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Preface

The recent physical interpretation of intrinsic differential geometry
of spaces has stimulated the study of this subject. Riemann pro-
posed the generalization, to spaces of any order, of the theory of
surfaces, as developed by Gauss, and introduced certain fundamental
ideas in this general theory. From time to time important con-
tributions to the theory were made by Bianchi, Beltrami, Christoffel,

*Schur, Voss and others, and Ricci coordinated and extended the
theory with the use of tensor analysis and his Absolute Calculus.
Recently there has been an extensive study and development of
Riemannian Geometry, and this book aims to present the existing
theory.

Throughout the book constant use is made of the methods of
tensor analysis and the Absolute Calculus of Ricei and Levi-Civita.
The first chapter contains an exposition of tensor analysis in form
and extent sufficient for the reader of the book who has not
previously studied this subject. However, it is not intended that
the exposition shall give an exhaustive foundational treatment of
the subject.

Most, if not all, of the contributors to the theory of Riemannian
(eometry have limited their investigations to spaces with a metric

~defined by a positive definite quadratic differential form. How-

-ever, the theory of relativity deals with spaces with an indefinite
" fundamental form. Consequently the former restriction is not made
._in this book. Although many results of the older theory have

 been modified accordingly, much remains to be done in this field.
% The theory of parallelism of vectors in a general Riemannian
3 manifold, as introduced by Levi-Civita and developed by others,
Ois set forth in the second chapter and is applied in other parts

sof the book. The extensions of this theory to mon-Riemannian
rgeometries are not developed in this book, since it is my intention
fv-to present some of them in a later book.

= i



iv Preface

Of the many exercises in the book some involve merely direct
applications of the formulas of the text, but most of them con-
stitute extensions of the theory which might properly be included
as portions of a more extensive treatise. References to the sources
of these exercises are given for the benefit of the reader. All
references in the book are to the papers listed in the Bibliography.

In the writing of this book I have had invaluable assistance
and criticism by four of my students, Dr. Arthur Bramley, Dr. Harry
Levy, Dr. J. H. Taylor and Dr. J. M. Thomas. I desire also
to express my appreciation of the courtesies extended by the
printers Liitcke & Wulff and by the Princeton University Press.

October, 1925. Luther Pfahler Eisenhart.
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CHAPTER 1
Tensor analysis

1. Transformation of codérdinates. The summation con-
vention. Any » independent variables 2%, where 7 takes the values 1
to m, may be thought of as the codrdinates of an n-dimensional
space V, in the sense that each set of values of the variables
defines a point of V,,. Unless stated otherwise it is understood
that the coordinates are real.

Suppose that we have » independent real functions ¢* of the
variables z!, #%, ---. z%* A necessary and sufficient condition
that the functions be independent is that the Jacobian does not
vanish identically;t that is,

oy’ 09"
st ax!
13 i | ..
q) . . . . .
el 2"
5 0P
If we put
(1'2> at = q)i(x17 ey ) (G = 1. n),

the quantities x'* are another set of coordinates of the space;
when in the right-hand members of (1.2) we substitute the co-
ordinates af of any point P, these equations give the coordinates 2’
of P. Thus equations (1.2) define a transformation of cosrdinates of
the space V,. In consequence of the assumption (1.1) the z’s are
expressible in terms of the z'’s, say

(1.3) o= P 2" @ =1--.n)
*When we consider any function, it is understood that it is real and con-
tinuous, as well as its derivatives of such order as appear in the discussion, in
the domain of the variables considered, unless stated otherwise.
T Goursat, 1904, 1, p. 57; Wilson, 1911, 1, p. 133.



2 I. Tensor analysis

If we think of the 2’s as functions of the a’’s, then by the
rules for differentiation

pak N3 oak oo

da T ex't aal

However, since the z’s are independent, the left-hand member. of
the above equation is zero unless k == j, in which case it is unity.
Accordingly we can write

L@maak aa’

. = &
a4 T ox’" Bal 7
where by definition
(1.5) o —=1o0r0, ask=jork+j.

These are called the Kronecker deltas and are used frequently
throughout this work. In like manner we have

1,.-,n k
’ ox’

T 9t dx

(1.6)

If in (1.4) we hold % fixed and let j take the values 1 to #,

axkf tori =1, ..., n. Solving for

we have n equations linear in

J
2

these quantities, we obtain

s’ . |ea’
5 5 cofactor of TaE P g
(1.7) = -

s’ aa’’
o/

Any direction at a point P of the space is determined by the
differentials dx’ and the same direction is determined in another
set of coordinates x'* by the differentials dz’*, where from (1.2)

1,::-,m . : 1,~~-,n8m/z

(1.8) Azt = 3 2V g = > 2% qai,

7 ox’ J ox’

H
;
i
i
3
f
]
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It is desirable now to introduce a convention which will be used
throughout this book, namely that when the same letter appears
in any term as a subscript and superscript, it is understood that
this letter is summed for all the values, say », which this letter
takes and consequently the one term stands for the sum of » terms.
Thus we write (1.8) in the form

7%

. i 0 .
(1.9) dx'* == azj dxzl

(Z.’j = 17 Tty ")'

Since 4 appears twice in the right-hand member in the manner
indicated and ¢ appears only onece, the right-hand member stands
for the sum

i awri
~5 dx®4 ... + P da™.

8.1;“ 1 o4
2o 42 T

When the same index appears twice and has the significance just
defined, we call it a dummy index, since the letter used for such
an index is immaterial. However, a letter appearing as another
index must not also be used for a dummy index, otherwise an
ambiguity would be introduced. Thus 7 in (1.9) could not be used
also in place of j, but the right-hand member of (1.9) could be
written in such forms as

'’ ox”

ok 7 ST

dat Fl=1,.-.-,n)

1t should be remarked that (1.9) represents n equations obtained
by giving ¢ the values from 1 to =.
Using the summation convention, we write (1.4) and (1.6) in the
forms
o 1% 1k :
(1.10) ot oa g, 027 Bat
oyt Oay oxt Y

2. Contravariant vectors. Congruences of curves. Let A/
be any n functions of the z’s and let # functions A" be defined by

i

i . 0 ..
(2.1) W= afcf G,j,=1,---,n).




4 L Tensor analysis

We observe that equations (1.9) are of this form. If equations (2.1)
be multiplied by Zac"

7 and ¢ be summed from 1 to », we have in

consequence of (1.10)

ok YRy ot 8a*

___ 5k
173 ) I = d5.
ox ox

The right-hand member is the sum of » terms each of which is
zero by (1.5) unless j = k, and consequently the right-hand member
reduces to the single term A% Accordingly we have

I axk

i

2.2) = )

ox

The same result is obtained if we solve (2.1) for A/ by algebraic
processes and make use of (1.7). However, the process used above
is very simple and will be used frequently. From (2.1) and (2.2)
it is seen that the relation between the A’s and A"’s is entirely
reciprocal. .

Suppose now that we have a set of functions A”* in another
codrdinate system z”® defined by equations of the form (2.1), thus

ax"

dak

llli — jk
Then by means of (2.2) we have

Y ok az" — Bx”t

l//t
pa’t 0o* aa’t

Observe that we have changed the dummy index ¢ in (2.2) to I,
since ¢ appears already. The above equations and (2.2) being
similar to (2.1), we see that the relations (2.1) possess what may
be called the group property. _

When two sets of functions A¢ and A" are related as in (2.1), we
say that A% are the components of a contravariant vector in the
system z* and A" the components of the same vector in the system z*.
From this definition it follows that any » functions of the 2’s in

2. Contravariant vectors. Congruences of curves 53

one codrdinate system may be taken as the components of a contra-
variant vector, whose components in any other system are defined
by (2.1). From (1.9) we see that the first differentials of the
codrdinates in any system are the components of a contravariant
vector whose components in any other system are the first differentials
of the coodrdinates of that system.

A contravariant vector as defined determines a direction at each
point of the space, that is, a field of vectors in the ordinary sense
that a vector is a direction at a point. However, we will use
interchangeably the terms vector and wvector-field.*

If 4% are the components of any contravariant vector, a displace-
ment in the direction of the vector at a point satisfies the equations

1 2 T
From the theory of differential equations of this form we have
that these equations admit » —1 independent solutions

(2.4) ol (!, 2 . a) = ¢ G=1.---,n—1),

where the ¢’s are arbitrary constants and the matrix “— “ is of

rank n—1. The functions ¢/ are solutions of the partial differential
equationt

; 09

P —
(2.5) A Py 0.
If now we effect the transformation of coordinates (1.2) in which
for ¢/, where j=1,..., n—1, we take the above solutions and
for ¢ any function such that (1.1) is satisfied, we have from (2.1)

(2.6) W=0 (G=1,---,n—1), i*+o0.
Hence:

When a contravariant vector is given, a system of covrdinates can
be chosen in terms of which all the components but one of the vector
are equal to zero.

* Many of the ideas developed in this chapter were studied first by Christoffel,
1869, 1, and by Ricci, whose development was presented by him and Levi-Civita
in their paper, 1901, 1.

T Goursat, 1891, 1, p. 29.
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If the cotrdinates of any point P are substituted in (2.4), the
values of ¢/ are determined and the » —1 equations (2.4) for these
values of ¢/ define a curve through P, that is, the locus of points
whose coordinates satisfy » —1 equations, or, what is equivalent,
whose coordinates are expressible as functions of a single para-
meter. Thus equations (2.4) define a congruence of curves, one of
which passes through each point of the space V,. We say that
the congruence is determined by the vector-field A¢ and that the
vector 4° at a point is tangent to the curve of the congruence through
the point. Thus we identify the differentials for a curve with com-
ponents of the tangent vector.

3. Invariants. Covariant vectors. If a function f of the z’s
and a funetion f” of the 2”’s are such that they are reducible to
one another by the equations of the transformations of the variables,
they are said to define an ¢mwariant. In this sense an invariant
is a scalar as defined in vector analysis, and is so called by some
writers on tensor analysis. Tt should be remarked that the term
invariant as thus used has a different connotatiou from its definition
in the field of algebraic invariants. In fact, any function of the x’s
can be taken as an invariant and then its definition in any other
coordinate system is determined by the transformation of cotrdinates.

If /£ be any function, we have

@) of  of oal

ax/i dald 3 x/i'_ (2* .7- - 15 T 72).

These equations are a special case of the equations

, da/
(3-2) ).i _ )VJ ﬁ”
where 4; are any functions of the z’s and the A’’s are functions of
the 2”’s defined by (3.2). 4s in § 2 it can be shown that (3.2) are
equivalent to .
' , o’
also that the relation (3.2) possesses the group property (§2). When
two sets of functions 2; and A are in the relation (3.2), we say

3. Invariants. Covariant vectors 7

that the A’s are the components of a covariant vector in the x's
and the 4”s are the components of the same vector in the «’’s.
Evidently a covariant vector is defined uniquely by choosing any
set of » functions in one coordinate system. In particular, it
follows from (3.1) that if the first derivatives of a function f are
taken as the components of a covariant vector, the components
of the same vector in any other system are the first derivatives of
the function with respect to the new coordinates. Snch a covariant
vector is called the gradient of f.

It should be observed that the index of a contravariant veector is
written as a superseript and of a covariant vector as a subsecript;
this is done so that the summation convention can be used in (2.1),
(2.2), (3.2) and (3.3).

If 2% and w; are the components of any contravariant and covariant

vectors respectively, from equations of the forms (2.1) and (3.2) and
from (1.10) we have

; . 0x .
Wl = 2 ey = A g oF,

It in the right-hand member we sum first for k, all the terms for any 5
vanish except when & = j, and consequently

(3.4) 7.'i‘1¢;- = AJ o = At ;.

Each member of this equation consists of the sum of » terms, and
the members being equal because of (1.2), it follows that A%, is
an invariant.

Suppose conversely that we have an equation such as (3.4) in
which it is assumed that A% are the components of a contravariant
vector. In consequence of (2.1) we have

) ax/i
).J (_B-;I— 'llxz-‘llfj) === 0.
From this equation it can be concluded that w; is a covariant
vector, if A/ is an arbitrary vector and only in this case. Hence:

If the quantity 2% u; is an invariant and either A oy ui are the

components of an arbitrary vector, the other set are components of
a vector.
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Let 4; be the components of a covariant vector and consider the
equation
(3.5) Aidat =

This equation admits »—1 linearly independent sets of values of
the differentials d«* in terms of which any other set is linearly
expressible. The totality of directions at a point satisfying (3.5)
constitute what may be called an elemental Vy—; at the point.
Hence a covariant vector field may be counsidered geometrically as
defining an elemental V,,—; at each point. In general, equation (3.5)
does not admit a family of solutions of the form f(z', ..., 2*) = ¢,
where ¢ is a constant; when it does, that is, when (3.5) is com-
pletely integrable, the elemental V,—y’s at all points of such a Ayper-
surface f = c¢ coincide with the hypersurface.

Exercises
1. If it= ¢, ¥ = 0(jF1), where ¢ is an arbitrary function of the x’s, are
taken as the components of a contravariant vector in the z’s, the components 4
in any other coordinate system x='* are given by

i — 8:1:"
? 5z

2. It iy = ¢, 4 =0(j +1), where ¢ is an arbitrary function of the ='s, are
taken as the components of a covariant vector in the z’s, the components in any
other coordinate system x'' are given by

M= ¢

3. If 4y are the components of n vector-fields in a V., where i fori ==1,-.., n
indicates the component and & for « =1, ..., n the vector, and these vectors are
independent, that is, the determinant ||+ 0, then any vector-field A is ex-
pressible in the form

M= a% kg,
where the a’s are invariants.

4. If p, are the components of a given vector-field, any vector-field £ satisfying
X p, =0 is expressible linearly in terms of n — 1 independent vector-fields 4, for

¢ =1, ..., n—1 which satisfy the equation. (The vectors Aq/ are independent,

if the rank of the matrix ||isf|| is n—1). )

5. For a linear transformation of the form «'' = ajm’ where the a’s are
constants and the determinant a — Ia‘jl %+ 0, the codrdinates are components of
a contravariant vector-field in both codrdinate systems. If we put

R

4. Tensors. Symmetric and skew-symmetric tensors 9

wux' = u;xd,

we have an mduced transformation on the w's given by ui = 47 u;, where 47 is
the cofactor of a’j in the determinant ¢ divided by a. Show that ui and w: are
components of a eovariant vector in the x’s and x'’s for the given transformation.

4. Tensors. Symmetric and skew-symmetric tensors.
Let 2% uf be the components of two contravariant vectors and &, 7
the components of two covariant vectors. If we pnt

4.1) a¥ = 2w, a; = & 15 = 1§,
aI:d denote by a'Y , ay and a'; * the same functlons in the components
At ut B gt for a coordinate system z*, it follows from equations
of the form (2.1) and (3.2) that

. 1" 1J
4.2 14 — kl 8m Bx
(4.2) R Bac”
(4.3) G = G~ —5 PG _3 xu’

; 92" ot
4.4 B gf i
( ) a; an Py P’ .

If we have any two sets of functions in two coordinate systems
satisfying equations of one of these forms, we say that

a*® are the components of a contravariant temsor of the second
order, .

@i are the components of a covariant tensor of the second order,

af are the components of a mized fensor of the second order.
It should be observed that as thus defined any tensor of one of
these types is not necessarily obtainable from vectors as in (4.1).

From this definition it follows that any set of »? quantities can
be taken as the components of a tensor of the second order of any
type and the components of the temsor in any other codrdinate
system are defined by (4.2), (4.3) or (4.4), according as the tensor
is to be contravariant, covariant or mixed.

As an example we consider the case a¥ = &%, where d% are the
Kronecker deltas defined by (1.5). From 4. 4) we have

6k8x bx’ axt 82k

Bk 5 ozt 9a” ’
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Hence:

If the Kronecker deltas are taken as the components of a mixzed
tensor of the second order in one set of covordinates, they are the
components of the tensor in any set of coirdinates.

Tensors of any order are defined by generalizing (4.2), (4.3), (4.4).
Thus the equations

pax’" o™
(4.5) ORGP - s
dx™ ox™
define a contravariant tensor of the mth order; ﬁ
aa” 8o’
(4.6) Qrooor, = R
ox'! ox ™
a covariant tensor of the mth order;
: ¢ t
(4 7) aﬂ‘l-n?'m o CLS'H.S"' 695”‘ 3% T oxt ox?
) PPy bty % oa’™ ™ pa'Pe

a maxed tensor of the m—+q order which is contravariant of the
mth order and covariant of the qth order.”

Concerning these definitions we make the following observations
and deductions:

(1) A superscript indicates contlavauant chalactel a subscript
covariant;

(2) Any set of functions in sufficient number can be taken as
the components of a tensor of any type and order in one cotrdinate
system and the components in any other system are defined by ;
equations (4.5), (4.6) or (4.7) as the case may be;

(8) A contravariant vector is a contravariant tensor of the first
order; a covariant vector is a covariant tensor of the first order; !

(4) An invariant is a tensor of zero order. The latter designation ‘2
is a more appropriate term than invariant because of the possible 3
ambiguity of the term invariant;

(5) From (4.5), (4.6) and (4.7) it follows that 1f the components
of a tensor in one codrdinate system are zero at a point, they are

*It can be shown asin § 2 that these definitions possess the group property.

4. Tensors. Symmetric and skew-symmetric tensors 11

zero at this point in every codrdinate system; in particular, if the
components are identically zero in one codrdinate system, they are
identically zero in every coordinate system.

From the form of equations (4.5), (4.6) and (4.7) it is clear that
the order of the indices plays a role in these equations. Suppose,
however, that the relative position in the a’s of two or more indices,
either contravariant or covariant, is immaterial, which means that
the a’s with these indices interchanged are equal. Then from the
form of these equations it follows that the order of the corre-
sponding indices in the a'’s is immaterial. For example, suppose
that in (4.5) a™% " = %% "= then we have

i 7% 17,
ey, 518y -5, 0% ' 0 ® ox '™
a = q . —
ax ox* ox™
/¥ Iz 17",
- as,s, -8, ox'* dx ! ox ™ e g/ T,
So S S )
ox* 0w ox

When the relative position of two or more indices, either contra-
variant or covariant, in the components of a tensor is immaterial,
the tensor is said to be symmetric with respect to these indices.
If the order of all the indices is immaterial, the tensor is said to
be symmetric.

A general tensor of the second order has n® components, whereas,
if the tensor is symmetric, there are only n(n-+1)/2 different
components. Similar formulas for the number of components can be
obtained for symmetric tensors of higher order or tensors symmetric
with respect to certain indices.

When for a tensor two components obtained from one another
by the interchange of two particular indices, either contravariant
or covariant, differ only in sign, the tensor is said to be skew-
symmetric with respect to these indices. When the interchange of
any two indices, either contravariant or covariant, produces only
a change in sign in the components, the tensor is said to be skew-
symmetric. 1t can shown as above, that if a tensor has the property of
skew-symmetry in one system of coordinates, it has it in every system.

If g;; is skew-symmetric, then a;; = 0 and there are only n (n—1)/2
different components. Also, if @y,...r, is skew-symmetric in an
n-dimensional space, all the components are zero or equal to within
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sign. For a four-dimensional space there are 6 different components
of a skew-symmetric tensor ay (it is sometimes called a siz-vector).

5. Addition, subtraction and multiplication of tensors.
Contraction. From the form of equations (4.5), (4.6) and (4.7)
it follows that the sum or difference of two tensors of the same
type and order is a tensor of the same type and order. The same
is true of any linear combination of tensors of the same type and
order whose coefficients are constants or invariants. As an example,
we consider any tensor a;;. If we write

(6.1) Aij = (a” + @) + o 2 (au - i) s

the first term on the right is a symmetric tensor and the second
is skew-symmetric. Hence any covariant (or contravariant) tensor
of the second order can be written as the sum of a symmetric
tensor and a skew-symmetric tensor. '

The process which was used in (4.1) to obtain temsors from
vectors is not limited to the case of combining vectors. Thus if
a;j and b are the components of two tensors in codrdinates z,
we have

(5.2) auﬁ b

T st dat 82l oz 8z’ s’
ox'% ax'f dar 0x° Bat’

and consequently a;;b”® are the components of a temsor of the
fifth order, covariant of order 2 and contravariant of order 3.
This process is general, so that by multiplying the components of
any number of tensors, we obtain a tensor, called the product of
the given tensors, which is covariant and contravariant of the
orders obtained by adding the covariant orders and contravariant
orders respectively. This is sometimes called the oufer product.
For any mixed tensor o, the expression o/, is the sum of
n components of this tensor. 'We shall show that it is a tensor
of the third order. For we have
of 0’ 9a'f par vt Bat
a5 = at . : Py
uvf ™t 9t dx) ax'™ Bax’” 8a'f
;22 0w o ; 02/ dar B’

Iz v Uj = a:‘iv i 1# 14
' ox oxt 9ax'" ox

ot ax* dx

5. Addition, subtraction and multiplication of tensors. Comtraction {3

Hence from (4.7) it follows that ajJ&'). is a tensor, covariant of the
second order and contravariant of the first order. This process
by means of which from a mixed tensor of order r we obtain a
tensor of order r—2 is called contraction. Observe that in applying
contraction any superscript may be used with any subseript.*

In particular, from the tensor az we obtain an invariant af by
contraction. In § 4 we saw that the Kronecker deltas 6 are the
components of a mixed tensor; by contraction we get the sum of
n terms each of which is 1, and thus the invariant ¢} is «.

This process may be repeated, thus from the above tensor we
have by two contractions a vector, such as any of the following:
a:ﬁﬁ a:""u’ a:‘jz

Multiplication and contraction may be combined to give tensors.
Thus from the tensors a;; and " we may obtain a tensor of the
third order, such as a;; b/, or a;; b, or a vector as a;;b¥%%. This
combined process is referred to by some writers as inner multi-
plication. We remark that this process Was used in (3.4).

