESIGN OF
EXPERIMENTS, Damaraju Raghavarao. In-depth reference work examines
orthogonal Latin squares, incomplete block designs, tactical configuration, partial
geometry, much more. Abundant explanations, examples. 416pp. 5% x 84.
65685-3 Pa. $10.95

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician’s classic work on material
necessary for mathematical grasp of theory of relativity. 452pp. 5% x 8%.

63401-9 Pa. $11.95

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A.I Borisenko
and LE. Tarapov. Concise introduction. Worked-out problems, solutions, exer-
cises. 257pp. 5% x 8X. 63833-2 Pa. $8.95
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THE FOUR-COLOR PROBLEM: Assaults and Conquest, Thomas L. Saaty and
Paul G. Kainen. Engrossing, comprehensive account of the century-old combina-
torial topological problem, its history and solution. Bibliographies. Index. 110
figures. 228pp. 5% x 84. 65092-8 Pa. $6.95

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.
Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous
solution, carbonyl- and acyl-group reactions, practical kinetics, more. 864pp.
5% x 8% 65460-5 Pa. $19.95

PROBABILITY: An Inuoduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 84, 65252-1 Pa. $9.95

LIGHTNING, Martin A. Uman. Revised, updated edition of classic work on the
physics of lightning. Phenomena, terminology, measurement, photography,
spectroscopy, thunder, more. Reviews recent research. Bibliography. Indices.
320pp. 5% x 8. 64575-4 Pa. $8.95

PROBABILITY THEORY: A Concise Course, Y.A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,

Bernoulli trials, etc. Translation by Richard Silverman. 148pp. 5% x 84.
63544-9 Pa. $6.95

AN INTRODUCTION TO HAMIL'TONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 84,

67597-1 Pa. $10.95

STATISTICS MANUAL, Edwin L. Crow, et al. Comprehensive, practical
collection of classical and modern methods prepared by U.S. Naval Ordnance Test

Station. Stress on use. Basics of statistics assumed. 288pp. 5% x 84.
60599-X Pa. $7.95

DICTIONARY /OUTLINE OF BASIC STATISTICS, John E. Freund and Frank
J. Williams. A clear concise dictionary of over 1,000 statistical terms and an outline
of statistical formulas covering probability, nonparametric tests, much more.
208pp. 5% x 8%, 66796-0 Pa. $7.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Imporiant text explains regulation of variables, uses
of statistical control 10 achieve quality control in industry, agriculture, other areas.
192pp. 5% x 84, 65232.7 Pa. $7.95

THE INTERPRETATION OF GEOLOGICAL PHASE DIAGRAMS, Ernest G.
Ehlers. Clear, concise text emphasizes diagrams of systems under fluid or
containing pressure; also coverage of complex binary systems, hydrothermal
melting, more. 288pp. 6% x 94. 65389-7 Pa. $10.95

STATISTICAL ADJUSTMENT OF DATA, W. Edwards Deming. Introductionto
basic concepts of statistics, curve filing, least squares solution, conditions without
parameter, conditions containing parameters. 26 exercises worked out. 271pp.
5% x 8%. 64685-8 Pa. $9.95
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TENSOR CALCULUS, ].L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 84%. 63612-7 Pa. $9.95

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief
history of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9 Pa. $7.95

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W.W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoeni-
cians through 19th-century figures such as Grassman, Galois, Riemann. Fourth
edition. 522pp. 5% x 84. 20630-0 Pa. $11.95

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8%. 20429-4, 20430-8 Pa., Two-vol. set $26.90

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’ own diagrams,
together with definitive Smith-Latham translation. 244pp. 5% x 8%,

60068-8 Pa. $7.95

THE ORIGINS OF THE INFINITESIMAL CALCULUS, Margaret E. Baron.
Only fully detailed and documented account of crucial discipline: origins;
development by Galileo, Kepler, Cavalieri; contributions of Newton, Leibniz,
more. 304pp. 5% x 8%. (Available in U.S. and Canada only) 65371-4 Pa. $9.95

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
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Newton, Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%.
60509-4 Pa. $9.95

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and
linguistic notes, mathematical analysis. 2,500 years of critical commentary. Not
abridged. 1,414pp. 5% x 8% ,  60088-2, 60089-0, 60090-4 Pa., Three-vol. set $31.85

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
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decision-making, much more. Bibliography. 509pp. 5% x 8%.  65943-7 Pa. $12.95

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas
N.H. Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of
modern arithmetic, algebra, geometry and number systems derived from ancient
civilizations. 320pp. 5% x 84. 25563-8 Pa. $8.95

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. Albert Klal. Covers
important aspects of integral and differential calculus via 756 questions. 566
problems, most answered. 431pp. 5% x 8%, 20870-0 Pa. $8.95
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A.M. Yaglom and .M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex
polygons, many other topics. Solutions. Total of 445pp. 5% x 84%. Two-vol. set.
Vol. 1 65536-9 Pa. $7.95
Vol. 11 65537-7 Pa. $7.95

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLU-
TIONS, Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate
elementary and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%.

65355-2 Pa. $4.95

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of
one of the byways of mathematics. Klein bottles, Moebius strips, projective planes,
map coloring, problem of the Koenigsberg bridges, much more, described with
clarity and wit. 43 figures. 210pp. 5% x 84 25933-1 Pa. $6.95

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical
treatment makes relativity more accessible than ever before. Over 60 drawings
illustrate concepts more clearly than text alone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%. 25965-X Pa. $7.95

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9 Pa. $8.95

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example o introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%. 65973-9 Pa. $11.95

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin.
Superb self-contained texi covers “abstract algebra”: sets and numbers, theory of
groups, theory of rings, much more. Numerous well-chosen examples, exercises.
247pp. 5% x 8%. 65940-2 Pa. $8.95
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