Let aif  be a set of functions of #* and a2 be a set of functions

of z'* such that ai At and a/m, #2” are the components of a tensor,
when 4! is an arbitrary vector. From this hypothesis and in con-
sequence of (4.7) and (2.2) we have

2B “ox'f pak pam

Upo X" == aff, 7* ; ;
" baxt e ax'™ ax'
il W ot oz’ o xm
Ilm 3 .’EW Ly ) x,a’
Since 4" is arbitrary, we have
4
4P — 02 0z 2d* oat dam
o Km a8 gl 8x//f- ox” 8 .27/6 ?

and consequently a¥ = and o /M are the components of a mixed
tensor of the fifth order. This proof applies equally well when
any of the subscripts is used for contraction with A/; also a similar
result can be established if the arbitrary vector is covariant. Since

* Ricci and Levi-Civita, 1901, 1, p.133 call the process composition, and German
writers, Verjiingung.
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the proof is not conditioned by the number of indices of the
functions «, we have the following theorem of which the theorem
of § 3 is a particular case:

. . Pye-7, 7 /3 .8, 1
Given a set offzmctzons by "; of & and a set o ,‘ "‘Ofﬂc

if @ m " AP and ' e A “ are components of a tensor in
plc:vp-..

the covrdinates &t and x"* respectzvel y, when A and A are com-
ponents of an arbitrary vector in these vespective covrdinates, the
given functions are components of a tensor of one higher order.

A similar theorem holds if 4% is replaced by a temsor of any
type and one of the indices is contracted. This is sometimes

called the quotient law of temsors.

6. Conjugate symmetric tensors of the second order.
Associate tensors. Let g; be the components of a symmetric
covariant tensor of the second order, thatis, g; = g;. We denote
by g the determinant of the g;’s, that is,

‘9’11 e Jin
(6.1) g=- -« |
Gn1 - - Gan

If g¥ denotes the cofactor of g; divided by g, we have

(6.2) 99 grj = O,
where 0; have the values (1.5). For it follows from the definition
of g¥ that when i3 %k the left-hand member of (6.2) is the sum
of the product of the terms of one row (or columm) of (6.1) by
the cofactors of another row (or column) divided by ¢g; and when
i =k, this sum is equal to g/g. '

Let 4% be the components of an arbitrary vector, then gy 4 is
an arbitrary vector, say p;. Now by (6.2)

Py = g¥gy = o Al = k.

Sinee w; is an arbitrary vector, we have as a consequence of the
last theorem of § 5

If g is the determinant of a symmetric covqriant tensor gij, the
cofactors of gy divided by g and denoted by g¥ are the components
of a symmetric contravariant tensor.

St

NGRS s

_ (6.6) b/"

6. Conjugate symmetric tensors 15

It is clear that in like manner if g¥ are the components of a
symmetric contravariant tensor, the cofactors of g¥ in the determinant
of the ¢g¥’s divided by the determinant are the components of a
symmetric covariant tensor of the second order. In either case
we say that the tensor obtained by this process is the conjugate
of the given one.

As a consequence of the above result and (6.2) we have that
d% are the components of a mixed tensor, which was proved directly
in § 4.

If in (6.2) we replace & by < and sum for i, we get n terms
each of which is unity. Hence for the invariant obtained from

a symmetric tensor of the second order and its comjugate we have
9 95 — n.

(6.3)

If we denote by gy the determinaut of g%, we have by the rule
for multiplying determinants and (6.2)

Gi1 - - - i .(]17....(/1” 1 0 0...0
GHgg =1 . . =1 =1,
gnl -« Gnn g’ll...gnn 0 0 P |

and from (6.2) it follows that gy is the cofactor of 4% in gy divided
by g.

By means of a symmetric tensor g; and its conjugate g¥ we can
obtain from a given tensor, by means of the methods of § 5, tensors
of the same order but different character. Thus, if a;x are the
components of a tensor the following expressions are components
of tensors of the character indicated by their indices:

6.5) Jk = g% ay; “zln = gY ayx; “ijl = 9" ayr;

ao== gt g g dme= gl g gy alme = gli gmi gok g

In similar manner from the tensor of components b¥* we obtain
tensors of the following types of components:
= gy b¥¥,

blmk = gui gmj bk, bimp == 9ii Gmj g bI* .
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We say that these tensors are associate to the given tensor by means
of gy. Similarly we find tensors associate to any mixed tensor.
We speak of this process as raising the subscripts by means of g¥
and Jowering superscripts by means of g;;. We might write the first
of (6.5) thus aj.k, but we use the notation in (6.5) to indicate which
index has been raised or lowered.

We remark that this process is reversible. Thus multiplying the
first of (6.5) by gim and summing for /, we have

I lig =— o —
Im %k = Jim 9" %yjx = O T = O

which is the tensor from which o’ was obtained.

Exercises
1. If a af A p,»* is an invariant for A, &, and »* arbitrary vectors, then af are
the components of a tensor.
2. If ay A3 is an invariant for A* an arbitrary vector, then a,+-a, are the
components of a tensor; in particular, if @ 445 = 0, then a,+a,= 0.
3. If g, drtdx/da* =0 for arbitrary values of the differentials, then

“-7k+“su+aw+“¢kj+“m+am = 0.
4. If ;44 = 0 for all vectors A¢ snch that Ag, = 0, where g, is a given
covariant vector, if #* is a vector not satisfying this condition, and by definition

aijv‘_—z 5, v,

= 1',
then (a‘, — —1— L, 6’.) g5 = ( is satisfied by every vector-field & (cf.Ex.4, p.8),
and consequently
1 ‘
ay+a;, = ?([I.‘O}-{-[ljo").
Schouten, 1924, 1, p. 59.
5. If a_, are the components of a tensor and b and ¢ are invariants, show that

it be, +ca, = 0, then either b = —c and a,, is symmetric, or b = ¢ and
a,, is skew-symmetric.
6. Let b, be a get of functions of ' G =1,..+, ) guch

that the determinant | b, | = 0, and A the set of functions defined by the eqnatior}s
b, 4 = 0; it b, and AJ are taken as the components of a tensor and vector in
the o's, in accordance with the theorem of § 2 a coordinate system x* can be
chosen for which &, = 0(j =1, -+, n).

7. By definition the rank of a temsor of the second order a is the rank of
the determinant | ay |. Show that the rank is invariant under all transformations
of codrdinates.

8. Show that the rank of the temsor of components a, bl, where a, and b, are
the components of two vectors, is ome; ghow that for the symmetric tensor

a, bj'+ a, b, the rank is two.

7. The Christoffel 3-index symbols and their relations 17

7. The Christoffel 3-index symbols and their relations.
We consider any symmetric covariant tensor of the second order gy
and the conjugate tensor g¥ and define two expressions, due to

Christoffel, which will be of frequent use. They are
g 1 [Bga | Ogm 39:';)

(1.1) [2, kKl = 2 (3.’Ej + 3 Bk )’
Jh o

(7'2) ‘2‘][ .qlk[U: k]-

Observe that from their definition [é7, k] and {Z]} are symmetric
in 7 and j. The symbols defined by (7.1) and (7.2) are called the
Christoffel symbols of the first and second kinds respectively. From

(7.2) and (6.2) we have

l .. .. ..
a3) g i = ong (i, K = &L, R = G, b
Again from (7.1) we have

(1.4) 008 _ 117, K1+ [kj, o)

da/

Differentiating (6.2) with respect to 2%, we have

--agkj agﬁ
%) . =
P og T g = O

Multiplying by ¢*" and summing for %k, we obtain

agim
ot

U agkj
— i qkm___
g axt’

(1.5)

Substituting in the right-hand member from (7.4), we find in con-

sequence of (7.2)
agim — v{m 'm{i )
b (g lj}+9’ lj} :

(7.6)
* The historical forms of these respective symbols are [lk]] and {'l] } but we

have adopted the above forms becanse they are in keeping with the snmmation
convention. Cf. Christoffel, 1869, 1, p. 49.
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From (6.3) we have by differentiation

ogY

Y 0.

. 6g1;;
y _—JH .
(7.7) il + g4

Applying the rule for the differentiation of a determinant and the
definition of ¢¥, we have
og¥

ag g 0gy b
. (1.8) T 99° axzf = T 995

the last expression being a consequence of (7.7). Substituting
from (7.4) or (7.6) in (7.8), we have

slog Vg Jz’}
l’

(7.9) ot U

the right-hand member being summed for <.

The Christoffel symbols of either kind are not components of
a tensor as will be seen from the following results. If gy and gj;
are components of the given tensor in coordinate systems z* and 2, it
follows from (4.3) that . .

oxt ot

(7.10) Tor = Gy S

Differentiating with respect to 2'°, we have
00w  Bgy 0a* a2t 9o/
ax’® 04 32/° 9’ a2
Wk 8% o) o) 0%t
L s ox" 02" oa” daox)

(7.11)

The first of the following equations is obtained from (7.11) by
interchanging # and ¢ throughout and the dummy indices ¢ and k&
in the first term of the right-hand member, the second by inter-
changing » and ¢ throughout and the dummy indices j and k& in
the first term of the right-hand member:

89y  Ogry 0F B’ dal (e BPx | B 9%

2”0 94 aa” x| OV (Ziac7 da”0a” | 02" 8:1:"“6:3’0)’
dgps __ Ogm 0a* Bt axf_l_g-__(axi 0%/ dx/ 8% )
ax” 0x go/® po* 0x” T \oa'* 8a” 02’®  da" 0™ oa”)

8. Riemann symbols and the Riemann tensor. The Ricci tensor 19

If from the sum of these two equations we subtract (7.i1) and
divide by 2, we have in consequence of (7.1)

dxt 0x) 9k dxt  3x/

7.12 f =y T gy 2T
(0-12)  lur,o] [Zj’k]ax”‘ax’”ax"’_l_g“ ax' oz 02’

where [pv,0]’ is formed with respect to the tensor G Since
these equations are not of the form (4.5), (4.6) or (4.7), it follows
that the functions [, k] are not components of a tensor. The

same is true of {Z;} as follows from (7.2), or from the following
!

equation obtained by multiplying (7.12) by g"’l%, summing for ¢
X

and making use of

e
(7.13) vq"’l“@_"fﬁ_ axt _
’ 8'73/6 ax/l
and (6.2):
(7.14) { ) }’ _a.‘,fl _ 1) St 9nd P2t
Y NV P PN WP

8. Riemann symbols and the Riemann tensor. The Ricci
tensor. We consider now equation (7.14) and the similar equation

8%zt m{l }’ ot Ji| 0at dad

8.1 — = — ..
) Vel pwol gyt ‘1.7[ ax'™ ax'®

ox

If we differentiate this equation with respect to z’* and (7.14)
a3xl
da'"8x' 92’
equation is reducible by means of equations of the form (8.1) to

with respect to 2'° and eliminate the resulting

dat oxt dx) ok
(8.2) R 25 = R
g 't " a” oz’ o2’
where
o J1) ] l} Im}]l} Jm}Jll
8.3 Rl == e 4 ¢ — —— - _
(8.3) AP {zkf Dk {ij TNk Vgl T i Aml
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and R’L;wv is the similar expression in the symbols for g;‘,,. If

4
(8.2) be multiplied by % and summed for /, we have

« __ p 0% ox ox
nov = By, v .

8.4) B
Hence R'wj, which are called Riemann symbols of the second kind,
are the components of a tensor contravariant of the first order
and covariant of the third order. It is called the mixed Riemann
tensor of the fourth order. From (8.3) it follows that the tensor
is skew-symmetric in 5 and k. The components B of the associate
covariant tensor of the fourth order, defined by

(8.5) Bujx = gm Riyx. Ry = g'* Ruys,

are called the Riemann symbols of the first kind.

If (8.2) be multiplied by gm—x}: and summed for /, we have,
oz’
in consequence of (7.10) and (8.5),

dah dar dal Bak

sz’ 8™ 02’ 9z

(8.6) B or = B
From (7.3) and (7.4) we have
l 0 I I\ agm
60 gin 6:»'{ kI = 8 (9”‘lz‘k}) {zk} da
— <2tk m—{ ! g, 11+, 0.
Hence from (8.3), (8.5) and (8.7) we obtain
(8.8) R = —> [ik, h]— ERE 1!
hijk 6mJ[ ) ] 6.70" [2.77 ]+l [hk l] ‘ ik [hjy l]

In consequence of (7.1) and (7.2) this is reducible to

. R 9%y ®gnj 0*gu
Bhn = (axiaxf T o o axhaxj)

+ ¢'™ ({ij, m] [hK, l]f[ik, m] [hj, l]).

e At
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From (8.9) we find that the symbols of the first kind satisfy
the following identities:

By = — Rinji,
(8'10) hajik = _Rhikj,
Brige = Bjnas
and
(8.11) By + Rrjri + Biryy = 0.

From (8.10) it follows that not more than two of the indices
can be alike without the components vanishing; the same is true
if the first two or second two indices are alike. Because of (8.10)
there are n(n—1)/2 (= n,) ways in which the first pair of
indices are like the second pair, and »n,(ns—1)/2 ways in which
the first pair and second pair are unlike; hence there is a total
of ny(ne+1)/2 distinet symbols as regards (8.10). However,
there are n(n—1)(n —2) (n—3)/4! (= n,) equations of the
form (8.11). Consequently there arens{(nsg -+ 1)/2 —n, = n®(n®—1)/12
distinet symbols of the first kind.*

In consequence of (8.10) we have from (8.8)

@m&w:%mmakqu}mn{ﬁmn

Also from (8.10) and (8.5) we have
(8.13) Rlijk = “Riljk-"'

It Rlyk be contracted for ! and %, we have, in consequence of
(7.9), the tensor R; whose components are given by

610 Ry = Ry = axt o) dx* z]}_l_{’lk} {M'Lj
' _jm}along
Vijl am

* Cf., Christoffel, 1869, 1, p. 55.
+ Ricei and Levi Civita, 1901, 1, p. 142 denote R‘W as defined by (8.12) by
@i, 3y 80d Bianchi, 1902, 1, p. 73 denotes it by (ik,kj). Also the latter puts

{il,kj} = g™ (ih, kj); hence {it, kj} is equal to — R', by (8.13).
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which evidently is symmetric. We call the tensor Ey the Eicd
fensor, as it was first considered by Ricei who gave it a geon}etncal
interpretation in case gy is the fundamental tensor of a Riemann
space (cf. §34).*
Exercises

1. If R’y in (8.3) is contracted for / and i, the resulting tensor is a zero tensor.

2. If Ry = 09y, then ¢ = %R, where R = g¥ Ry.

3. Show from (7.14) that for transformations 2t =g, ..., D), 2" =2"
the Christoffel symbols {:;}, where i, j = 1, --., n—1, are the components of

. - . i n
a symmetric covariant tensor in a variety «® = const.; likewise { nj} and { ni}
are the components of a mixed tensor and a covariant vector respec'tlvely.
4. Show that the tensor equation a"j 4 = ak, where & is an mwtanant, can.be
written in the form (', —«d)) 4, = 0. Show also that &, = & «, if the equation

is to hold for an arbitrary vector 4. . y .
5. If a‘j h—=ak ; holds for all vectors 4, such that x4, = 0, where 4 18 a given

vector, then
a". =« d" +¢; 7R
Schouten, 1924, 1, p. 59.

9. Quadratic differential forms. If g; are the co.mpon.ents
of a tensor, the quadratic differential form g; d2* d2/ is an invariant,
that is (§§ 2, 3), i} o
(9.1) g 2’ da” = gjdaidal.

Conversely if this condition is satisfied for arbitrary values of the
differentials, it follows from equations similar to (1.9) that

. i J ,
(g;w ks oz )d.’Elﬂ d.’E,’ = 07

T o

d consequentl, ) .

and conseq 3{ , NP
Gy _l'gV,u - @ij’l‘gﬁ);—xﬂz— —é—x,_y

If we assume that gy is symmetric this reduces to (7.10). However,
if in (9.1) we put g;; = % (g5 + gji), we have a quadratic form whose
coefficients are symmetric. Hereafter we assume that we deal
with symmetric forms.

* Rieci, 1904, 2, p. 1234.

B < =
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At any point of space g;; dxfdx/ is an algebraic quadratic form
in the differentials, and the transformation (1.9) is a linear trans-
formation with constant coefficients. Hence we can apply the
algebraic theory of transformations at a point. In particular, we

1t

know that the values of oz
0ox’

9ur =0 for p+ ». If the transformation is to be real, it is not
always possible to choose the transformation so that all of the
quantities g;,, are positive. But according to Sylvester’s law of
inertia the difference between the number of positive coefficients

can be chosen at a point so that

~and the number of negative coefficients is invariant for real trans-

formations; this difference is called the signature of the form. Thus
by a real transformation a guadratic form at a point is reducible to

(9.2) (dx1)2+ coe L (dmp)i’ — (dafﬂ’l)z —_— — (dx")g,

where the integer 2 p —# is the signature of the form.* In particular,
if the signature is » for each point of space, the quadratic form is
said to be positive definite.

If g denotes the determinant |g),, |, from the rule for multiplication
of determinants and (7.10) it follows that

(9.3) g = gJ%

where J is the Jacobian

2
a;’fﬂ . Thus if ¢ and ¢/ differ in sign

at a point, the transformation is imaginary.

1o. The equivalence of symmetric quadratic differential
forms. We have seen that equations (7.10) are a necessary con-
sequence of the equivalence of two symmetric quadratic forms (9.1).
We seek further conditions upon the ¢’s and the ¢”’s in order that
(7.10) may admit a set of » independent solutions z# — P, ... 2™
for ¢ =1, ---, m, by means of which the forms (9.1) are trans-
formable into one another.

If we put

3.’Ei i
(10.1) i I

* Cf. Bocher, 1907, 1, p. 146.
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equations (8.1) become

aplﬂ_{l

(10.2) = pe

a { l } i
ax } p A Z ‘7 p /3 p] [/
Hence the problem reduces to the determination of n (n —+ 1) functions
%, p*, satisfying these differential equations and also the n (n - 1)/2
finite equations o
(10.3) g;w ’_gﬁpz,u .pJI’ =0,
which follow from (7.10).

The conditions of integrability of (10.1) are satisfied identically in
consequence of (10.2), and the conditions of integrability of (10.2) are

(10.4) Rl = Rup’s 9 Vs 1",

as follows from (8.6) which is equivalent to (8.2).

From the manner in which equations (7.14) were obtained from
(7.10) it follows that for any set of solutions of (1(2.1) and (10.2)
the left-hand member of (10.3) is constant, and consequently, if
the initial values are chosen to satisfy (10.3), the solutions will
satisfy (10.3). This imposes » (n + 1)/2 conditions on the constants
of integration of (10.1) and (10.2). Hence the solution, if it exists,
admits at most n (n--1)/2 arbitrary constants, and then only, if
(10.4) is satisfied identically or as a consequence of (10.3). For
otherwise equations (10.4) impose further conditions, as may also
the equations obtained by differentiating them and substituting the
expressions for the first derivatives from (10.2). This result may
be stated as follows:

The general tramsformation of a quadratic differential Jorm inn
variables into another form contains at most n n+1)2 arbitrary
constants.

From the results of § 9 it follows that for the transformations
to be real at a point the signature of the two forms must be equal
at the point.

Consider in particular the case of two sets of functions g;; and I
for which the Riemann symbols of the first kind for both sets
vanish. Then (10.4) is satisfied identically and consequently the
differential forms g; da? da’/ and - dz'™ do’” are transformable into

10. The equivalence of symmetric quadratic differential forms 25

one another by a transformation involving n (n-1)/2 constants.
The Riemann symbols of the first kind for the g'’s are zero, if the
quantities g, are constants, as follows from (7.1) and (8.8), and
these symbols for the g¢’s must be zero, if the two forms are
equivalent. Hence:

A necessary and sufficient condition that a quadratic differential
Jorm gy do? dzl be reducible to a form with constant coefficients is
that the components of the Riemann tensor vanish; the transformation
inwvolves n(n -+ 1)/2 arbitrary constants.

From the results of § 9 it follows that any quadratic form satisfying
the conditions of the theorem is reducible by real transformations
to the form (9.2), where p is determined by the signature of the
given form.

Returning to the consideration of (10.4), we remark that, if (10.4)
is to be a consequence of (10.3), the tensor Epix must be the sum
of tensors of the fourth order whose terms are products of two g¢’s.
Since g¢; is symmetric, the most general form is

Rujx = agn: gjk+ bgnj g+ c gnk g4 »

where a, b, ¢ are invariants. Interchanging j and %4 and subtracting
the resulting equation from the above, we have, in consequence
of (8.10) and on replacing % (b—c) by b,

(10.5) Buie = b(gnj gix — gnk 94j) -

It is readily shown that (8.10) and (8.11) are satisfied, whatever
be b. However, it will be shown in § 26 that b must be a constant.
A quadratic differential form possessing the property (10.5) is said
to have constant curvature b; the significance of this term will appear
in § 26.

When two given quadratic forms satisfy (10.5) for the same
constant b, the equations (10.4) are satisfied identically. Hence:

Two irreducible quadratic differential forms which have the same
constant curvature admit a transformation into one another involving
n (m+1)/2 arbitrary constants; conversely, unless this condition is
satisfied by two irreducible forms the number of parameters is less
than n (n -+ 1)/2.
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It is beyond the scope of this work to consider further the

equivalence of two quadratic differential forms. Christoffel* has
given the solution of the general problem.

I1. Covariant differentiation with respect to a tensor g;.
In § 3 it was seen that the derivatives of an invariant are the
components of a covariant vector. It will be shown that this is
the only case for a general system of coordinates in which the
derivatives of the components of a tensor are the components of
a tensor, but at the same time we shall find expressions involving
the first derivatives which are components of a tensor.

Let 4° and 2'* be the components in two coordinate systems

of a contravariant vector, and differentiate with respect to x/
the equation

i ap 02t a0 00X .
- M= Pz ¥ 22

with the aid of (8.1), (2.1) and (2.2), we obtain

ok 8™ aa’” pa o 0% dx”
o/ ox'” Dol ax/# 82’ 9" P

|

LL E AR T Vi (J,w}’ 02 (i) dgh axk)
0z'” Bas ox™ " g \lowf 5% Rk % 57

. (al/ﬂ_l_l,‘f{"‘ll) axﬂ' ax‘i _thZ]

ox’” oyl dai g™ s *
If we put
L wit

the above equation becomes

. oz’ ox
A — l//l 9L .
! " oxl ax”
Hence 4%; are the components of a mixed tensor of the second
order. The components 4'; as defined by (11.2) are said to be

*1869, 1, p. 60.
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obtained from the vector A* by covariant differentiation with respect
to the tensor gij. We speak also of the tensor as the covariant
derivative of the vector with respect to gy . Thr.oughoujc ?he
remainder of this chapter it is understood that covariant differentiation
is with respect to gy. . .

If we proceed in similar manner with equations (3.3), we find
that 4;;, defined by

(11.3) Lij =

CY % R
da —lh{ijl ’

are the components of a covariant temsor of the second order.
The components 4;; are said to be obtained from the vector 4; by
covariant differentiation with respect to the tensor gy
From (11.3) we have
94 alj

o/ 9t

Aijj— Ay =

which is the curl of the vector 4;. For 4;; to be symmetric,
A; must be a gradient (§ 3). Hence: ‘

l A necessary and sufficient condition that the first covariant
derivative of a covariant veclor be symmetric is that the vector be

a gradient. '
If we differentiate with respect to z’° the equation

0t ot
U = Gj=f ~
o ax’ bx

and substitute for the second derivatives of x? anfi x/ expressions
of the form (8.1), the resulting equation is reducible to

. 8a;“, , 2 }/_ , {l l/
Pl PN el

9 ay h Jh}) dat daf 9k
:(a_ﬂf““f"{jk}‘“’”lz‘k sz’ 8a” 92"

Hence ayj,», defined by

(11.4) Aijx = %_m{jk}—ahj{i’;(:}’
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are the components of a covariant tensor of the third order. The
components ag,x are called the first covariant derivatives of a;; with
respect to g;. In like manner it can be shown that the covariant
derivatives of a¥ and o}, defined by

’ . da¥ nlt
(11.5) = o + a® { {-I—aj k}
and ;

] oa: ) ; | h
) i Rt l
(11.6) Gp= T Y {hk} h {jk[’

are mixed tensors of the second order. Observe that covariant
differentiation is indicated by a subscript preceded by a comma. In
particular, the covariant derivative of an invariant f is the ordinary
derivative of the function, and is indicated by f;.

The general rule for covariant differentiation is

8 ':l' :m 1...m . po
Py Ty 1S LASRLY RV Ly FRESE P S
R B DI il
(11.7) ¢ ?
1...p - J l l

7 81008y 1lsﬂ_,_1 Plsﬁz

From (11.4), (7.4) and (11.5), (7.6) we have

(11.8) gy = 0, gij,k = (.
Also from (1.5) and (11.6)
(11.9) aj’:’k = 0.

In consequence of the form of (11.7) it follows that the covariant
derivative of the sum (or difference) of two temsors of the same
order and kind is the sum (or difference) of their covariant derivatives.

If we effect the covariant derivative of the tensor a; b, we have

SRR IR EY
_l_aﬁ(bkh{hlrn}_l_bhl{kkm})

= b™ ayj,m + ay B m,

*The tensor character of covariant derivatives was first established by
Christoffel, 1869, 1, p. 56. '

(2 V), m =
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which is the same as the rule of the differential calculus. Since
a tensor formed by multiplication and contraction is a sum of
products, we have also

(@ 09,5 = ayx b7+ ay b7k

Hence we have the general rule:

Covariant differentiation of the sum, difference, outer and inner
multiplication of tensors obeys the same rules as in ordinary
differentiation.

From (11.8) and (11.9) follows also the rule:

The tensors gij, g% and 0 behave as though they were constants
in covariant differentiation with respect to gij.

Thus if A¢ and w; are any vectors and 4; and g¢ are their respective
associates by means of g; (§ 6), the derivatives of the invariant

(11.10) T = Xy = ghhp;
are given by
(11.11) Iy = g0y x pit dpir) = pthn+ 2 pix.

If 2; in (11.3) is the gradient f; of an invariant f, we have

St = aif ( :i:)— aii (:x,j) =0

f.ij denoting the first covariant derivative of £ ; and the second of f.
It will be found that this is the only case in which the order of
covariant differentiation is immaterial.
If we differentiate covariantly the tensor A;; defined by (11.3),
we have

(11.12)

Qi e = Ti‘k‘(:—ij_l {lel[) (Zi’: —ll{hlylf) {zhk
(69&1‘ )l{zh})

h
5k
(11.13) 3

|
_ % _all{l} azh{ az,{
T dxd Xk aak Uiy oz ikl a2 \jk

‘r
}
'r
ﬁl’(aik lel7} {zh}{yl;c} z]} hly

i
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Consequently we have

(11.14) Aiji—= i,y = Ay By,
where R is given by (8.3).
In like manner for a tensor a; we find

(11.15) g, 10— g, o = i B+ an; R,

and in general

1...m
(11.16)  trrpta— Aoy e = ) Ory. g Mgy B il
(¢4

This result is due to Ricci and is called the Ricci identity.* When
covariant differentiation is used in place of ordinary differentiation,
this identity must be used in place of the ordinary condition of
integrability. Thus (11.14) follows from (11.13) as a consequence of

G (azi) 2 (az,-
ok \oxd| — oax/ \oaxk)
The corresponding formulas for contravariant tensors follow on
raising indices by means of g¥ and noting that the latter behave

like constants in covariant differentiation. Thus, if (11.14) be
multiplied by ¢ and summed for , we have

(g™ 4), o — (g™ A), 15 = g N Ry = — g™ M Ry,
and consequently
(11.17) A e — Ak 1 = — A Ry
In general
1..
R N — Py, 1
a’s,-us,,,jk a’sl---s,,. 19) ; as,- . ~s:7,,ls¢+‘.. -8, B 8aJk
(11.18) Leom
. roeeerg_y I T T
; A T

A necessary and sufficient condition that the Christoffel symbols
be zero is that all of the g;’s be constant, as follows from (7.1)
and (7.4). Combining this result with the second theorem of § 10,
we have the theorem:

* Ricci and Levi-Civita, 1901, 1, p. 143.

23
2

and that this is equivalent to
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In order that there exist a coordinate system in which the first covariant
derivatives with respect to a tensor gy reduce to ordinary derivatives
at every point in space, it is necessary and sufficient that the Riemann
symbols formed with respect to g; be zero and that the x's be those
JSor which gy are constants. (Cf. § 18.)

Exercises

1. The second theorem of § 11, and the identities (11.16) and (11.18) are con-
sequences of the definitions of covariant differentiation and do mnot involve an
assumption that the quantities differentiated are components of tensors.

2. By applying the general rule of covariant differentiation of § 11 to the
invariant A%z, show that this rule implies that the covariant derivative of an
invariant is the ordinary derivative.

3. The tensor defined by

“1""‘r,i . o al... -
a0, = 9 %...8,,
is called the contravariant derivative of aZi:::;' with respect to gy. Show that
g9t = 0. Ricci and Levi-Civita, 1901, 1, p. 140.
4, If gy is the curl of a covariant vector, show that

ay,i + ap,i + amy = 0,

8041 6a,-k dau
0wt T 0w T o k
Is this condition sufficient as well as necessary that a skew-symmetric tensor ay
be the curl of a vector? Eisenhart, 1922, 1.
5. By definition a¥* are the components of a relative tensor of weight p, if the

equations connecting the ccmponents in two codrdinate systems are of the form

= 0.

By — g g 0z'% ox'? 927 dx  Bam
de 0w 0xd 02 g8 pue

)

ox
wrd

where J is the Jacobian 3 Show that if ay is a covariant teusor, then

the cofactor of a; in the determinant |ai;] is a relative contravariant tensor of
weight two.

6. If aqg is a covariant tensor of rank n —1 (cf. Ex. 7, p. 16), there exist
two relative vectors 1¢ and 4%, both of weight one, such that the cofactor 4%
of ag4 is of the form A%F = A%uS. When @qp i8 symumetric, A% and u® are
the same relative vectors.

7. When a relative tensor is of weight one it is called a fensor density. Show
that if the components of any tensor are multiplied by the square root of the
non-vanishing determinant of a covariant tensor, they are the components of a
tensor density.
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-

8. The invariant 4°; is called the divergence of the vector A’ with respect to
the symmetric tensor g;. Show that

)-i,i _Vl_: _51" ( Vg )

9. Show that the divergence of the tensor a” with respect to the symmetric
tensor gy, that is, a¥ ;, has the expression
a‘f,,- = T — { L|
Vy

and that the last term vanishes, if a¥ is skew-symmetric.
10. The divergence of a mixed tensor a/ is redncible to

al; = 1/1— Era (a‘ Va)— { }

Show that if the associate temsor a¥ is symmetric,

. 1 Ve r— 1 0 g5 7
—_ . g% —
T Yy M’ @/ Ve) =5 0" pu 1/— ax: @ Vo) +5 “"‘ 2z
Einstein, 1916, 1, p. 799.
11. When g;; and ay; are the components of two symmetric tensors, if

Gakt=1-. ),

i Qe — G G gin @ — guay = 0
then ay = ogy.

12. If ayu is a tensor satisfying the condxtlons (8.10) and for a vector i' we
have A ayu = 0, a codrdinate system «" can be chosen for which afu are zero,
when one or more of the indices is n.

13. Let Agf for ¢ =1,..., n denote the components of » independent contra-
variant vectors, where the valne of « for « = 1, --., n indicates the vector
(cf. Ex. 8, p. 8), and let A% denote the cofactor of Agi iu the determinant
A= |Agf| divided by 4. Show that the quantities A% for each cosrdinate system
are the components of a covariant vector, e indicating the vector and 1 the

component.
14. Show that if ang Ay d2f 4 Ax* = 0 for any two arbitrary vectors My

and lzl, then
i + Qugi + a4 apni = 0;

also when an; possesses the properties (8.10) and (8.11), then aap=0.
15. Show that when in a Vs the coordinates can be chosen (Cf. § 16) so that
the components of a tensor gy are zero when i ¥ j, then
Ry = ;'“Rmo,
1
Ram = —g;‘ Rkﬁh+ g—j; Rm»,

1 . .
Ryuin — gua R — g B + £ Rgmgs =0 Gt 1,5 %),
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where R == gY¥ R;. Hence the tensor Chyu, defined by

Crwijr = R+ !Ijn/Ra‘ —gm Ry + ga Ry — gij Rux + g (g 955 — gy guv),

is a zero tensor (Cf. § 28).
16. If ar,...r, and Gr,..., are the com i
. . ponents of a tensor in V, for coordi
systems in the relation " o coriinace

at —wl’ i’j:q)j(wgy"'vx") (j=27"'1")

and ar,. rl'" and @r,...r,, where i, - ., 7 =2, ... n, are developed in power

series in ', the coefﬁcxents of any power of ac‘ in these developments are com-

pox;t;nt;fof the same tensor in any hypersurface ! = constant, Levy, 1925, 1.
ar-..r, a0d @y,...,, are the components of a tensor in v, § ,

systems ' and o in the reﬂztxon o cotrdinate

T =al(f=1,.--,p), T = ¢@rt,..., a") k=p+1,..., ),

the functions ar,...r, and ar,...r, for which r4, ..., » take the valnes r+1,--n
b

and in which we put

(1) Xl = pi — aj’

where the a's are constants, are components of the same tensor in the ¥,
defined by (1). Levy, 1925 lp
? ' -

18. If gy and gy are the components of two symmetric tensors, and { ! }and {T}
?
are the corresponding Christoffel symbols, then bi; defined by N !

fi = {at o

are the c O )
omponents of a tensor. If ap B and ap p _ denote the covariant

derivatives of a.' %" with respect ” 7
By B spect to gi; and gy, then

v — k—x‘r“k+1 It epe, P
7! ﬁ,e» ﬁ” 2 /31 Za1"'ﬁl—lﬁﬂz+1---ﬁ.bp,i'

Also if Ru and R'u denote the correspondi
kind, we have sponding Riemann symbols of the second

R pt 3t i 2 .
Rﬂ“ R’“ = b — bﬂ‘,‘ + bjl b){lk - bjhk b;'u,

where the covariant derivatives are with respect to the tensor g.



CHAPTER II
Introduction of a metric

12. Definition of a metric. The fundamental tensor.
The geometry which has been considered thus. far in the developfn.ent
of the ideas and processes of tensor analysis is gteon%etry of pos1.t10n.
In this geometry there is no basis for the detef'mlna-tlon (.)f magrutud‘e
nor for a comparison of directions at two different points. In this
chapter we define magnitude and parallelism, and develop consequences
of these definitions.

We recall that the element of length of euclidea.n space of three
dimensions, referred to cartesian codrdinates, is given by

(12.1) dst = (da")*+ (da®)’ + (d=),
and for polar codrdinates by
(12.2) dst = dr®+ r®(d6® +sin®0d¢®).

This idea was generalized and applied to n-dimensions b'y Ii?z'emann.,_*
who defined element of length by means of a quadr:%tlc dlﬁerentl’al
form, thus ds® = gy da’ da/, where the g’s are functions 'of the z's.
As thus defined ds is real for arbitrary values of the.d.lﬁerentlé'ﬂs
only in case the quadratic form ig assufned to be positive d.eﬁ'mte
(§ 9). Much of the subsequent geometric development of this idea
has been based on this assumption. However, thfe gefleral theory' of
relativity has introduced a quadratic form which is not deﬁm'te,
and consequently it is advisable not to make ?he above assumption
in the development of geometric ideas which are based on a
quadratic differential form.

We take as the basis of the metric of space a real Sundamental
quadratic form

(12.3) 9 = gy dazt dxj,

* Riemann, 18564, 1.

=3
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where the ¢'s are functions of the z’s subject only to the restriction
(12.4) 9 =gyl +0.>

Element of length ds is defined by
(12.5) ds® = egy da’ da/,

where e is plus or minus one so that the right-hand member
shall be positive, unless it is zero. The letter e will be used
frequently and will always have this significance.

Since ds must be an invariant, it follows from § 9 that g; are
the components of a covariant tensor of the second order which
without loss of generality is assumed to be symmetric. Tt is called
the fundamental tensor of the metric, and also is referred to as
the fundamental tensor of the space. The metric defined by (12.5)
is called the Riemanmnian metric and a geometry based upon such
a metric is called a Riemannian geometry. Also we say that the
space whose geometry is based upon such a metric is called a
Riemannian space, just as a space with the metric (12.1) is called
euclidean.

-The significance of equation (12.5), as defining the element of
length, is that ds is the magnitude of the contravariant vector of

components dzf. If 4' are the components of any contravariant
vector-field, then 4 given by

(12.6) 1= egy A

is an invariant, which is defined to be the magnitude of the vector
(at each point of space). If ; are the cbomponents of any covariant
vector and 4* are the components of the associate vector § 6)
by means of g%, the conjugate of gy, that is,

(12.7) A= gV}, Ai = gy A,
then
(12.8) gvl,]. = ’:’.g,;k].kgﬂll = gu Ak = el2,

Hence the invariant ¢¥ 1;4; is the square of the magnitude of the
associate vector,

* Unless stated otherwise it is assumed that the cosrdinates are real.
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36
It 2 = 0 in (12.6) or (12.8), that is,
(12'9) !]yl’lr’ = (Q or (]v 2.,').}- = () or ]'i = 0’

t the vector is null at the point, and if (12.9)

at a point, we say tha
vector-field. If the fundamental

holds everywhere we have a null
form is definite at a point, at least one of the components of a null

vector is imaginary at the point, in consequence of §9.
It (12.9) is not satisfied, it follows from (12.6) and (12.8) that

the components can be chosen so that respectively

(12.10) Gij ML = e, gi.l' Ai lj = ¢,

to use the above mentioned notation, e is plus or minus one
hand members are positive or negative. When
ay that A¢ are the components
larly the second of (12.10) is

where,
according as the left-
the first of (12.10) is satisfied, we 8
of a unst contravariant vector; simi
the condition for a wnét covariant vector.

Any real curve C is defined by the z’s as functions of a real
parameter ¢ (§ 2). Unless (12.3) is definite there may be portions
of C for which, when d2% in the right-hand member is replaced by

Mdt, this quantity is positive, negative, or zero. Let ¢, and &
portion for which

dt
be values of ¢ at ends, or at interior points, of a
The length of the curve between these

this quantity is not zero.
points is by definition
dat da)

b
(12.11) s :—"ﬁ‘ Veg,;;—a—l—t— —(,—i-t_ dt

12.11) defines s as a function of {,
be defined by the z’s as functions
in which case we have

If we replace s by ¢, equation (
and consequently the curve may
of the fundamental parameter s,

dot da’
(12.12) W35 ds

If for a portion of a curve, or for a whole curve,

det da)
(12.13) 93¢ at
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we § it i
e Sa;){lcg-x:.t it is ojf length zero, or minimal. We recall that i
. -time continuum of relativity certain lines of 1 )
areF identified as the world-lines of light cugth zero
rom continuity considerations it f .
. . ollows that a
. en
\\?;lilsltls of portions the length of which is thus deﬁnid e;izl Emve
o Asgea{le( offthe length of a curve between any two o’f its o('m: ;
. th.e gle of two vectors. Orthogonality. Let 1 ialx)ldu;. S;
components of two unit vectors, that is ! *
; it

(13.1) o
}. 7 —_

If we put 9 het* het? = e a = (1, 2).*

(13.2) SO = gy Ayl Ae)/,

it is clear i

b theleta; Otli’zztc tthe right-hand .member is an invariant determined

o (121t (?rs.t . For .euchdean space with the fundamental

o L2 s le cosine of the angle between the lines, and

i o lnvariant it has the same meaning when ’polar

e géner;]my other, are used.

Evidently cos#é acsastehzlvse (@idsziilxll(;lthti}smeasuqe e oy 132

e S merely a symbol

thihtl:;:g Lnaesrélbel is .not. greater than one in a)lr)nslolut’e u;:flf:. ﬂIlz

angle can s foux;vlz gl\;;e it the usual interpretation and thus the

it 18 deﬁnite. ) e shall sho.w that this is always possible

Do) is de .ﬂ n fact', rdy* -+ td5 are the components of,

 vo the penc .determmed by 4,i* and 4. The null vect
pencil, determined by the values of #/¢ for which o

G (r bt +tao)) P2y 4 t2g)0) = 0
H
must be imaginary for this case. Hence we must have
(g5 1 Agp)2 << 1 ’

and
a consequently |cos 6| as defined by (13.2) is not greater than one

* When deali i
notation du an;ni:ntt: dl:,?::e gllan one vector, we nsually make use of the
one of se e contravariant and covarian
componentver;l vectors, where the value of o indicates the v; tco'm ponants of
. In the present case o takes the values 1 and 2 ctor and ¢ the
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When the components are not chosen so that the vectors be
unit vectors, we have

(13.3) gy bul ot

V ey gy at Map) (@2 gia At Ro')

cos g ==

as follows from (12.6). If daf and J2f denote differentials for two
curves through a point, neither of which is a curve of length zero,
we have

gy da 82/
(13.4)

Viegy da dal) (e gu 0 0ah)

cosd =

When (12.3) is definite, a necessary and sufﬁcie:nt condition
that two non-null vectors at a point be orthogonal is
(13.5) gy llli )hgi‘) = 07
and when the form is indefinite this is taken as the definition of
orthogonality. The problem of determining vector-fields orthogonal
i i ° later.
to a given field will be treated . ‘
When one, or both, of the given vectors is a null vect01,.the
right-hand member of (13.2) involves an indeterminate facto.r, since
there is no analogue to unit vectors in this case. Accorflmgly in
retaining (13.2) as the definition of angle, this mdetermln.a'teness
is understood. Furthermore, we take (13.5) as th'e definition of
orthogonality when one or both of the vectors is null. As a
i -or 1.
consequence, a null vector is self o;thogona .
FOI('l the ’curves of parameter z* of the space we have dz$0,
d2) =0, (j +i). Hence, when they are not mimmal, the com-
ponents <’)f the contravariant unit tangent vector are 4 = 1/ V eiga,
AJ = 0(j $4). From this and (13.3) it follows that the. angle w;;
between the curves of parameters z and 2/ ?tt a point, when
neither is a curve of length zero at the pomt, Is given by

i

. Sy = ————,
(13.6) cos @y Veiej gii g

In § 3 we saw that for a covariant vector-field 1; the equation

(13.7) b dat = 0

|
T
:

RS

e S R R
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determines at each point an elemental V,_;, which may be taken
as the geometrical interpretation of the vector. In terms of the
associate contravariant vector this becomes

(13.8) g dd = 0,
and consequently the vector 1/ at a point is orthogonal to any
direction in the V,_; at the point, and thus is normal to the Va-1.
Since either the normal or the V,,_; determines the other, we may
look upon a vector of either type and its associate as defining
the same geometrical configuration, and thus speak of A* and 4; as
the contravariant and covariant components of the same vector-field.
By means of (12.7) it is readily shown that from (13.2) we have

(13.9) 080 = gV Ay; Agy;
for the determination of the angle, when the covariant components

of the vectors are given.* Likewise, the condition of orthogonality
in this case is

(13.10) g"’ ).1],' ].2“ == 0.

From (13.5) it is seen that at any point P the components of
two orthogonal vectors may be interpreted as the homogeneous
codrdinates in a projective space of n—1 dimensions of two points
harmonic with respect to the non-singnlar hyperquadric
(13.11) 95yt y = 0,

in which the ¢’s are evaluated at the point. The problem of finding

mutually orthogonal vectors at P is that of finding the vertices of
.. Pbolyhedra self-polar with respect to (13.11). Consider, for example,
the case » = 4, that is, when (13.11) defines for P a non-singular
quadric surface Q. One vertex, P,, of such a tetrahedron can be
: chosen arbitrarily in the space but not on Q; a second vertex, B,
i arbitrarily in the polar plane of P;, but not on Q; a third, P;,
' arbitrarily on the intersection of the polar planes of P, and P,

i% but not on Q. Then P, is determined as the intersection of the

* It is understood that the vectors are umit vectors, unless one or both are
null vectors.
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P, and P;. Since P, P, and P, can be chosen

polar planes of P,
8= oon®—D12]

thus in o083, oo ®and oo * ways respectively, there are o
sets of 4 mutually orthogonal non-null vectors at a point in a Vj.

We call » mutually orthogonal non-null vector-fields in a V» an
orthogonal ennuple. 'The analytical process of finding them is
analogous to the above, the difference being that instead of choosing
a point for P, we choose n arbitrary functions ;% not satisfying

(13.11) and so on.
Hence we have the theorem:
There exist 00™®—V2 orthogonal ennuples i a Riemannian m-space.

Also we have:
A given non-null vector-field forms part of oo @~ D@—DR orthogonal

ennatples.

A null vector corresponds to a point P on the hyperquadric (13.1 1)
and any non-null vector orthogonal to it to a point in the tangent
hyperplane to (13.11) at P. Since this hyperplane is of n—32
dimensions, we have the theorem: '

A madl vector is orthogonal to n—1 linearly independent non-null
vectors in terms of which it is linearly expressible.

From geometric considerations it is seen that these 7
cannot be chosen so as to be mutually orthogonal.

In like manner we have also:

Any vector orthogonal to a null vector
terms of it and n—?2 non-null vectors orthogonal to it.

If a null vector is orthogonal to n—1 linearly independent veclors,
it is a linear function of them.

If A,¢ are the components of the unit vectors of an orthogonal
|

ennuple, where 4 for h=1,.--, % indicates the vector and ¢ for

i=1, .-, n the component, we have

1—1 vectors

is expressible linearly m

(18.12) gl il = en, i i =0 (h % k).

Any other unit vector-field of components 4* is defined by

(13.13) A= ¢ cos e llli 4+ es cos 3 le\i + ..o 4encos oy lmi,

where in accordance with (13.2) cos ex = gij 2. I we put

(13.14) gl = o (hy gy L=1, -+, ),

14. Differential parameters. The normals to a hypersurface A 41
where the s are functions satisfying the conditions
(13.15 y?
) a0, bt =0 % B,

El;eni sqaltlre tc.(zrlnpozlents of an orthogonal ennuple. The determination
antities ¢ satisfying (13.15) is the i
_ . . problem of findi
self-polar polyhedra with respect to the hyperquadric 3¢, (y‘)r;g=ﬂ(l)e
and cons‘equently there are co?®-1/2 gets of solutioné ’
-14. Differential parameters. The normals tc.> a hyper

surface. If f and ¢ are .
defined by 9 are any functions of the a’s, the functions

141 _ G of of
M =55 5u7 = 9Lk

(14.2) = g2 29 d
A (S, 9) = g¥ v o — 9L

are invariants. They are called differenti
. ential parameter.
order. In like manner the invariant defined by ers of the first

(14.3) &S = i fy = .ﬁ(a;:éfmi - aa;{k { k})
. W

is Xalled a 'dzﬁ‘erentz’al parameter of the second order.
n equation of the form f(z', - .-, 2 = 0 determines a V,—; in
—

Va; we call it a Ay, .

’ ypersurface. F A

surface we have S or any displacement in this hyper-
of

ot dat = 0.

Consequently the iti 5 i
y quantities i are the covariant components of

the vector-field of normals t
: . o th 1.

(o yoctor-feld e Vp-1. From (14.1) and (12.9)
N 7;1? necessolzry and sufficient condition that the normals to a hyper-
ace f (=", . x") = 0 form a null vector-field is that f be a soluts
of the differential equation ”

(14.4) Af = 0.

: tIf Ji and f; are any functions not satisfying (14.4), the angle 6
a'e ween the 1.10rmals to two hypersurfaces f; = 0 and f; = 0 at
common point, the angle between the hypersurfaces, is given by
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A
oo b 619241f1’Alf2

as follows from (13.3), (13.9), (14.1) and (14.2). If either one or
both of the functions f;, f is a solution of (14.4), we take

cos8 = A (fi, f2)

(14.5)

(14.6)

as the measure of the angle between the hypersurfaces.
From the definitions of § 13 it follows that

Al(flyfs) =0

is the condition that the hypersurfaces be orthogonal at each

common point. Since
(14.8)

(14.7)

Ay (wia wj) - gﬁ}

we have that a necessary and sufficient condition that the hyper-
surfaces « = const., z/ = const. at every point of space be
orthogonal is that

(14.9) gy = 0.
If f'(«!, -+, @) is any real function, the differential equation
(14.10) L) =0

admits n —1 independent solutions.* If /% ---, Nid denotg Elch_
solutions, and if we introduce new coﬁrd%nates deﬁ,?ed ,})y f O——f f
for i =1,...,n, then from the equations A, (@ = )’— 0 0’1;_
j==2,..., n expressed in terms of the fundamental form ¢’y dx” d

we have

L /'=2...’/n.
(14.11) gv =0 (J ) )

Since we have assumed that the determinant g’ of the above forhm
is not zero, it follows from (6.4) that g'*' 4 O and hence from the
identity ¢’V gi; = d% we have

(14.12) b gy =0, guF0 (=2, 1m).

* Goursat, 1891, 1, p. 29.

{

b
i
)
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Hence the fundamental form is

(14.13) ¢ = gu(da) +ghda¥ d’* (G, k=2, ... n).

The geometrical interpretation of these results is that the hyper-
surfaces f/ = const. for j =2, ..., n are orthogonal to the hyper-
surfaces f* = const. and the former intersect in a congruence of
curves orthogonal to the latter.

15. N-tuply orthogonal systems of hypersurfaces in a V..
From (14.7) it follows that the condition that there existin a V,
n families of hypersurfaces f; = const. (i =1, ..., n) such that every
two hypersurfaces f; = const., f; = const. for i, j — | IEPPR X CE 7))

are orthogonal at every point is that the n(n—1)/2 simultaneous
differential equations

(15.1) M(fi ) = 0
admit »n solutions. Evidently this is not possible for n >3, when
the fundamental form (12.3) is any whatever. When it is possible,
we say that the Riemannian space admits an n-tuply orthogonal
system of hypersurfaces.

If this condition is satisfied and these hypersurfaces are taken
for the coordinate hypersurfaces af = const., we have from (15.1)

(15.2) 99 =0 Gj=1,..., n; ¢+ g).
Since we have assumed that the determinant g of the form (12.3)
is not zero, it follows from (6.4) that none of the components g% is
equal to zero.
Hence from the identities
gig" = &
we have

(15.3)

99 = 0 Gj=1,--4n;iFj).

Consequently the fundamental form is

(15.4) 9 = gu(dx')’ + gar (d2®)* +- - - + gua(da™)®.
Conversely when the fundamental form is reducible to (15.4), we

have (15.2) and consequently the parametric hypersurfaces form
an n-tuply orthogonal system.
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44
Since in this case

(15.5)

gt o= _1.,,
gii
(15.3) and (15.5), the following ex-

5.2
we bave from (77 1 )’symbols formed with respect to (15.4):

pressions for the Christoffel

i 1 9gu
(15.6) [z'j,k]IO, [j,j,@]-_———[z/g,]]-— 2 b’ [é4, 4] .Z o
(i}jy k :‘:)?
. g i loggi
1 ag“ j ¢ ‘ po— _1._6__4-—-
] — e e . - ’
le‘l;" =9 {u} = T3 0w’ \ijl 2 0
(15.7) f e } 1 alog'gﬂ.
Vigh = 2 8

in this case
From (8.9) we have i this Gidk b,

Ruge = 0 B -
[ *Vga 0V gu dlogV gm
Ruw = Vi (o~ o o
0V g ologly 10%"'/9"_") (hyiy k4,
? 1 alfg;)_+ 9 ( 1__9]{}@2)
R L oVigs\ 8 (1 i
Ryin =V gii Vghh[‘a‘xﬁ (Vg—h; ot 0 \Vigy 0%

L3 LoV V) gy,
ox™ ox™
m Jmm

rm =1, cluding m = h
where >/ indicates the sum for m=1,---, 1 €X g

m

d M i. i i m*
anlef.n Metric properties of a space Y, immersed in a vV

Consider a space Vi referred to coordinates y* and with the

fundamental form N

(16.1) § = Qgp dy* dy".*
If we put
(16.2) y“ = f'o‘((l/'l’ ceey, wn)’
AN nd
* In this section Greek indices are supposed to take the values 1, ..., m &

Latin indices 1, ---. .
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where the f’s are analytic functions of the z’s such that the
9 j"‘ U
ot

| is of rank n», equations (16.2) define a space Vj,

s

immersed in V,,. If we write

dy® ayf

Yop 50t b I

(16.3)

then from the definition of linear element for V,,, namely
(16.4) ds® = ey dy” dyP,

we have for the linear element of V,

(16.5) ds® = egy dat dal,

Thus when a metric is defined for a space V,,, the metric of a sub-
space is in general determined (cf. Ex. 8, p. 48). 'This is an evident
generalization of the case of a surface o' = f%(u,v) (for i = 1, 2, 3)
in a euclidean space with the linear element (12.1); in this case (16.5)
assumes the well-known form ds®* = Edu®4-2Fdudv+ Gdv® in
the notation of Gauss.

The formula for V,, analogous to (13.4) is

aap dya Byp
V(e1 tap Ay dyP) (e, tap O y* 6 4°)
From (16.2) we have

oy* .
o« — .
(16.7) dy* = Py dat.

(16.6) cos § —

Substituting in (16.6) and making use of (16.3), we obtain (13.4).
Thus the invariant cos 6 of two directions at a point of V, has
the same value whether determined by the formula for V, or for
the enveloping space V.. Later (§55) it will be shown that when
the fundamental form of a space is positive definite there exists
a euclidean space Vi, where m < n(n-1)/2 in which V, can be
considered as immersed. Consequently angle as defined by (13.4)
for V, is equal to the angle in the euclidean sense as determined in
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the enveloping V. In fact, in the differential g.,reontl'etrgr (())Ifl z; Zﬁiffzzz
in euclidean 3-§pace, the a}ngle betvs;:ena;cl\goiéislr:}c{ I:::s O
i:f ii?r:;irtﬁi l(i“ ttlll: s(illi'(f::((:l: ?sl dsell)'?ved thferef.rom *, this gives a form
o I‘fv};vi"cir(;elifg (i:irx?::o::ﬁ:dtl)?timielzl;fltl;;?’::i;lt vector-field in Va,

along any curve of the congruence of curves for which these are

. _ 16.7) we have for
the tangent vectors Wwe have — = 2. From (16.7)

is curve in V. .
this ¢ n Ay 0yt Aot _ 3ycf i

dt ~ oaxt dt 92

Hence the components in the y's of this vector-field are given by

(16.8)

in Vi, for those vec.tors
the components A° 1n
placing

Conversely, if we have any vector-field &

i is tial to Va,
£ the field in Va, that is, tangen '
(t)he Z's are obtair;ed by taking any'n of equatlons (1116.82’, re
the y's by the expressions (16.2) and solving for the A’s.

From (16.8) and (16.3) we have
(16.9) Ao & = gy MW,

and from (13.3) for two non-null vector-fields

a,,,lg §1\a §2|ﬁ o
0 = I S S SN
* v (ex Qep & ‘§1\‘8) (e Qop &y” 52\’3)
(16.10) e g5 laf 2o

S

— . . 4 N
V (ergy M’ M) (e2 gy R’ Aa)

From (16.7) it follows that Y

are the compon

* Of. Hisenhart, 1909, 1, p. 78.
t n suitable equations.

o - 0
ayi fore=1,.-., mand a given ¢

ents in the y's of the tangents to the curves of

Exercises AT

oy~
9t
hypothesis, there are » such independent vector-fields in V,, in terms
of whose components the components of any vector-field in V, are
linearly expressible. From this it follows that any m functions &
satisfying the n equations

parameter 2 in V,. Since the matrix ”

is of rank n by

a 112
(16.11) Gup agygz_ 2 _ o

are the components in the y’s of a vector-field at points of Vy,
such that the vector at a point of ¥, is orthogonal to every vector
in V, at the point. Accordingly we say that a vector of com-

ponents * satisfying (16.11) is normal to V. If (16.11) is written
in the form

(16.12)

we see that there are m — n linearly independent vector-fields
normal to V.

Exercises.

1. Show that a real cobrdinate system can be found for which g =1 or —1.
In this cordinate system the divergence of a vector ' (Ex. 8, p. 82) is the ordinary
divergence.

2. For a V, referred to an orthogonal system of parametric curves

Ru !],, = 22 !]“ = Rnn’ Ru = 0’
R = gv Rij — ﬂi&’
911 93
and consequently
R
'Rij == —2—_0”

3. When the fundamental form of a V, is positive definite and 6 is the angle
between the vectors 4,/ and 4,, then

(9 I = I g,.j) l”* }'lli l‘le l-”k

IuFge ot Ky o By f

sin?0 =

4. Show that

d .
o 40 =2¢96,6

ye*
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5. For a V, referred to a triply orthogonal system of surfaces

1

R, = _LR-"ji+ —— Ry G, J, & %),
9; 7 I
R. = 1 @, k+)
A PR ikkj 10 !
R 11

v Yu g,' it

6. Show that for a V¥, a tensor a,, satisfying the conditions (8.10) and (8.11)
has six independent components and that these can be written in the form

oy = e O Ju O + 90— In Gy

where a, is a symmetric tensor. Show also that

1
a;, = z I 9" .9”"'1”:— gt X

Hence if g'ay, = 0, then a,, = 0.
7. The fnnctions g,; defined by (16.3) are invariants for ¥V, at points of ¥,
and aqg are invariants for V.
8. Whén the equations
oy Oy .,
aalg—al;:'_a‘%‘=0 (“113‘:17"‘7”“2:.7:17“'7 n)

admit solutions (16.2), for the V, thus defined there is not a metric indnced by
the metric of V,. Show that in general such a V, exists, if m=n(n+1/2

17. Geodesics. Let C be a real curve defined by = fid),
¢t being any real parameter, and denote by A and B the points
of C with the respective parametric values f and 4. The equations

7 = 2+ eot,
where ¢ is an infinitesimal and ! are functions of the z’s such that
(17.1) of = 0 for t — to, t,

define a curve C nearby C and passing through A and B.
Consider the integral

. "
(17.2) I :I T(x'ly ey 2 il.’ T é")dt,

17. Geodesics 49

.. dxt .
where 2 = a3 and ¢ is an analytic function of the 2n arguments.

.If I is the corresponding integral for C, we have, on expanding ¢
in Taylor’s series,

t
Ty o9 . 09 ..
I—1I = GL [WW’“]-Ww’]dt-i-"'r

.. dwt ..
where o’ = —— 2/ and the unwritten terms are of the second and

) ox)
higher orders in . If we write
t
9 . o9 ..
(17.3) of = eJ; [-5% o+ =2 m’] dt,

integrate the second term of the integrand by parts and make
use of (17.1), we have

(17.4) 5 “29. _ 4 (b9
o I o —_— e — i
E,J:,, [axi dt(ao'ci)] w* dt.

The integral 7 is said to be stationary and C the corresponding
ea:tf‘emal, if this first variation d7 is zero for every set of functions w?
satisfying the conditions (17.1). From (17.4) it follows that a
necessary and sufficient condition is that

d (d¢ dg
(7o) 2t (38) —am =0

which are known as Euler’s equations of condition.*
We apply this general result to the integral (12.11) for a portion

of a curve C for which e is either one or minus one throughout
the domain. In this case

¢ 29 x) xk

09 __ egi @ egy o 1 7 oaf
ot Vegyaia) = ds ' o2t 2 ds '
dt dt
Substituting in (17.5), we obtain
d*s
guisi+ 2 e . B g O g,
dat



See
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If we make use of the Christoffel symbols formed with respect
to (12.8), this equation becomes

&

. d*xl o dad daF ) dal dt? :
(17.6) gy~ 15k, ?]W' P TELTE ds
dt

Multiplying by ¢* and summing for i, we obtain
&
Bt [ 1\ daf ddF dat df
) T

dt dt dt ds

dt

If in place of a general parameter { we use the arc s of the
curve, equations (17.7) become

d?a’
‘ gl ds ds

(17.8) -+

{ 1\ dat daF _
ds®

Thus the extremals of the integral (12.11) in which th.e param-
eter ¢ is the arc s are integral curves of n ordinary differential

equations (17.8).
These integrals satisfy the condition that along any curve

‘ dat da/
(17.9) 9y de const.,

because of (12.12). We shall show that any integral curve of (17.8)
possesses this property. In fact, since the left-hand member of
this equation is an invariant, its derivatives with respect t(.) s alo.ng
a curve can be obtained by taking its covariant derivative with

respect to x¥, multiplying by _d&?_ and summing for k. Hence the

condition that (17.9) shall hold along a curve, when s is a para-
meter, not necessarily the are, is

dal ot (dat) ..@i’(ﬁ? {i\ dt _dﬁ) _
(17.10) g ds Tsﬁ( ds ),kw_ﬂ' Ji~gs \as® T Wl ds ds
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It is seen that this condition is satisfied by any integral curve
of (17.8), which equations may also be written in the form

N3

(17.11) dax’ ((lmi)

ds \ ds

In view of this result we have that if the constant in (17.9) is
positive, negative or zero at a point of an integral curve of (17.8),
it is the same all along the curve; that is, if the tangent vector
at one point is non-null or null, the tangents all along the curve
are of the same kind. From (17.7) it is seen that the form of (17.8)
is not changed if s is replaced by as--b, where ¢ and b are
arbitrary constants. Hence, if the curve is not of length zero,
s can be chosen so that (17.9) becomes (12.12), that is, s is the
arc. On the other hand, if the constant in (17.9) is zero, the
above mentioned generality of s obtains. Any integral curve of
equations (17.8) is called a geodesic. When in particular it is a curve
of length zero, we will call it a minimal geodesic, and we will
understand that when s is used as a parameter of a minimal geodesic
it is such that the differential equations of the geodesic assume
the form (17.8).

Consider for example the V, of special relativity with the
fundamental form ¢ = (d)* - (d2®)®+ (d2®)®— (dx*)®. Any curve
of length zero in this space may be defined by equations of the form

x* = fR cos 0 sin ¢ ds,
xt =IR ds,

where R, 6 and ¢ are functions of s. Only in case R, 6 and ¢

are constants are these integral curves of (17.8), which are in this
2

case — 5 = 0. Hence in general a curve of length zero is not

a geodesic.

We return to the consideration of (17.8) in which s is the are
of the geodesic when the latter is not minimal, and is the particular
parameter referred to above when the geodesic is minimal. We
observe that any integral curve of (17.8) is determined by a point
Py(ag, -+, «) and a direction at P,. Thus if we put

xt = fR cos 9 cos ¢ ds,

x® = f]ﬁ sin 6 ds,
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¢ — (42)
(17.12) = sy
where a subscript O indicates the value at P,, we have

R WL L&\ 5,
xi:—.x;—l—§ls+'2—(—&;;)oss+§!‘(dss S

The coefficients of s* and higher powers in s are giveg l.)y (17'.813
and the equations resulting from (17.8) by. dlfferen.tlat.lon v?ti
respect to s and replacing the second and hlgher denvatlvesz x
by means of (17.8) and the resulting equations. Thus we have

d3 2t i dax! dak dat -0
e Tl g Tas Tds ’

dizt dol doF dat dz™ __
(17.13) dst + Tjiam ds ds ds ds 0,
where ; 1 9 {21_]2}{04}_{2}{04})
Ta = ?P(W i1 ekl il T el K
(17.14) 1 8 (¢ o)t }{a})
= 5 Pzt 2 gt Wt}
and in general . l
) 1 aT5... i AT i a{a )
jlkl,..mn == W‘P(———é%ﬂ——rakl...m{jn[ Jk--- mnf

(17.15)

where P before an expression indicates the sum of terms obtained
by permuting the subscripts cyclically and N denotes the number
of subscripts.* Hence we have

N\ e 1, in eiebetas
(17.16) 2 = x@+§is_%{f,€}0¢’ gt — o (D)o ¥ H S — -
7

The domain of convergence of these series depends evidently.upon
the expressions for g;; and the values of &, However for sufficiently
small values of s they define an integral curve of (17.8).

* Cf. Veblen and Thomas, 1923, 4, p. 561.
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18. Riemannian, normal and geodesic codrdinates. In
this section we introduce certain types of codrdinates which have
important applications. Returning to (17.16) as the equations of
a particular geodesic passing through a point P, (x,) and determined
by the direction (17.12), we put

(18.1) Y= &s
and substitute it in (17.16), with the result

1 1.
(182) of = x3+yz——2_{aﬂ}oya ¥ — 7 Wby Py — -

Since equations (18.2) do not involve the &’s, they hold for all
geodesics through P, and therefore constitute the equations of

3
a transformation of codrdinates. Since the Jacobian ’% I of these

equations is different from zero at P,, the series (18.2) can be
inverted and we have

(18°3) ?/zz (xl.___xz))_*_Fz(xl_xs’ cee, A— g) (Z = 17 Tty ’Vl),

where F are series in the second and higher powers of 2/— ]
(7= ]7 "'7"’)'

For a given set of values of the constants & in (18.1), these
equations define a curve. When y* in (18.2) is replaced by &'s we
have (17.16). Consequently (18.1) are the equations of the geodesics
in the new system of cot¢rdinates. These codrdinates were first
introduced by Riemann* and are called Riemannian coordinates.
In these coordinates the equations of the geodesics through P, are
of the same form as the equations for straight lines through the
origin in euclidean geometry.

From the form of equations (18.1) it is seen that these codrdinates
are valid only for a domain about P, such that no two geodesics
through P, meet again in the domain, and from (18.3) it follows
that this domain is that for which the series (18.2) may be inverted
into (18.3).

If we write the fundamental form in the g’s thus

(18.4) $ = g, dy* dy/,

* 1854, 1, p. 261.
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and indicate by { 2klf and [iJ, k] the Christoffel symbols formed
J . D
with respect to (18.4), the equations of the geodesics are

A2 G dy Ay
(18.5) Xﬁéﬂ—{ | 2y 0.

Since the expression (18.1) must satisfy these equations, we have

(18.6) J.J.Zk‘[. £ gk = 0.

and on multiplication by s*

2‘ J g —
,7'kfyy !

(18.7) Jl

which equations hold throughout the domain. Conversely, if these
conditions are satisfied, equations (18.5) are satisfied by (18.1) and
the 3's are Riemannian codrdinates. .

By applying to (18.5) considerations similar to those applied to
(17.8) we obtain similarly to (17.16)

e

ey

7 S zs___l_’_z_}
y = 2 \agfo

Since this must reduce to (18.1) for arbitrary values of & it follows
that

(18.8) i ,9}'0:" 0.

Since the funetions I' defined by equations analogous to (17.14)
and (17.15) are symmetric, we have also

(18.9) (féﬂ}’)() - O’ e o» ' (f;ﬂ . '/.nu’)O ey 0.
From (7.3) and (7.4) it follows that equations (18.8) are equivalent to

20
(18.10) (_a.%)oz 0

G, k=1,---,n).

18. Riemanniap, normal and geodesic cotrdinates

ot
[5}

Hence:

At the origin of Riemannian codrdinates the first derivatives of
the components of the fundamental tensor in these cobrdinates are zero.

It follows also from (18.8) and the general formula for covariant
differentiation that at the origin of Riemannian codrdinates first
covariant derivatives reduce to ordinary derivatives. Evidently
(18.10) is a special case of this result, since gy = 0.

If another general system of codrdinates z’* are used, we have
a set of equations (17.16) in the primed quantities from which we
obtain another set of Riemannian coo¢rdinates y’i by equations
analogous to (18.3), and the equations of the geodesics in this
codrdinate system are

Since

. ri ,‘,i . ,Ii J s eer
(]

ds ozl ds

where the «’s are constants, we have:

When the coordinates x* of a space are subjected to an arbitrary
analytic transformation, the Riemannian codrdinales determined by
the x’s and a point undergo a linear transformation with constant
coefficients. .

1
o/
is evident that conversely when a linear transformation of the
Riemannian coodrdinates is given, corresponding analytic trans-
formations of the »'s exist but are not uniquely defined.

At the point F, the coefficients g; in (18.4) are constants.
From § 9 it follows that real linear transformations of the y’s
with constant coefficients can be found for which (18.4) reduces
to a form at P, involving only squares of the differentials and
the signs of these terms depend upon the signature of the differ-
ential form. These particular Riemannian codrdinates have been
called normal coirdinates by Birkhoff.*

The transformation defined by (18.2) belongs to the class of
transformations of the type

#1923, 2, p. 124.

Since the a’s in (18.11) are the values of

at the point, it

See
App.8
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(1812) & = o+ o’ + = dpa®a’? + o g a7

where the ¢’s are symmetric in the subscripts. From (18.12) we
have at P, of cotrdinates x5 and 2’* = 0 in the respective systems

ot i 9%t ) iy -<3xj) (axk)
—o, (2T ) _ ged = (22 (22,
(6.7;’“)0 “ (E)x’“ax'ﬂ 0 W Ca I ax'%o \ox'Blo

)7
Hence if {]zk} indicates the Christoffel symbols in the 2'’s, we

have from (7.14) /
A A
{jkfo“‘{jk>o*”%h'

Therefore a necessary and sufficient condition that {jzk} =0 is
0

that ¢, = _{jlk}o' Accordingly the equations
; ; ; 1 /41 1 ,
P ol 1 re 8 L re 18 07
x ze+x —5 ]aﬂfox x +3! Capy @ X' F 27+
(18.13) 1

— A DV ST
m! cal...a'.x X + ?

where the ¢’s are arbitrary constants symmetric in the subscripts,*
define a transformation of codrdinates such that

ayb) |
18.14 ( = 0.
( ) ax’ o

The z"’s so defined are called geodesic cosrdinates. Hence:
At the origin of a geodesic covrdinate system first covariant

derivatives are ordinary derivatives.
The equations in geodesic coordinates of the geodesic through
l
the origin determined by & = (%S—) are
\ 0

: R S
(18.15) xt = 5’3_§(Fapy)o§ é‘ﬂ &gt —...

* This assumption is no restriction as to generality.
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d

Comparing these expressions with (18.1) we see that Riemanniay
coc‘jrdinates are the geodesic codrdinates for which the I’s vanish
for of = 0.

19. Geodesic form of the linear element. Finite equations
of geodesics. If f(z!,--., z") is any real function such that
MSfF0, the normals to the hypersurface f==0 are not null
vectors (§ 14), and consequently the geodesics determined at each
point of f==0 by the direction of the normal are not curves of
length zero. If we change coordinates taking this hypersurface
for z' = 0, and the geodesics for the curves of parameter o!
and take for the coordinate x! the length of arc of these geodesics7
measured from z' = 0, from (12.5) it follows that in this codrdinate
system
(19.1) Jii = e,

whfere e 1S plus or minus one. From the equations of the geodesics
which result from (17.6) when we take ¢ — s = 41 we have

9g1;
axl _— Ol

For i == 1 by hypothesis g1; = 0 for a' = 0, it follows that gy; — 0

identically. Hence the linear element is
(19.2) ds® = e(edai+ gogda daf) (u,8 =2, ..., ).

We call this the geodesic form of the linear element, As a result
we have the theorem:

If fis any real function of the 2's such that Af + 0 and geodesics
be drawn normal to the hyperswiface f = 0 and on each geodesic
t.he same length be laid off from f = 0, the locus of the end points
s a hypersurface orthogonal to the geodesics.™

These hypersurfaces are said to be geodesically parallel to the
hypersurface f = 0.

Incidentally we have the theorem:

* This is the generalization of a theorem of Gauss for surfaces in euclidean
3-space, ?f' 1909, 1, p. 206. Also, we remark that the first assumption of the
theorem is satisfied, if (12.3) is definite.
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A necessary and sufficient condition that the curves of parameter x'
be geodesic and the codrdinate x' be the arc is 1that gu be constant e
and g,; for ¢ = 2,---,n be independent of x'.

For the quadratic form (19.2) we have

(19.3) Ao’ = e

Conversely, if f is any solution of the differential equation

(19.4) AS = e

where ¢, is plus or minus one, the surfaces f == const. are (_)1'thog0nal
to a congruence of geodesics, and the leng’?h of any geodesic bet}veen
two hypersurfaces /' = ¢, and f = ¢ IS e — 1. In. fact, if we
give f the significance of f* in (14.10) an'd proceed as in §. »14,. we
get the fundamental form (14.13). With respect to this form

the form (14.13)

. 11 ~ 11
equation (19.4) rednces to g’ = ¢;. Since g’ =

duces to (19.2). o
reA complet(e solzltiou of either of the equations (1_9:4), that is, for
e, = 1 or —1, is a function f involving n —1 arpltrary conste.mts
@y, -+, @p—1 in addition to an additive constarllt ¢.* The covariant
components of the normals to the corresponding hypersurfaces

LR
gu

(19.5) f(-171,- St O'nr Ay, = aﬂ—‘l) =

are a—fr, each hypersurface being determined by a value of «

oxt ) ]
Consider now any point 2 and a non-null vector at the pom:c .who:o
covariant components are A;. According as gV 4; 4; 1s positive or
negative, we take the solution of (19.4) for o = 1 or —1. Then

the n equations

of ..

Dot M
determine the a’s and the factor ¢, and equation (19.5) the v.alue
of ¢ so that one of the hypersurfaces (19.5) shall have the given

direction 2; for its normal at P.

* Goursat, 1891, 1, p. 98.
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i If we imagine the expression (19.5) substituted in (19.4) and
I differentiate with respect to a;, we obtain

of
Al(f’ Bai) =0
| Consequently the hypersurfaces
] of _
] (19.6) b bs,

| where the b’s are constants, are orthogonal to the hypersurfaces (19.5)
and meet in the geodesics orthogonal to the latter hypersurfaces.
i Since we have shown that one of the hypersurfaces (19.5) can be
{ chosen so that a given direction at a point is normal to it, we
} have the theorem:

When a complete solution (19.5) of (19.4) is known, equations (19.6)

Jor arbitrary values of the Vs are the equations of the mon-minimal
£ geodesics, and the arc of the geodesics is given by the value of f.*

Exercises.
1. If the coordinates at points of a geodesic are expressed in terms of s fet. (17.8)]

:“ and ¢ is any function of the «'s, then

g dz"t dx™ dx’m
o, )
R N PR ds

7Eﬂl
Levy, 1925, 1.
2. If for every point in space and for a special coordinate system associated

¥ with each point a tensor, equation is satisfied, the tensor equation holds throughout
k the space for any coordinate system.

3. Show that at the origin of a system of geodesic codrdinates defined by (18.13)

any component of a tensor in the x's is equal to the component with the same
j indices in the x'’s; in particular this applies to the fundamental tensor.

4. If x* are geodesic coérdinates with a point P for origin, and they are sub-

jected to the transformation

i ’ 1 i )’
2 = m’—{——ﬁ—caﬂy.r'aw’ﬂac’,

i where the ¢’s are constants symmetric in e, g and 7, the x''s are geodesic with P
f for origin and at P

o7 el 3 st =
dx? \eBl  gar \epf = Cepy

*This is the generalization of a theorem in the theory of surfaces. Of. 1909, 1,

> D. 217; also Bianchi, 1902, 1, p. 338.
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5. If in the transformations of Ex. 4

o == [ bl * e {od s el |

then at P in the o’'s

0 il 0 i\ 0 i }’:
ox'? {“ﬂ} + o' {F}?’} + dx'B {7“ 0

There are L ni(n—+1) (n+2) of these eqnations. Show also that for a V, the
second derivatives of g, at P are uniquely determined by these equations and (8.3)
as linear fnnctions of R'. Eddington, 1928, 1, p. 79.

6. Show, with the aid of Exs. 3 and 5, that for a V, the components of any
tensor involving only g, and their first and second derivatives are functions
of g, and Ry, Eddington, 1923, 1, p. 79

7. Show that for a V, the only covariant symmetric tensor of the second order,
whose components are linear in the second derivatives of g, and involve also g

and their first derivatives, are of the form
R,+g; (aR-+D),

where a and b are invariants.
8. For the generalized Liouville form of the fundamental form, namely

X, 4 X,+ -+ X) ;‘ e, (da?’,
where X, is a function of o alome, a complete integral of 40 =11Is
6=t [ ZVeXia)ds,

where ¢ and the a's are constants, the latter being snbject to the condition
a4t a, = 0. Bianchi, 1902, 1, p.338.

20. Curvature of a curve. Given any non-minimal curve in a Va
which is not a geodesic and let the codrdinates be expressed in

terms of its arc. If we write

a2 ot { i | dod doF
i ikl Tds ds

(20.1) =

it is evident from the form (17.11) of the left-hand member of this
equation that w? are the contravariant components of a vector.
Moreover, in consequence of (17.10) we have

Cda)
(20.2) guw - =0,
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that is., the. vectorn p* is orthogonal to the curve at each point
An invariant ¢ is defined by the equation .

1 —
(20.3) i Vigi wui].
At the origin of Riemannian coordinates equations (20.1) are

(20.4) ﬂ — i
st~

Thus 1/ is th'e generalization of the first curvature in euclidean
3-space and p'e of the direction-cosines of the principal normal
of the curve. Accordingly we call ¢, defined by (20.3), the radsus
of 'ﬁrst curvature of the curve and the vector of compo’nents ¢ fh(
principal normal. We have at once: e
. When the first curvature of a curve is zero at all its points, either
@t s a geodesic and ils principal normal is indeterminate ;r it is
a curve fur which the principal normal is a null vector.® (

By means of (20.4) th i .
in the form ( ) the equations of the curve are expressible

) daxt
(20.5) = (“a%)os—}- »;—(,ui)o‘s “+ ..

The eql.latio.ns of the geodesic through the origin which has the
same direction as the given curve at the point are

e
ds OS.

fen:}tla the distance d between points of the curve and the geodesic
or the same value of s, to within terms of the thi i
onder, is given by \ e third and higher

(206) d = Vgyo—a) @) =+ Viggw o] = +
2

§
?
¢

| as in the case of euclidean 3-space.t

* When the fundamental form is defini
nite, th ibili .
+CE. 1909, 1, p. 18. » the second possibility does not arise.
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In consequence of the remark following (17.11) it follows that
when a curve is minimal but not a geodesic, the preceding develop-
ments apply with the understanding that s in (20.6) is the para-
meter in terms of which the equations of the minimal geodesics
tangent to the curve are expressible in the form (17 .8).

We have from (20.6):

A necessary and sufficient condition that a curve and its tangent
geodesic at a point have contact of the second or ligher order 78
that the curvature be zero.

In terms of Riemannian codrdinates with a given point as origin,
the surface comsisting of the geodesics through the origin in the
pencil of directions determined by the tangent and the principal
normal of a curve at the origin is given by the equations

— d i | 3
5 [a (42 o (mo]s,

1
where @ and b are parameters. If we take a = 1, b= —==s, we

have from (20.5) that the curve 80 determined coincides with
the curve to within terms of the third and higher orders. Hence:

The surface formed by the geodesics through a point of a curve
in the pencil of directions determined by the tangent and principal
normal to the curve at the point osculates the curve.

We call this surface the osculating geodesic swface of the curve.
It is an evident generalization of the osculating plane of a curve
in euclidean 3-space.

If in the right-hand members of equations (20.1) the functions ul
are arbitrary, we have a system of differential equations admitting
a solution for each point determined by a direction at the point,
as in the case of equations (17.8).

21. Parallelism. In this section we define parallelism of vectors.
As the basis of this definition we take a property of parallelism
in the euclidean plane, namely that all vectors parallel to one
another make the same angle with a straight line, that is, with
a geodesic. .

Consider now any V. and in it a non-minimal geodesic C at
points of which the codrdinates xi(; =1, 2) are expressed in terms
of the arcs, let A (x) be the components of unit vectors at points
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of C and not tangent to C. The cosine of the angle between the
vector at a point and the tangent to C at the point is gy 4 da’

The condition that this angle be constant along C is ds
dak .. dx dat dxt daxl
ahadiy DS Y Shatadil — g —— | 23 ; (4
ds (9114 ds ),k = Gij ds [)-z,k ds +”( ds > k] = 0,

which reduces in consequence of (17.11) to

dxd .. dak

i~ ge Ak 2 = 0.

Since ¢ are the components of a unit vector, we have ;4 =¢
from which it follows that ’

oo dak
. )',] Ty ——
gu l,k ds 0.
l RO T
By hypothesis ¢ = |g;/4+0 and | da’ da2® |4 0. Consequently
| ds ds

from the preceding equations we have

(21.1) PO (“i

oo = |5
ds dak

5 Ic

5 ] l) dx _
+ 1!/ ds 0.

For the euclidean plane, and indeed for a euclidean space of -
any order, referred to cartesian coordinates the condition that a
vector-field be a parallel field is that 7¢ be constants. In this
case the expression in parenthesis in (21.1) vanishes, since the

Chn’stoffe:l.symbols are zero; consequently in any coordinate system
the condition for parallelism is

(21.2) 1 :3_)1 l{’l__
o, 6.’L‘"+;' kl(h_o'
From (11.17) we have
Bjp— Ny = — i Ry,

and consequently the condition of integrability of (21.2) is

(21.3) 2 Ry = 0.
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When the fundamental form of a space is such that a coordinate
system can be chosen in terms of which the coefficients gj are
constant and only then, the components Rij of the Riemann tensor
vanish (§ 10). In this case equations (21.3) are satisfied identically,
and consequently equations (21.2) are completely integrable; that
is, a solution of (21.2) is determined by arbitrary initial values
of the A’s. In this case we have a field of vectors parallel to
an arbitrary vector. If equations (21.2) and (21.3) are consistent,
we will have one or more fields of parallel vectors; this question
will be considered in § 23. However, in a space with a general
fundamental form this is not possible. Consequently we introduce
the idea of vectors parallel at points of a curve, and take (21.1)
as the definition of parallelism along any curve, mot necessarily
geodesic, with respect to the metric of the space, whatever be the
order of the space. Thus if we take a curve C defined analytically
by the 2's as functions of s, equations (21.1) admit a solution
determined by an arbitrary direction at an initial point of the
curve. Not only the curve but also the metric of the space are
involved in these equations, and consequently we speak of such
a solution as defining a set of vectors parallel along the curve
with respect to the metric of the space, or for brevity with respect
to V. This is the parallelism of Levi-Civita,* who first proposed
this definition, but from another point of view (cf. § 24).

As a first consequence of this definition, we have that, if in (21.1)

i
we put Af = %a;_’ we get the equation (17.8) of the geodesics. Hence:

Geodesics are characterized by the property that the tangents are
parallel with respect to the curve.

This is an evident generalization of the property of constancy
of direction of a straight line in euclidean space.

Again if At and Ay¢ are two sets of solutions of (21.1) we
have that gy Aifde is constant along the curve. Hence:

At every point of a curve the two directions parallel with respect
to the curve to two directions at a given point P of the curve make
a constant angle.

In particular, when the curve is a geodesic and its tangents are

*1917, 1; cf. also, Severi, 1917, 2, p. 280.
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one set of directions we have the i
. property in a V; i
as 1the b.as1s for the definition of parallelism.* » bl served
Equations (21.1) are equivalent to

(21_4) d_x"(% ) {Z
Y935 \oaF +# kl}> =0

since by hypothesis the determi
inant g of the g;'s is diffe
zero, and consequently the covariant componen%s sa’cisfyrent from

(21.5) 4 k@—k— =0
™ ds

22. Parallel displacement and the Riemann tensor. F
a general parameter f equation (21.1) becomes o

(22.1) x| ) ildet
ar T lkz}ﬁ = 0.

f:;st:asd tof Epeakiillg of the solution determined by an initial direction

a set of parallel vectors, we may speal

rom » e mector & , ay speak of the vectors arising

. y parallel displacement al
particular, it is interestin, i e din
g to consider the effect of i

pla:l‘fe;“ ent of a vector about a small closed circuit.+ peralel @i

- ath(i3 ird ;ur'face. defined by a* = f(u, v), where the functions f*

and ' envatlves. up to the third exist and are continuous at P,

o —(lionsmer the circuit consisting of P(u, v), Q (u-Au v)’
w+Au, v—{—Av),.S(u, v+A4v) and P. If a vector A’ be tr;m :

ported parallel to itself about this circuit, we have )

(AN = (Hp+ (%)P41¢+ -;— (%)P(Au)s-}- -

tn = o+ (%) g0t (%4
g Av+ o % 2
o2 T 3 dv”)q(Av) T
* Levi-Civita, 1917, 1, p. 184.
+This question was considered by Schouten, 1918, 1, p. 64 and by Péré
. 3,

1 1 H nera, 8¢ of an afﬁne onnection by ” ey,
9 9, 1 it was Consldeled fOI the gener: l ca f con! 1 l

1921, 1, p. 106; see also Dien
] , . ; es, 1922, 2 H
in the text is similar to that ‘;f Syn’ge,. e Synge, 1925, 55 the method bollowed
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66
@) — @ (%) Aut 5 L(%5) ot
= @s— () a0+ 5 () a0+

/ms not written are of the third and higher orders,

ax dgli) : iven by (22.1)
and the quantities such as (—d—v—) , ( e are given by (

and the equations resulting from the differentiation of this equation.
If all of the above equations be added, we have

AR)p= (Z’)P—‘(”)P—Au[((jlf:) (%) ]“”[(%)Q“(% )d
(22.2) o T
L caur(25) 458 ]+ F o5 G

gin, so that

where the te

If we assume that the xz’s are geodesic with P as ori

il 0, we have from (22.1), in which the Christoffel symbols

kS
are ;aluated by means of their exp

. rd A ) { }me 3xJ )A +,
(%)pzo’ k—d;)q (me Gk} Bu 81;

ary o [i\oxm o0l ).’“) Au
( R \oa™ \ﬂcf du ou /e
0

ansions about P,

|

(i s
ox™ ka ov ou P
any (@ {z”\axm axll,) Aot
( vls 9™ 7kf dv  ov P
2 %4 d2li ? Jz}axm _B_%‘J_/_k) o
((fll:g)P+(du2)R:—2(3.%""’\./76 ou ou lp
210 PERL _@_Ii\?_xﬁyilk) T
(‘ilv/;)q_{—(dv“’)s:——Q(axm ‘ka Jv v P

When these expressions are substituted in (22.2), we obtain

5 (il 8 | @ gﬁaxmlk]AA+...
A@)p = [(W{;kf—ﬁlmk}) du 0v P uav
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Since the left-hand member is a contravariant vector in V,, and
ol  oam .
—% _;%7 A* are the components of contravariant vectors, it

follows that in a general codrdinate system this equation is

o x) dxm

(22.3) A(Dp = (Rikw . l")PAuAU—{—- .

From the considerations of § 21 it follows that A (2)p =0 when
Riypmj == 0. When this condition is not satisfied, it follows from (22.3)
that when a general vector is displaced around an infinitesimal eircuit
the difference between its final and original direction is of the second
order and depends upon the value of the components Rixn at
the starting point and upon the circuit. An exception to this case
is treated in the mnext section.

23. Fields of parallel vectors. From (21.1) it follows that
when a set of functions 1° satisfy the equations

; At
(23.1) X = -

+ll{lfz}: 0,

any two vectors of the vector-field are parallel with respect to
any curve joining points of these vectors.* The conditions of
integrability of these equations are (21.3), that is

(23.2) 2 Rige = 0.

Unless A%y = 0, which is assumed not to be the case, the com-
ponents of such vector-fields must satisfy (23.2) as well as (23.1).
Differentiating (23.2) covariantly with respect to 2™ and expressing
the condition that (23.1) is satisfied, we get

(23.3) A Riyjgm, = 0.

Continuing this process, we get a sequence of necessary conditions
At Reyjie o m, =0,

(23.4) S

A Riyjimmy-..m, = 0,

* in the region of V. in which (28.1) apply.
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If the equations (23.2), (23.3), (23.4) are algebraically inconsistent,
there is no field of parallel vectors. To be consistent it is necessary
that equations (23.2) and the first ¢(= 0) sets of equations (23.3)
and (23.4) admit acomplete ystem of psetsof linearly independent solutions
Ay, -y Aplt, for p <S1,i=1,.-n, ib terms of which all other
solutions are linearly expressible, such that these p sets of solutions
satisfy also the (g-+ 1)th set of equations (23.4). Thus any set of
solutions A* is given by
(23.5) o= g0 Ayt 9P

where the ¢’s are functions of the a’s, which we seek to deter-

mine so that 4% is a set of solutions of (23.1).

In the first place we remark that if 1s* is any one of the p
sets of solutions and we substitute it in (23.2) and the
first g sets of (23.3) and (23.4), and differentiate these equations
covariantly, then since lg|* satisfies the (g 1)th set also it follows
that Aem IS @ solution of (23.2) and the first ¢ sets of (23.3) and

(23.4). Consequently it is expressible in the form
(23-6) lali,m = .“f,lfm llli"l_ St .“J?T)m lp|i;

where the p? covariant vectors pe (@, 0 = 1,0, pym =1, n)
are to be determined; here « and ¢ indicate the vector and m the
component. They are determined by the condition that (§ 11)

Aot mi— holtim = Aet) Rim = 0,

in consequence of (23.2). Substituting from (23.6) in this equation
and making use of (23.6) in the reduction, we obtain

[0, ) (i r D) 255 = 0 (e =1 D)

alm,t Pall,m

Since the rank of the matrix || Agit]l is p, these equations are equi-
valent to the system

o1, o u) @B 6=1,D;
e ( (@) B} = p;
@3.1) 9o o™ +(M:1>m”('ﬁ)l ”‘?ll”f!ln) 0( ’l,’m = 17,...’n )

* In this eqnation « and g are snmmed from 1 to p; the same is true of a
repeated index of this sort in the followin equations.
g
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(2;Z;1e:en(;\grt we 1_'equire that 2* as given by (23.5) shall satisfy
. v ain, in consequence of (23.6), si ‘N
(23.6), since the rank of [N} is p,

(23.8) i
o T 9l =o.

B : i

: j((i:a:sis ;)éuiiﬁoti;) tt}llns sylstte:m of equations is completely integrable, Se¢

_ e solution involves p arbitrar , APP-7
VIE;N of the above results we have the theorem: y constants. n

| f the system of. equations (23.2), (23.3), (23.4) s algebraicall

; onis*.zst.ent, ﬂ?ere exists ome or more fields of parallel vectors; mo '
agzle;;{tically, if (23.2) anpo%‘“fhe Jirst ¢ (> 0) sets of (23.3) anoi (23 Z;

o oif ;;L complete .system,‘ of solutions which also satisfy the (q-}—l).th

ese equations, there exist fields of parallel vectors de ;

on p arbitrary constants. pending
trqumcseeteqlfla_tlt.)lfs (23.8) admit a solution determined by an arbi-
ﬂ;eob;e 0 1n1t.1a1 values, we see that when the conditions of the
. fOldmbarglsat&sﬁed, any vector at any point P in space in the

- undle determined by the p vector 2

. S ). ) g
vector in the bundle at any other ]I;oint.* of 1 parelel fore
Ve:tVe h:'lve.Just' ob.tained the conditions for fields of parallel
: ldors in invariantive form. Now we shall show llovs"such
nztez m%y. t;e obtained b_y making a suitable choice of codrdi-
nate ;)ne tsmbfthe.precedmg notation and indicating by A’} the See
ponents of p independent fields in coordinates ' i, We‘7 have “PP-8

3

(23.9) 2 li = Aoy dx

dad’

Consi y i
sider the system of p linear partial differential equations

(23.10) Xo(8) = Ao 20 —
20 d| axj”*()’ (6=1,...,p;5=1,--,n),

wher . .
ere X,(0) is an abbreviation. If X X,;(6) has the significance
X, X,(6) = z,lki(z,,|ff’-i)
€ ?

* This i
problem for a single field of parallel vectors was treated by Levi-

Civita, 1917, 1, . .
g p. 194; cf. Eisenh
1923, 4, pp. 589-591. senhart, 1922, 3, p. 209; also Veblen and Thomas,
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the operator ~
(X., X5)0 = X, X;(0)— X;X.(6)

is called the Poisson operator. A fundamental theorem of systems
of linear partial differential equations is: A necessary and sufficient
condition that a system (23.10) be completely integrable, that is,
that it admit n—p independent solutions, is that (X,, X;) be linearly
expressible in terms of the X’s.®

When now we apply this general theory to the case where 4,°
satisfy (23.1), we find that (X4, Xp) 6=0 and consequently equations
(23.10) admit n—p independent solutions. If we take them for
the codrdinates 2?7, ..., 2", it follows from (23.9) that A =0
for t = p+1, ---, n. Again if we omit one of the equations
from (23.10), say X,(6) = O, the remaining system is complete
and admits in addition to #®™*, ..., ™ another independent

% solution 2’". In this way the z’’s are defined so that all of the

components of the 4's are zero except those with the same subscript
and superscript. If it is assumed that these vectors are unit
vectors, we have accordingly in the new coordinate system

T/iﬂ, Ast=0 (0-:1,..-,p;t:l,---,%;i*d)-

€eJoo

(23.11) 4¢° =

If these expressions are substituted in (23.1), we get
T

g log Vq_aa—

| @

|
el = O
JJ}__.O ( o =1, P; )
\ ko G k=1 .-, m;jFal’
where Jl kdo'l( is not summed for o, but consists of a single term.

If we multiply the first of these equations by ge: and subtract
from it the second multiplied by g¢j; and summed for j, we get
the equivalent set of equations

3 .
gor 5 log ngr —[ke, 1] = 0,

* Qoursat, 1891, 1, p. 52.

23. Fields of parallel vectors 11
that is,

93.12 _ 09w _ 0ga1 | B
(23.12) 9ot 5w 108 gor — 20 — 205 + i = 0-

For the case & = o, these equations reduce to

) — Y
TV T

In accordance with these equations we define p functions ¥s by

Veoyo'o' == é€g 8170: s Joi - 0¥s
ox Veo'go‘o' axl !
from which have
23.13 — g2 Ve Y
( ) et Ce 32° ot (0':1,-”,1.);[:1,---,’)2).

Fron} these expressions it follows that ¥s must involve ¢
otherw.lse. the space is of less than # dimensions. 7
Again if neither & nor  in (28.12) is o, we have

(23.14) gy = eg 200 OVs

0‘:1....7 ,k e e
O p axz+9’kza( ’ Pikhl=1, n,)‘

k¥o, lto

where gi; is a function independent of x°.

From (23.13) and 23.14) it follows th
) at for each
fundamental form can be written ch value of o the

¢ = es (AYPs)* -+ gps da” da® (rns=1,---,n;7r ¥ 0,5 ¥ 0)

where g,s are independent of x°.
[ j ;
_ Itf the;g we put 2" = s, ¥ = 2/ (j + o), the curves of para-
eter o are the same as those of parameter z% and these curves
are geodesics (cf. § 19). Hence we have:
When a Vn admits p independent fields of parallel unit veclors,
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Conversely, if the fundamental form of a space is reducible to
the form

(23.15) o = e (dx")? -+ grs A" dX® (r, s =2, -, M),

it is found from (23.12) that a necessary and sufficient condition
that the tangents to the curves of parameter x* form a parallel
field is that grs be independent of 2%, In this case all the spaces
2! = const. have the same fundamental form and consequently any
one of them can be brought into coincidence with any other by a
translation, that is, by a motion in which each point describes the
same distance along the geodesic mormal to the sub-space. In
the case p > 1 the space admits p independent translations; thus
any one of the subspaces of each of the family of subspaces
s = const. can be brought into coincidence with any other of the
family by a translation.

If, in particular, we take Yo =2 Fgg (Pt ..., 2 foro=1,.--,p,
it follows from (23.13) and (23.14) that for a V, with the funda-
mental form

¢ = e (a4 - +ep (daP)*+ gop d2° dof  (e,8=p+1,---n),

where gep are arbitrary functions of z?¥!,..., 2 the tangents
to curves of parameters ', 2%, ---, 2? form fields of parallel vectors.”

24. Associate directions. Parallelism in a sub-space.
Let C be any non-minimal curve in a V, at points of which the
cobrdinates ¢ are expressed in terms of the arc,t and let 4° be
the components of a unit or null vector-field; in either case we have

(24.1) : LAy = 0.
If we put

fo
(24.2) '“dde I

it is seen from (21.1) that p’ = 0, if the vectors at points of C
are parallel with respect to the curve; otherwise, as follows from

* Cf. Eisenhart, 1925, 8, for the complete solution of the problem.

+If the curve is minimal, we take for s the parameter in terms of which
the equations of the tangent geodesics are of the form (17.8); note the remark
following equation (17.11).
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the form of the left-hand member of (24.2), the functions p? are
the contravariant components of a vector, which Bianchi* has
called the associate direction for the vector A’ along the curve
From (24.1) and (24.2) we have -

(24.3) Aipt= 0,
and consequently :

If a set of vectors at poinis of a curve are not parallel with
respect tz? the curve, there is determined at each point of the curve
an ass?czate direction and it is orthogonal to the given vector at
the point.

The invariant 1/r defined by

1 o
(24.4) = Viigy wt w]

we call, with Bianchi, the associate curvature of the vector A with
respect to the curve. When, in particular, the vectors A¢ are
tangent to the curve, equations (24.2) and (24.4) reduce to (20.1)
and (20.3), and consequently the associate direction and curvatlire
are the. principal normal and first curvature of the curve. |

Consider the space V, as immersed in a space V,, of coordinates ¢~
the equations of V, being (16.2).7 Let & be the components il;

the ¢'s of the vector-field whose components i :
. g nts in the «’ 4
is [ef. (16.8)], P e 2's are 4%, that

(24.5) @ g0y
o’

Differentiating these equations with respect to s, we have

A& AdM ayf a%yf  da

(24.6) _
ds ds 8xj+ ozl ot ds

It nf‘ depote the components of the associate direction of % in V,,
'(whlch 18 not necessarily the same as the associate direction of A¢
in V,), we have analogously to (24.2)

* 1922, 4, p. 161,

T Throughout t.he remainder of this section Greek indices take the values
1,...,m and Latin 1, ..., n, unless stated otherwise.
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(24.7) 7 = il{ (Z%i +& {f y}a), |

where the Christoffel symbols Jlaﬂ y

fundamental tensor a,g of V,,. Because of (24.5) and (24.6) this
may be written

} are formed with respect to the
a

ar ayf .
@48) 7 = - Y Ly

o’ %(iyl {ﬂl 3y"_3__g_7:)_

dat ot ayla 02 )

If we denote by [¢7, k]; the Christoffel symbols of the first kind forn}ed
with respect to (12.3), we have from (16.3) by direct calculation

é 2,8 ¢y
g 0y’ (_0%y Jﬂ} oy Wy)
(24.9) 7, Mg == a5z (m et yfa 208 Bal)"

310
When (24.8) is multiplied by %6# and summed for 8, the
resulting equation is reducible by means of (16.3) and (24.9) to

s ; ,
9y ar cdat ..
“ﬂdﬁﬁﬂ = ’qjk%_+lJ a5 87, Kl

dx) [dA Ji )
= ggp—— |—5 F A ).
gi ds (3901 ll]}g

(24.10)

If the vectors &% are parallel with respect to the curve in Vi,
then f = 0, and from (24.10) and (21.4) we have that the vectors
are parallel in V,,. Hence:

If a cwrve C lies in a V,, which is immersed in a Vi and vectqrs
are parallel along C with respect to Vi, they are parallel with
respect to Vi. .

As previously remarked (§ 16), if the fundamental form of V, is
definite, it is possible to find a euclidean Vi, enveloping it and the
requirement that vectors in Vj, be parallel with respect to Vy, leads
to parallelism with respect to V,,. This was the point of departure
for Levi-Civita’s definition of parallelism in any space.*

*1917, 1.

24. Associate directions, Parallelism in a sub-space s}

As a consequence of the above theorem and the first theorem
of § 21 we have:

If a curve is a geodesic of a space, it is a geodesic of any sub-
space in which it lies.

If vectors along a curve are parallel with respect to V, but
not with respect to V,, we have from (24.10)

oy~
(24.11) “uﬂm’iﬂ =0,

that is, the associate vector is normal to V,, and conversely. Hence:

A mecessary and sufficient condition that vectors along a curve
n Vau be parallel with respect to Vn, when they are mot parallel
with respect to an enveloping space Vm, is that the vectors in Vi
associate to these vectors be mormal to Vo .,

When a geodesic in a space Va is not a geodesic in an enveloping
space Va, its principal normals as a curve in Vo are normal to Vi *

Consider two spaces Vn and V. immersed in a V,, such that at
each point of a curve C every normal to one is normal to the
other; in this case the spaces V. and V,, are said to be tangent to
one another along C. From the next to the last theorem we have:

If two spaces V,, and Vi in a Vy, are tangent along a curve C,
vectors parallel to one another along C with respect to V, are parallel
with respect to V), and vice-versa.

Two spaces V, and V, for ¢ <<n in a V,, are said to be tangent
along a curve C, if every normal to V, at each point of C is normal
to V,. Hence:

If in a Vi two spaces Vo and V, for g<<n are tangent along
a curve C, vectors parallel to one another along C with respect to V,
are parallel with respect to V.

Two subspaces Vi and V. immersed in a Vi, are said to be
applicable, if there exists a transformation of the cosrdinates z°
and # of these spaces such that the fundamental forms are
transformable into one another. Since the equations of parallelism
involve only the components of the fundamental tensor and their

§ first derivatives, we have:

*This a generalization of a characteristic property of geodesics on a surface
in euclidean space, 1909, 1, p. 204; cf. Bianchi, 1922, 4.
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If two spaces Va and Vi in a Vi are applicable, to rvectors parallel
along a curve with respect to Va there correspond vectors parallel
along the corresponding curve in Va.

As a simple example of several of these theorems, We consider
a sphere in euclidean space and a circular cone tangent to the
sphere along a small circle C. H we have a set of vectors paraliel
along C with respect to the sphere, they are parallel with respect
to the cone, and when the cone is rolled out upon & plane the
vectors are parallel in the euclidean sense.

We consider the converse problem: Given a curve C and at
each point of it a vector wi, to find all sets of vectors 4¢ such
that the vectors g/ are associate to 4. We denote by Agt
g=1,---. n—1) the components of n— 1 unit vectors orthogonal

to pi. 'Then A if they exist, are given by

o= Ay R At Lt g = 19 At

24.12
( ) ((7:1,"-,72—1),
in accordance with the first theorem of this section. Substituting
in (24.2), we have ,

. At .
(24-13) [lzz - lg\t —E’S— + td ‘lllﬂlt,

where e’ are the components of the associate vector of Aq’
Multiplying (24.13) by 4., and summing for 7, we have

at’ G, 0
(24-14) “‘ro‘_gsé—l—t e lﬂi = 0,
where :
(24.15) Qe = i At e, (6,7 =1, n—1).

We assume that the £s in (24.12) are chosen SO that A¢ are the

components of 2 unit vector,

we have
(24.16) O FF =cor0

We consider first the case when p
which case the »—1 vectors Agt can
gonal (§ 13). Then

if it is not a null vector. Hence
(@, 6 =1,---,n—1)

¢ is not a null vector, in
be chosen mutually ortho-

24. Associate directions. Parallelisin in a sub-space

-]
-]

(24.17) s = €4, o == 0 (6 7),

and equations (24.14) become
d T
(24.18) 72— e tb, = 0,

where bg, = pg* 4y, Diff iati 4
i erentiating 44, = 0 (64 7) with
fespect to s anfi apply'mg (24.2), we have b(,:—l— be=0. In coﬁ-
:ﬁguzncgj t(.)f this r(:,rlaztlon any set of solutions of (24.18) satisty
» condition ;:eg(t )? == const.; consequently if (24.16) and (24.17)

are satisfied by the %nitial values, they are satisfied for all values

of 8 Hence equations (24.18) admit oo” 2 sets of solutions

satxs.fymg (24.16), where «.; are given by (24.17). Hence:
Given a set of non-null vectors along a curve C, there exist ™2

sets o:ftvectors] A along C with respect to which the given vectors are

associate; each set is determined by choosin 2

et of 1y ng the components A' at
When g* are the components of a null vector, we have

24.19 i ;
( ) w ——c‘rlo—!l (o‘:: 1,...,12.—.1)7

in accordance with the considerations at the close of § 13. More-

over, we have
24.2 = ¢ & '
( 0) Al‘/o‘iz = Q,;gz—l’cfg " (6,7 = 1., n—1),

:;;here & are the components of a vector linearly independent of
the n—1 vectors .lo‘|1’. Since the = vectors & and 4y are all
independent, equations (24.13) are equivalent to

dte

" (2421) j— co‘_co‘f tf,

ds
ﬁ@o‘ == 0.

1 by e e have, in consequence of equations of the form (24.2),

o dak
2T (g ; dc® , .
Wy = @ egt o d) + e Aof

* . .
Cf. Bianchi, 1922, 4, p. 166, where this theorem is established for spaces

4 with a definite fundamental form.



78 L. Introduction of a metric
1

. . w40
Multiplying by p: and summing for ¢, we have, since wiF0,

(24.22) oo = 0.

i first
Differentiating the second of (24.21) and making use of the fir

in to(% - ding in like
and of (24.22), we obtain ¢ ( dQ; — g,> = 0. Proceeding

manner with this equation, we find

a
2 d dc > A«r(__g_‘r__ T > = 0
ta(ddgf—-?c’a dt’; d: 0+ e r ) T O\ gy T Cale

$

inati tors A
i it 1 t the determination of vec
this process it 1s seen thg. . |
fro?vhich a? given null vector ¢ is the associate depends upogtg;e;
(;: racter of the latter, that is, whether sqoner f)r later we © i
cnd equation by this process which is satisfied in consequenc
an e
i > $SOTS. . . .
ltsvsz‘e(iwfr(i:li not proceed further with this general case, but will
ish the theorem: .
eSt;}) h;hset of null vectors are parallel with respect 1to a mrz;iog,
. o :
they are the assoctates with respect to this curve of sets of ve

o dat o 0, any set of solutions of the equatiqns
In fact, if go 1ok )

Lalp

Q= W
ds "

tions
iti A = st. Hence any set of solu

atisfy the condition Wi const. ) tions
j\?l?osfz initial values are such that wi4; =0 satisfy the condi

of the theorem.™

Exercises.
¢ i da’ i the associate tensor a; is skew-
1. When in (20.1) ¥ = @ TR either

dxi dx' _  is a first integral of (20.1)-
symmetric, or a, wra T 01is

1 he existence ()f SO utions A 01 t v blem 0 h
he abo (] equatlons 18 t)he prO
C! 1 f the
tions y i ry T dlﬁelen tlal eqﬂatlons Of
GXIStence ()f Solﬂ 10 ()f a system Of Oldlna 11nea

the first order (cf. § 21).

Y 5
#
Y

8
i
A

k.
]
r;?

g
Y
i

E X
i
4
4

b
;

a point P determine a pencil of directions defined by

(25.1)

25. Curvature of V. at a point 79
2. Let P, P, P, be the vertices of a geodesic triangle in a V, and Pir Pos Py
the interior angles of the triangle at these respective points; show that when the

tangent vector at P, to the geodesic P, P, is transported parallel to itself around
the triangle in the direction P P, P, it makes the angle =@, — P, — P, With
its original direction at P Levi-C’im;i%,_ mlhﬁl).gi")‘, 4, p. 224

3. Anecessary and sufficient condition that the tangents to the curves x? = const.

on a V, be parallel with respect to a curve C is that ¢ be an integral curve of

{121 }dm‘ = G =12).

Bianchi, 1922, 4, p. 167.

4. When the coordinates of a V, are chosen so that the fundamental form is
e (dxYh*+2 9,, dx' da? e, (dx?)?, and only in this case, the tangents to the para-
metric curves of either family are parallel with respect to the curves of the other

family. Bianchi, 1922, 4, p. 170.
5. When the fundamental form of the surface considered in § 22 is definite at
the point P, equations (22.3) can be written

4%

A p— 7 k
(A1), = (B, * sin@

Ejiktm
Péll s2[

+...,

where 42 is the area enclosed by the circuit, 8 is the angle between the para-

metric curves at P and & [ and &, are the components in V,, of the tangents to
these curves at P.

6. If p, are the components of any vector field and £, 4 = cose, the change

in ¢ at a point P when the vector A is transported around a small circuit as
in § 22 is given by (cf. Ex. 5)

. .. 4r

o)y = — (B 1, 5/ &, * Sin@sma -
Pérés, 1919, 1, p. 427

7. When in egnations (28.18) and (28.14) for ¢ = 1,2

1’Dl:=elf’l—}—af".l-‘l_‘[‘ll’ ¢2=€2f2+af1+A2,

where f, and f, are independent of a? and ! respectively, a is an arbitrary con-
stant and A4, and 4, are arbitrary functions of a?, - - *, «", the tangents to the
curves of parameters ! and x? constitute fields of parallel vectors.

25. Curvature of V, at a point. Iet M and g be the

components of two contravariant vector-fields. The vectors at

= akhi+ B,

where o and 8 are parameters. The geodesics through P in this
pencil of directions constitute a geodesic surface S. The Gaussian
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curvature of S at P was taken by Riemann* to be the definition
of the curvature of Vn at P for the given orientation, that is, the

orientation determined by Ayt and gl
We assume that the coordinates «¢ of V, are Riemannian with P

as origin (§ 18). Then the surface S is defined by
(25.2) 2 = Ay utt A,

where u' = as and u® = Bs for any geodesic through P, and 4,

and 4, are constants.t
In terms of »' and «f the fundamental form of S is

(25.3) ¢ = b(tﬂ d’lba du‘s,

where (cf. § 16) ) .
B2 0wy

(25.4) bep = 9i oo Huf *

From a formula analogous to (24.9) we have in this ecase, as a con-
sequence of (25.2),

U B/
(25.5) S SRR IS

Tor n == 2 all the Riemann symbols of the first kind (§8) are zero

or differ from Rs(s at most in sign, because of the identities (8.10).8
In this case we have for two cogrdinate systems, o and u'’,

TR 1
au auw’ ou

= = dut ou’ gt out\?
Rz = Bioe (——7 )
ou
as follows from the general equations (4.6), and also for the
determinant b = |Dgg| from (9.3)
b(au‘ _@f____f_)_@f_ 8%2)2
pu/t du' au’ outl

b =

* 1834, 1, p. 26L.

+ We observe that s is not uniquely determined when the geodesi
zero [cf. the remarks following equation 171yl

1+ Throughout this section it is understood that Greek indices take the values 1

and 2.
§ We indicate by R—u‘syg these symbols formed with respect to (25.8).

¢ is of length
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Hence
(25.6) K o Rlﬁlﬁ —_ Rlﬁlﬁ
. b bu bgg""blzz
is an invariant. Since
pt = 221 P — _i’ﬁ 22 bus
b pr U=

we have
(25.7) Kby = R , Kby = R = Eluz, Kby = R

From these equations it foll
ows that K i
the Gaussian curvature of S.* o defined by (20.6) 18

From (25.5) it follows that
. . at P the origin of Riemannia
codrdinates all the symbols [«8, 7], are zero, and from (8.8) i

9

3u2 [1 27 1]b-

D 0
Byors = W[22’ 1, —

When the expressions from (25.5 i .
of (18.8) and (8.3), (25.5) are substituted, we obtain, because

Rlzlz = Y l1|k lz]i 12|j l”"." (—a—J ! }__3_{ l
axm \ij oat \mj
= guedai* b’ Ao M™ Blimj == By 21 Az Au™ Aot/

Since the expression on the ri i ;
] e right is an i : .
coordinate system. g invariant, it holds in any

We have from (25.4) and (25.2)
(25.8) by bes—b1e® = (gnj gim—gnk gy) Mi* Aof' 2/ Ao/
Hence (25.6) may be written in the form

By AP Aot Ay AgfF

(25.9) K —
(gnj gir—gnk gij) ™ Aot Aay/ Aa* 7

vs;hxch i'§ the expression in any codérdinate system for the curvature
at a point P for the orientation determined by 4, and 4y}

*1909, 1, p. 155.
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26. The Bianchi identity. The theorem of .Schur. We
recall from (8.3) that the components Rt of the Riemann tensor
are defined by

(26.1) Ry = EZ—J{ZZ}—_%{Q}-{_{75]}{:2}_{7)?75}{:)’;}

If we choose geodesic codrdinates at a point P, then at P

§ 22 {h}_ Be_Jk}.
Blet = 5552 ik ok oat \ij

From this and similar expressions for the other terms in the left-
hand member of the following equation it follows that

(26.2) R+ Rl j+ Blaje = 0

at P. Since the terms of this equation fxre components of a
tensor, this equation holds for any cosrdinate system and fat
each point. Hence (26.2) is an identity th.rougllxout thg spz;zc.e }(l)r
R i, j, k1 =1, -+, n. It is known as the zden.f.zty of Bzar.zc ¢ who
was the first to discover it.* Since gy and gV behave like con-
stants in covariant differentiation, we have from (26.2)

(26.3) Rugr+ Ruaa,j + Buigip = 0.
Because of the identities (8.10) equation (26.2) can be written
Rrijei— Rl + 9™ Bmaje = 0.
I we contract for 2 and %, we obtain
Ryj,i— Ra;+ 9" Bmijn = 0,

where Rj are the components of the Ricei tensor (§ 8). If this
equation be multiplied by g% and ¢ and [ be summed, we get

10R
(26.4) Eit = 3520

* Bianchi, 1902, 1, p. 351.
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where
(26.5) R = ¢ Ry

is called the curvature imvariant, or scalar curvature, of the space.*
Equations (26.4) are important in the general theory of relativity.
From (25.9) it follows that a necessary and sufficient condition

that the curvature at every point of space be independent of the
orientation is that (cf. Ex. 14, p. 32)

(26.6) Brygr == b (gnjgin— gni 94),

where b is at most a function of the 2’s. Since we have from (26.6)

ob
B,y = s (9nj gin— gnx 9) 5

it follows from (26.3) that

ob ) ob
P (gnj gix— gregy) + Eyi (gnic gt — gn19:)

2b
+ 5% mgy—gniga) = 0.

If we aséume that j, & and ! are different, on multiplying this

. : . . ab ab

equation by ¢" and summing for %, we obtain GingZ I = 0
It ¢ is allowed to-take values from 1 to n, it follows that
% = aaxl; = 0, since the determinant ¢ is not zero by hypothesis.

Hence b is constant and we have the following theorem due
to Schur:t
If the Riemannian curvature of a space at each point is the
same for every orientation, it does mot vary from point to point.
A space of this kind is said to be of constant Riemannian
curvature. Equations (26.6), where b is constant, are the necessary
and sufficient conditions for such a space.

In § 10 it was shown that a necessary and sufficient condition

that there exist a codrdinate system for a V, for which the components

* Cf. Levi-Civita, 1917, 3, p. 888.
11886, 1, p. 563.
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gy of the fundamental tensor are constants is that RP;z= 0 for
ki j,k=1,-.-,n In this case as follows from (25.9) K =10
for every orientation at every point of Vy, and is a special case
of (26.6) with b = 0. When the fundamental form is definite,
V, is a euclidean space of n dimensions and the special coordi-
nate system is cartesian. We denote by S, a space for which
Rty = O for hy i, j, bk = 1,--, 1 and call it a flat space.

27. Isometric correspondence of spaces of constant
curvature. Motions in a V,. When the fundamental forms
of any two spaces of the same order are transformable into one
another, we say that the spaces are isometric and that the equations
of the transformation define the dsometric correspondence. 1In § 24
we have applied the term applicable to two isometric sub-spaces

of a space Vn; some writers use this term as synonymous with °

isometric, but we prefer the term isometric when the two spaces
are not looked upon as sub-spaces of an enveloping space, since
applicable has the connotation of applicability.

Returning to the consideration of equations (10.5) and their
interpretation in § 26, we give the third theorem § 10 the form:

Any two spaces of dimensions of the same constant curvature
are isometric, and the equations of the isometric correspondence
involve m (n+1)/2 arbitrary constants.™

The geometrical properties of a surface in euclidean 3-space
which depend upon the fundamental form alone as distinguished
from its properties as & sub-space of the enveloping euclidean
space are called intrinsic. We apply this term to the properties
of any V, depending only upon its fundamental form. As a result
of the above theorem we have:

Two spaces of m dimensions of the same constant curvature whose
Sfundamental forms have the same signatures have the same intrinsic
properties.

We have seen in § 26 that a necessary and sufficient condition
that a space V, be of constant curvature K, is that the components
of the fundamental tensor satisfy the conditions

(27.1) Ruijx = Ko (gnj 9 — gk 94) -

*In order that the correspondence be real, the signatures of the fundamental
forms of the two spaces must be the same.
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We inquire whether there exists a system of cotrdinates z* in
such a space for which the fundamental form is

1,:--, 1 .
o 'y Ad 4)2

where U is a function of the a’s and the ¢’s are plus or minus

one. Making use of (15.8), we find that the conditions (27.1)
applied to (27.2) reduce to

9cU
(o1 ax 0ad 0,
" U(%—-82U+ U RSN
e ¢ Bacig) = ¢ | Ko+ ; ek(m)] @+).

From the first of these equati(;ns it follows that
U= Xi+ -+ X,

where X; is a function of 2° alone. From the second of (27.3)
and the equation obtained therefrom by replacing j by I, we get
X} ¢ = X1 e;, where the primes denote differentiation with respect
to the argument. Since the first and second terms involve z/
and 2! at most, it follows from this equation that Xi'e =2a
where @ is an arbitrary constant, and therefore that- ’

X; = eilax’” +2ba¢ + ),

where the b’.s and c¢’s are arbitrary constants. If we substitute
these: expressions in the second of (27.3), we obtain the following
conditions upon these constants:

(27.4) K, = Qij ei(ae;—b3).

When, in particular, we take all of the b’s equal to zero and
choose the ¢'s so that Xe;c; = 1, then (27.2) becomes
2

215) ¢ = e (Y + - - -+ en(dam’
_K_o_ 12 2 2 "
[1+ 1art +ea —}-...+enxn2)]
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This is known as the Riemannian form for a space of constant curv-
ature*. From the first theorem of this section we have:

The covrdinates of any space of constant curvature can be chosen
so that its fundamental form assumes the Riemannian form (27.5).

In order to give a geometric interpretation to the first theorem
of this section, we consider two points P and P of two spaces
V. and V, of the same constant curvature. As we are concerned
primarily with real isometric correspondences, we assume that the
signatures (§ 9) of the fundamental forms at P and P’ are the
same. We take any ennuple of mutually orthogonal non-null
vectors at P for the directions of the parametric curves at P and
similarly at P/, and choose the cotrdinates so that at P and P
the fundamental forms are respectively

p = @2+ -+ (@) — ([@ar ) — . - @a),

(27.6) , e it
¢ = (@) +. .-+ (@2?Y — (@Y — . — (")

Returning to the considerations of § 10, we observe that if we take
(27.7) pi= 0

for the values of af at P, the conditions (10.3) are satisfied and
also (10.4) in consequence of (27.1). By the arguments of § 10
there exists a solution of (10.1) and (10.2), determined by the
initial values (27.7), which satisfies (10.3) and (10.4) for all values
of 28, We remark that (27.7) is the condition that the direction
of the curve of parameter ¢ at P corresponds to the direction of
the curve of parameter xz'* at P. From the first of (27.6) it
follows that the components 4 of the directions of the curves of
parameter a¢ for ¢ = 1,..., p at P are such that the invariant
gy A4 is positive, and for ¢ = p+1,.... n this invariant is
negative; similarly for the directions of the parametric curves at
P'. According as this invariant is positive or negative we say
that the corresponding vector is positive or megative. Accordingly
we have the theorem:

-If Vu and V, are two spaces of the same constant curvature,

* Riemann, 1854, 1, p. 264.
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and P and P’ are two points of these spaces at which the signatures
of the fundamental forms are the same, a real isometric correspond-
ence can be established between V. and V, such that P and any
orthogonal ennuple at P corresponds to P and any orthogonal
ennuple at P, subject to the restriction that positive and negative
vectors at P correspond fto vectors of the same kind at P'.*

When, in particular, we apply the preceding considerations to
one space instead of two, we have an isometric correspondence of
Va with itself such that P and an arbitrary orthogonal ennuple
at P correspond to a point P’ and an arbitrary orthogonal
ennuple at P'. Thus we interpret the equations between the s
and z'’s as an isometric point transformation of the space into
itself. This is evidently a generalization of a point transformation
of a euclidean space into itself; when the equations of such a
transformation involve parameters, they may be interpreted as
defining a motion of a portion of the space into another portion.

In order to consider more fully the question of a motion of a
portion of a space into another portion, we recall that when a
euclidean space is refered to cartesian coordinates 2, the equations
of a general motion are defined by

(27.8) = e
where the a’s and b’s are constants subject to the conditions
(27.9) Z(aij)z = 1, ;aijaik =0 G ¥ k).
From (27.8) and (27.9) we have
(27.10) 2 (dad’ = 2 (dziy.

1 (2

If now the x’s are replaced by functions of any cosrdinates «* and
and z? by the same functions of z", equation (27.10) becomes

dyda’ dw’ = gl dir'" a5,

* Evidently there is no such restriction when the fundamental forms of Va
and Va are definite.
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where ¢j; and g are the same functions of the x's and 2's re-
spectively. Dropping the primes we have the result that the
equations of a motion in euclidean space referred to general
cobrdinates satisfy the differential equations

_ ozxk axt
(27.11) Gii = 90T

where g;; and gy are the same functions of the z’s and z's re-
spectively.

We generalize this result and say that when the fundamental
tensor of a V, is such that equations (27.11) admit a solution

(27.12) =g @, -,

involving one or more parameters, these equations define a motion
of V, into itself; when, in particular, (27.12) do not involve a
parameter these equations define merely an isometric correspon-
dence of the space with itself. In order to determine whether a
space V, admits motions into itself, we have only to apply the
processes of § 10 to the case where gy and gy are the same
functions of the #’s and z’s. This general problem will be considered
in Chapter 6. For the present we remark that the third theorem
of § 10 may be given the form: _

A space Vn of constant curvature admils a group of motions of
n(n-+1)/2 parameters; conversely, when a Va admits a group of
motions of n(n -+ 1)/2 parameters, its curvature is constant.™,

From the fourth theorem of this section and the above con-
siderations we have also:

If the signature of the fundamental Jorm of a space of constant
curvature is the same at all points, there exists a motion of the
portion of the space in the neighborhood of a point P into the
portion in the neighborhood of any other point P’ such that an
orthogonal ennuple at P goes into an arbitrary ennuple at P’
with the restriction that a positive or megative vector of the former
goes into ome of the same kind at P '

* Of. Bianchi, 1902, 1, p. 348.
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28. Conformal spaces. Spaces conformal to a flat space.

If the fundamental tensors ¢;; 7 74
. gy and gy of two spaces ¥V,
in the relation ’ i wand Vo are

(28.1) gy = gy,

where ¢ i.s any function of the «'s, from (12.5) it follows that
the magnitudes of the vectors of components daf at points of V,
and V, with the same codrdinates are proportional and from (13 4;
that Phe angles between two corresponding directions at con:e-
sponding points are equal. Accordingly we say that thev corre-
spon.dence between V, and V, is conformal, and that V, and V,, are
:lnfégg?,l spaces. The condition (28.1) is necessary as well as

From (28.1) we have
(28.2) 79 = ey,

and fror.n (7.1) and (7.2) we derive the following relations between
the Christoffel symbols formed with respect to the two tensors:

[2j, k| = & (lig, k) + g 05 -+ g 0,i— gij 6.1),

(28.3) [ i1
Vi j} = 'lz',;'} tél6,+ 0 0i—gijg"o.m,

oo
vhere ¢; = ;i dé vari vativ
where o¢; i If 6,; dénote the second covariant derivatives

of ¢ with respect to the ¢’s and we write
(28.4) Gj = 0,4j—06,;0j,

when we substitute these expressions in equations analogous to (8.8)
we have o

—20 D .
(28.5) €% Bnyjx = Buy + gnr 035 + g Onie—— Ghj Gik — Gik Ohj
+ (gnie 9ii— gnj gar) Ay 0,

where 4; 0 is defined by (14.1).

By means of (28.2) and (28.5) we have for the expressions for
the components of the Ricci tensor (§ 8) for V,
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(28.6) Ry = §" Rup = Ry+n—2)6;+ gy [4s0+ (n—2) Aol

where A.o is defined by (14.3), and the invariant curvature 1s

given by :
©8.7) E — 3By = e [BH2(—D) Ao+ (—1)(n—2) dio].

. case n =— 1 evidently is .of no. lntere.st. Since any
qllzgfatic differential form in two varlablfs is re?fucfls)li (;c;)f(’g};; ;;n‘:l(l)
A[(d2t)? 4= (dx*)?] in an infinity of ways*¥, a,nglrl /: 1>2
any other. In what follows we }mdel:stztnd t abnwrit.ten

In consequence of (28.1) equation (28.7) can be 4

(28.8) g E = gi[B+2(n—1) 4 o+ (n—1)(n—2)4,d].
Eliminating 4s¢ from this equation and (28.6), we obtain

1
n-—2

= (g5 B—94R)

Gy —

(28.9)

= 1
(By—Ei) = 5= 10 —2)
1

——_2_,0’1.} ALG.
Because of (28.2) equations (28.5) can be written

8 o
By = ha‘jk —+ o oy — dj“ i+ g" (g On— gix o)

(28.10) __l_ (aﬁ gu___ajb gik)Alo'-

If the expressfon (28.9) for o; and analogous expressions for

. . .
63, oy and oy be substituted in (28.10), the resulting equations ar
2c Y

reducible to
(28.11) ‘ E’Lijk = C"y,
where i
C" e = R’Lﬁlc—l——l-? (0! Ru— 0% By +gn B'j —9u R
) n—
(28.12)

R h o
(S gy— 9 g
Doy T

*1909, 1, pp. 93, 102.

28. Conformal spaces. Spaces conformal to a flat space 91

Evidently C*;x are the components of a tensor, and as follows
from (28.11) this tensor is the same for Vn and V, in conformal
correspondence. It was called the conformal cwrvature tensor by
Weyl*, who was the first to consider it.

When # =3 and the cosrdinates are chosen so that g5 =10
(%) (§ 15), it is readily shown that (cf. Ex. 15, p. 32).

The conformal curvature tensor is a zero tensor in a Vs .

In consequence of (26.2) we have from (28.12)

3 1 s
o ik, Chikl,j“l— Chdj,k _ (dj Riyq+ o Ry
(28.13) n—2

+ o By + g thl +ga thj + g5 R ,
where we have put

1
(28.14) i = By =B+ 50, "33 0n Bj—gq B,

th’{ - ghl Rl:jk'

Raising the index / and contracting for 7 and 5, we have in con-
sequence of (26.4)

Contracting (28.12) for & and %, we have Cy = 0. When we make

use of this result and (28.15) in contracting (28.13) for 4 and F,
we obtain

—3
(28.186) Chilj,h = %_—211’1'@'.

From (27.5) it is seen that any space of constant curvature is
conformal to a flat-space S, (§ 26). We seek the necessary and
sufficient conditions that a V, be conformal to an Sh.

In order that V, in the preceding discussion be an 8, it is
necessary and sufficient that Rpgx = 0 (§ 26). From (28.11) and
(28.12) it follows at once that Criw = 0, that is,

* 1918, 2, p. 404.
T Weyl, 1918, 2., p. 404.
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92

Ruije+ _1_ 5 (gin Rie— gnw Bij+ giie Brj — 93 R
(28.17) R .
‘ ——— Y i— gri gie) = 0.
+(n_1)(n__2)(ghkg.) Ly Ju

Since R; = 0 also, we have from (28.9)

1 Rygy ___R..)___l_,..Al .
(28.18) 6,4 = 0,i0,j + n—2 (2(%—1) i 9 Gij

e equations, equations (28.8) for

atisfies thes .
Moreover, When ¢ ® ditions of integrability of (28.18)

R = 0 are satisfied. The con

are [ef. (11.14)] z
: o.ik— 0, = 0,1 K.

Substituting from (28.18), we find as the conditions

1 P 4Ry = 0.
(28.19) sz,k'—Rilc,j’l'm(glkR,J gy B.x)

For n # 3 this condition is a consequence of (28.17) as follows
theorem:
from (28.16). Hence we have the | .
A'ng(/ V, can be mapped conformally on an Sy; a mecessary mlzld
sufficient condition that a Vi for n>>2 can be mapped con__fo;mamyz
on an S, is that the tensor Ryx be a zero tensor when m =9 &

*
when n>3 that Cuiji be a zero tensor.

Exercises.
oy,

= iven curve.
1. A codrdinate system can be chosen so that 7o 0 along a g;lv4 190
Fermi, 1922, b; Levi-Civita, 1925, 4, p. 190;
1926, 8, p. 298.
2. A space for which 2 by 85

Every V, is an Einstein space (cf. Ex. 2, p. 47).

constant curvature.
Schouten and Struik, 1921, 3, p. 214.

is called an Einstein space.
Show that an Einstein space V, has

‘. . on-
od that the vanishing of C,;, is a necessary ¢

* 8, 2, p. 404, show ‘
e nten, 19 that it is sufficient when n>>3; he also derived

dition. Schouten, 1921, 2, p. 80,
the above conditions for a V.
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3. Show that a space of constant curvature K is an Einstein space, and
that R = K (1—mn)n.

4. If an Einstein space is conformal to a flat space, it is a space of constant
curvature. Schouten and Struik, 1921, 8, p. 214.

5. Show by means of (26.4) that when #»>>92 the scalar curvature of an
Einstein space is constant. Herglotz, 1916, 2, p. 203.

6. A V, for which

2al\t
9y = — (1 __) ’ 9y = — @), 9y = — (@'sina??,
9,=0 ¢+,

where a is an arbitrary constant, is an Einstein space for which B = 0.
Schwarzschild, 1916, 3, p. 195.
7. AV, for which ‘
gyn= - A—l7 922 _ (x1)21 Ggs — — (xl sin xﬂ)zy

a(x!)? ¢ o
(3 w9y =0 G* 9,

v

9= 4, A=1+

where a and ¢ are arbitrary constants is an Einstein space. Show that when
¢ = 0 the ¥, has constant Riemannian curvature. Kottler, 1918, 8, p. 448.
8. In order that the tenmsor

a"j = Rij-l-d‘;'.(aR.]_b),

where R} = ¢* R, and where o and b are invariants, shall satisfy the conditions
o', , = 0, it is necessary and sufficient that it be of the form

@ = R'}+"§(~%R+c),

where ¢ is an arbitrary constant.

9. Let K be the curvature at a point P of a V, determined by the vectors }.u‘
and }.2["; when 4,%is displaced parallel to itself around a small circuit and returns
to P, the change in the angle « with the vector hytis given by de = —K 42,
where 42 is the area enclosed by the circuit (cf. Ex. 6, p. 79).

Péres, 1919, 1, p. 498,

10. If 4* and 4,¢ are the components of two families of unit vectors, the
vectors of each family being parallel with respect to a curve C, the curvature X
determined at each point by the vectors 4% and 1,° at the point satisfies
the equation

dK Y ¥
ds — ele?RUkl,m l1Il "2]" "1[7' "211 ds
In order that K be constant along C for all sets of parallel vectors }'u( and A%,
it is necessaiy and sufficient that
dam
R:‘jkl,mw = 0.

* orthogonal to one another.
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In order that this property hold for amy curve, it is necessary and sufficient
that B, = 0. Levy, 1925, 1.
11. If ¢ is any function of the a’s such that 4, ¢ % 0, and g46,Ch =0

for ki, J, k1 = 1,++-, 4, then C;; = 0. (Cf. Ex. 12, p. 32.)
Brinkmann, 1924, 2, p. 277.

12. If 6 = —Q—In—logg in (28.1), then § = const. for Vn in this codrdinate

system and {z} = 0.
¥}
13. Show that the quantities

= bl el

have the same values at corresponding points of two spaces whose fundamental
tensors are connected by (28.2). Thomas, 1925, 5, p. 257.

14. By expressing integrability conditions of the equations of transformation
of the quantities K, of Ex. 13 under a change of codrdinate systems, show that
the following quantities are the components of a tensor:

; ~ ; i F i :
(0 —2) T+ 0, 1y — 8 Fyob g, 'y — g, T b g G5 — 98

where F, is formed from the K’s in the same way that R', is formed from the
Christoffel symbols of the second kind, and where F, = Fi. Show also that
the above expression is equal to (n — 2) Cj.“. Thomas, 1925, 5, p. 258.

15. Show that, if each Christoffel symbol in the covariant derivative of gYg,,
is replaced by the corresponding K%, (cf. Ex. 18), the result is identically zero.

Hence show that in the system of coordinates y', defined by
— i i 1 i joak
X = &, +y— "2_ (Kjk)o:l/"y ’

the components of the conformal tensor g¥g, are stationary at the origin.
Thomas, 1925, 5, p. 259.
16. Show by means of (27.4) that the most general conformal map of a
euclidean space upon itself for n>>2 is obtained as the product of inversions
with respect to a hypersphere, motions and transformations of similitude.
Bianchi, 1902, 1, p. 375, 376.
17. Obtain the theorem for amy flat space analogous to that of Ex. 16.
18. A necessary and sufficient condition that a V, for n>2 can be mapped
conformally on an Einstein space Vn is that there exist a function o satisfying
the equations

Ty % o;+ 49, = Ly
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where

1 Rew
A= Ao T — — R
2 e A =gy 9 Ry,

R being the constant scalar curvature of V : then g, =¢€9%g
iy

n

- Brinkmann, 1924, 2, p. 271.
19. Show that the conditions of integrability of the equati;)ns of ’E;. I1)8 arle

’I:Ch =~;R

g,
ik n—9 e

where B is defined b

ik Yy (28.14), and that consequently the i

. . e 3
pletely integrable only in case V,. can be mapped on );n S nations are com

‘ Brinkmann, 1924, 2 272
stei2:. sIn ordgr f,hat an Hinstein space can be mapped conforr’nally ’on 7a§ Ein:
pace, 1t is necessary that the function ¢ in § 28 satisfy the equations

Ty = ”’i”7j+ m[Re2a’—R*n(n—l) 4,4]

where B and R are the constant scalar curvatures of the two spaces

Brinkmann, 1925, 6, p. 121.

21,
1. Show by means of Ex. 4, p. 47 that for any solution of the equations

Of EX. 20
A ¢ = 1 R ¢ {1 2 3(3 R
! n (n — 1) ( ; ¢ ) !

;\;ll;elzv (c) 1; a constantb; and consequently, if 4,6 =0, the scalar curvatures of

spaces must be zero. Bri

o ‘ ‘ rinkmann, 1925, 6, p. 122.
2. An Einstein space V, can be mapped conformally on’ano‘th;r b?nstein

space by means of a function o for which 4 i if, i
o 1o oans of & hick 4,6 40, if, and only if, its fundamental

4 =fyaﬂdx“dwﬂ+71;(dx")2 (0,p=1,-..,n—1),

where

1
S = =1 [R(@")* 4 2aar+ b,

a and b being constants, and th i i
it o e " ,f e functions 9,4 are independent of x* and such
f is the fnndamental form of an Einstein Va_,.

Brinkmann, 1925, 6, p. 125.



CHAPTER I
Orthogonal ennuples

29. Determination of tensors by means of_ the compo-
nents of an orthogonal ennuple and mvanant's. If the
equations (13.12) of an orthogonal ennuple are written in the form

(29.1) Ay lkli =0 *hFk), Anji }-Mi = e (M"k= 1,..., 1),
and we solve the n—1 equations of the first set for Any, we get

Mg ez = SR
Ah‘1 /1h12 A"

. ¥
where "', denotes the cofactor of }.h(’h in the rdetermmant A" |
divided by this determinant; hence Any A g = 6?. F.rom the second
of (29.1) it follows that the value of these ratios 18 én, and con-

sequently

(29.2) A"

i == e Anjie

Tf we solve the equations

g Mm' = hnj (h=1,--+,m)

for g5 and make use of (29.2), we obtain

..,

(29.3) i = ; en Anji Anyj-
From these equations follow

1,--5, .
(29.4) ; en ngi i’ = 0}

and
1,0

Iy’ = g¥
(29.5) ; en An| Anj g
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mgn
Consider now any covariant tensor of the mth order,of com-
ponents a,, ..., . The quantities cn ...5, , defined by

m

(29.6) Chl i h = Ay ...y lhllrx P lhm!"‘m

m 1 m ?

are scalars. If these expressions for ¢ ...n, are substituted
in the right-hand member of the equation

(29.7) 5. = >

1
h,-..

It chl oot hm ehl U cll’m }'h1|81 e lhm'sm7
1

"

this equation reduces to an identity because of (29.4). Hence:

The components of any tensor are expressible in terms of in-
variants and the components of an orthogonal ennuple®.

30. Coefficients of rotation. Geodesic congruences. In
conformity with (29.6) we define a set of invariants yme by the
equations o
(30.1) ymk == daijhn” Ay’

where Ay;; (4, = 1,--.,n) are the components of the covariant

derivative of 4;; with respect to the fundamental form of the
space. Equations (30.1) are equivalent by (29.7) to

1,...,m
(30.2) Ayij = ;% en ex Yk Anji Ay

From the first of equations (29.1) we have by covariant
differentiation [cf. (11.11)]

Anii, 5 A * A i, j A’ = 0.

Substituting from equations of the form (30.2), multiplying by
Ay’ and summing for j, we obtain

(30.3) Yhia + ki = 0 (h ¥ k);
in particular we have
(30.4) Yy = 0.

* Cf. Ricci and Levi-Civita, 1901, 1, p. 147.
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So far as these identities go there are n®*(n—1)/2 independent
invariants 7mq. However, they are not arbitrary but are subject
to the conditions arising from the conditions of integrability of
equations (30.2).

The conditions of integrability of (30.2) are of the form (cf. §11)

(30.5) Ak — Mi g = Ao R

If the expressions obtained by differentiating (30.2) covariantly
and a similar equation in Z;; be substituted m (30.5) and the
resulting equation be multiplied by Ap Ay’ Z,| and summed for
i, 7 and k, this equation is reducible by means of (30.1) to

(30.6) Yiper = Bniji 7~zlh }-plilqu }w\k,
where by definition

Yoar = M—M+1’Ene [ o (Y mgr — omrg)
(30.7) e 08y 08 e e e

+ Yotr ¥ mpg —— Ymlqg ¥ mp'r] 3

and where for any invariant function we write

of i
(30.8) b = s

As thus defined ;f is the ratio of two differentials, We call it
N ‘s
an intrinsic derivative.

From (8.10) and (30.6) it follows that

(30.9) Vipgr =— —Vplgr = ——Yiprg — Verlp-

From (30.8) we have

o 9 0 igg.d j
___-L: kl axz (} J f):)'kl (lh|',,z'f:j+}'h|‘,f:ﬁ)

dsk Osh M P

1,..,n f . .
= D aruk A fg+ A g S e

i
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Since f j; = f.4, it follows that

o af 8 8f 9
(30.10) Gor Ben  Bem 3o g el(}’lkh_}’lhk)“%“

This is the form which the condition of integrability of intrinsic
derivatives assumes.

In order to give a geometric interpretation to the invariants yum,
we consider a point F, of V, and the curve Cp of the congruence
Am)' through P,; along C, we have

ox/ ;
30.11 —— = Ay’
( ) 95m honi "
Denote by 67 the angle at any point P of C» between the vector Ax;
at P and the vector Ay; at P parallel to 4;° at P, with respect
to a displacement from P, to P along C; then

cos Oy = Ay’ Anji.

By hypothesis An’ 4y;,; = 0 and consequently (§ 11)

. . . JLeun
7a CO80nT = D A Bagaj = A" Ao’ 2 eneq Yhog Apii Al
(30.12) P

L,ee,m

- N Y
:lllz % ep Yhpm Apli

At Py Xy° = 1" and consequently at P,

(30.13) o COS Ot = Yhim-
0 8m

Hence we have:

If P, is any point of Vi, and P is a mnearby point on the
curve Cn of the congruence Am," through Po, then ynim dsm is equal,
to within terms of higher order, to minus the dzﬁ”erence of the
cosine of the angle between the vectors lh] and A" at Po and the
cosine of the angle between the vector An" at P and the vector at P
parallel to iy" at P, with respect to Cm.

When the space is euclidean, yum ds» is the component in the
direction 2;" of the rotation of the vector }.h|i as P, moves to P.
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Consequently we speak of ynm in the general case as the coefficients
of rotation of the ennuple.*
From (30.2) we have

(30.14) }-zlj Ayiy = 2 en ¥kt Arji -

From (17.11) it follows that the right-hand member is zero, When,
and only when, the curves of the congruence A" are geodesics.
If this expression equated to zero be multiplied by Ay' and summed
for 4, we obtain the theorem:

A necessary and sufficient condition that the curves of the con-
. gruence Ay’ be geodesics s that

(30.15) y =0 h=1. n).

In the general case we have from (30.14) and (20.1)
(30.16) .wui = geh Yint lmiy

where ,wui are the components of the principal normal of a curve
of direction 4;°. From (30.16) and (20.3) we have

1

(30.17) -
1]

. . 9
= gy .U/llt .U/ll') == hzeh Vhil-

Hence when the principal normals are not null vectors, the first
curvature is given by

(30.18) % = V( %eh riu\ ,

and the principal normals are positive or negative vectors § 27)
according to the sign of the right-hand member of (30. 17). Also
from (30.17) we have that the principal normals to the curves Ayt
are null vectors, when, and only when,

(30.19) ; enyiu = 0 h=1,--n),

and (30.15) is not satisfied.

* Levi-Civita, 1917, 1, p. 192.
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31. Determinants and matrices. (ertain theorems con-
cerning determinants and matrices can be given simple form by the
use of quantities & ..., = €1 " which are defined to be zero,
when two or more of the indices are the same, and 1 or —1
according as the indices are obtainable from the natural sequence
1,.-.,7n by an even or odd number of transpositions.* Thus the
determinant a = |af/, in which ¢ indicates the column and ;j the

row for ¢,j=1-..,n, may be written in either of the forms

_ i 4 i
(31.1) a — 8ili2~~'i,l al az e anﬂ
or
(31.2) a = g1 gl g L g”

.
21 ll iy

From these equations it is seen at once that a determinant
changes sign, if the elements of two rows (or columns) are inter-
changed, and that a determinant is zero, if corresponding elements
of two rows (or columns) are the same. These properties are put
in evidence also by the following identities which are consequences
of (31.1) and (31.2): '

o—— i ] "lc 'j ‘...ﬂ Pe— .l“.'ﬂ j j .ﬂ

BL3)e; ;. a=¢ . 0l ey &g = gt AR
As an example of the use of the &¢'s we establish the law
for multiplication of determinants. Let a and b = |bi| be two
determinants of the wth order. By (31.1) and (31. 3) we have

o -il jn
“‘b’*‘“jr .b o bt
TapJy 1J Ji
- &, . -a.” 1 2... hd
o G a bl b ]
_ i 4 iy
é'ilia---i,l Cy 6y Gy

where ¢, = albj.

As defined the &'s have n indices when the indices take the
values 1,...,n. We define also a set of quantities 6;11 Z:fzp for
p < n. By definition these quantities are zero, when two or more

* Ct. Eddington, 1923, 1, p. 107.



Sce
p. 10

102 L Orthogonal ennuples

superscripts (or subscripts) are the same, or when the superscripts
do not have the same set of p values as the subseripts; also any )
is 41 or —1 according as the superscripts and the subscripts differ
from one another by an even or odd number of permutations.* As
an immediate consequence of the definitions we have

2 n

. = g ! Y,

(31.4) EJ} “ e dn a Ji ot dn azl a12 %’
Jiooed Jooerdn gy G i
(31.5) gt rq = 51:1: a,’ azﬂ. R

Also we have the identity

(31.6) gl gl = ol g,

Jl'“']n 5 " R

Moreover, from (31.3) and (31.4) we have

k ...k, 1 2 n il 'n
1 n « .. = . . . 2 e
(3L.7) Y g O Oy O T L G

Consider now two matrices

(31.8) el Nl

where the Greek letters take the values 1,..-.n and determine
the column, and the Latin 1,..-,p(<n) and determine the row.
We put

(31.9) Vo= c; @

and establish the following theorem which we shall use later:
The determinant of the quantities bl defined by (31.9) is the sum

of the products of corresponding determinants of the pth order of

the matrices (31.8).
From (31.9) and (31.1)

b= 8] =¢ el cedndl. - dy,
Pr ?

m! Ul YL Ve

which by (31.7) may be written

b = 5§1'f,;'_ ' '_/;; ch Gy ooyl Al dy

* Of. Murnaghan, 1925, 1.
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and by (31.6) '
(31.10) b = pl’ 6#1/310 6“;-.-6{1) 1 . (:}gp d11° .. d};p.

0., Oy, O
For any term of this sum to be different from zero, the &’s and »’s
must take on the same set of values and each permutation of the «’s
over these values gives a term; there are consequently p! terms
for a given set of #’s and y’s each of which is obtained by multiply-
ing together

R SR O G SN

for the «'s in the same order. But from (31.4) und (31.5) these
expressions for a given set of «’s are seen to be corresponding
determinants of the matrices (31.8) to within the equal multipliers
€q,...c, and &¢““, whose product is 1. Hence the expression on
the right in (31.10) reduces to the sum of the products of corre-
sponding determinants of (31.8), as was to be proved.*

32. The orthogonal ennuple of Schmidt. Associate
directions of higher orders. The Frenet formulas for
a curve in a V,. Let & be the components of a unit vector,
that is,

(32.1) g & &) = e,

and let §g,i for ¢ == 2,..., % be the components of any n—1
other vectors such that these n vectors are linearly independent.
We put

(32.2) 95 & E)’ = Uy = " tGm=1,...,n),F
and we denote by b, the determinant of b for ¢, 8 =1,..., p,
thus,

(32.3) by = |l (¢, 8 =1,.-, p)

From (32.2), (32.3) and the results of § 31 we have that b, is the
sum of the products of corresponding p row determinants of the

* For another proof of this theorem, see Kowalewski, 1909, 2, p. 77.
T Normally one would use bin but the notation used makes for simplicity in
what follows.
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matrices || gy &x ‘| and HEﬂH Consequently when the fundamental
form of Vy is positive definite, all of the determinants b, for
p =1, ..., n are positive;* when the fundamental form is indefinite,
we assume that the vectors & are such thatb, +0forp=1,..-, n.

Consider now the vector of components A, which are expressed

linearly in terms of the components &5 for 6 =1, -- -, p, as follows
32.0) bt e 2% w B @ =1,
( . Pl bp—l so)

where ¢, is chosen so that the radical is real and By is the
cofactor of by in b, divided by b,. From (32.1) and (32.3) it follows
that b = e;. In order that (32.4) may hold for p =1 and that
M = 51], we define by as 1.

From (32.4) we have

A - o @ < p).
by

(32.5) 9ij Ap| qu
Assuming that q-<p, we have from the definition of Ag’ similar
to (32.4) and from (32.5)

(32.6) Giihol by’ = 0 4+ 9

Tf both sides of (32.4) be multiplied by gy l,,|j and summed for ¢,
we have in consequence of (32.5)

(32.7) gis bt 2ol = ep.

Thus the vectors defined by (32.4) for p = ., n form an ortho-

gonal ennuple, as first shown by E. Schmidti.

Consider now any curve C in V, and unit vectors of a field
}.1|i at points of € which are assumed not to be parallel along C.
If we put

* This is seen by considering any point P and choosing the co‘b}'dinate gystem
so that at P g, =1, g, = 0 ( %), in which case any b, is the sum of
squares.

+1908, 1, p. 61; cf. also Kowalewski, 1909, 2, pp. 423-426.
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i
(32.8) ax , i

o 1
ds 1, :elgﬂy

then ?52| are the components of the vector associate to }.11 (§ 24).
Sinee b; = b} = 0 for this case, we must assume that this vector
1s not a null vector, if we desire b, as defined by (32.3) to be
different from zero. We define n—2 other vectors along C by
the equations .
dx’ .. ; ; i
(32.9) W.E'r] =S4y (r=2,... n—1)*
We assume that these n vectors are linearly independent and that
bp+ 0 for p = 1,..., n. Then equations (32.4) define an ortho-
gonal ennuple of dnecti_ons at points of C which we call the
associate directions of A" of orders 1,..., n—1.
J
At points of € the components dx of the tangent vector to C are

ds
expressible in the form

(32.10) dz W

ds G r =1+, n),

where the a’s are invariants. From (32.10) and

1,.-e.n

(32.11) lpIi,j = g er: €1 § piat Ay illlj
we have

d.’L‘j . 1,...,n .
(32.12) i = ]Z e i b
where
(32.13) e = A" Ypkr.

Because of (30.3) we have also

(32.14) Cpk - gy = 0.

dx J

From (32.4) and (32.9) it follows that —— A5 }'pl 5 is at most a

* For the development of this section to apply we assume that none of the
vectors &' are parallel with respect to C.



106 IIL Orthogbnal ennuples

linear expression in & °---, &4y and therefm.'e in }..1|’,- - }.p+.1| .
Consequently ap, = 0 for k>p+1. Combining this result with

(32.14), we have .

Eppi1 = T Gty T 0

32.15
o e, = 0 [+ (p£1)I,
where g, is defined by the first of these equations. Accordingly
equations (32.12) reduce to

de i . '—‘ep—ll Z+‘eﬁ_]:} +1|Z' (p - 2..-..“‘_ 1),
—d—s_}'pl T er1 p—1] ep -p+1 IR

(32.16)

from which we have

da’ ;1 9 m—T1).
(32.17) 7~p+11i—ds—}~ptl,j = z}; (p =2,---,0 )

From (32.8) and § 24 it follows that (32.16) apply also to the c?;e
p = 1 with the understanding that 1/go = 0. Also. from (32. -)
and (32.15) for p = n we have (32.16) for p = n with the under-
i n= 0.

Sta\l‘lvdéniagla;/;,/,g for p=1,.-~-,n—1 thez_ associate curvatures of
order 1,.--,m—1 of the vector &;"(= 4y') for the curve C. We'
can find their expressions in terms of the determinants b_p by
differentiating covariantly equations (32.4) with respect to x/ and
substituting in (32.17). This gives, in consequence of (32.9),

0 epﬁ (x) 'z' 3.%"’ _J_vep bp BO; ;: 2]
e }'p—{»l[i I:—a—x—J( E—l Bp §cz| —‘—‘as i bp~1 p Set1| s

|

o

’ (“:1:""]7)’
which is reducible by means of (32.5) to

(32.18) 1 ‘ﬁp ep“bbg'l L P T
0y 'p

When, in particular, the vector llli is the tangent vector to C,
we have in (32.10) a'=1, a®=0 for 6#1' and from (32.13)
e = ypa. From (32.17), (20.1) and (20.3) it follows that 1/g
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is the first curvature of C. In this case we say that 1/op are
the first, second, ..., n—1th curvatures of C. Moreover, equations
(32.16) for p=1, ..., n are a generalization of the Frenet
formulas for a curve in euclidean space in cartesian codrdinates,
as is readily seen by replacing covariant derivatives by ordinary
derivatives.* Hence we follow Blaschke in calling (32.16) the
Jormulas of Frenet for a curve in a Riemannian space.t

Exercises.

1. If y,, denote the coefficients of rotation for the orthogonal ennuple defined
by (18.14), show that

1,0,
;_,iik = 7pqrtip t}’ t;+ 2 ert:",yt;t;ltip’
and that 3
Vo = BUEEY,,.
2. Show that Sidy i / g are the components of a covariant tensor (§ 31).
Ricci and Lewvi-Civita, 1901, 1, p, 135.
3. Show that the components of the contravariant tensor of order » associate
to the tensor of Ex. 2 by means of g, are Wy,

Ricei and Levi-Civita, 1901, 1, p. 138.
4. Show that the first covariant derivatives of the tensors of Exs. 2 and 3

are zero. Ricci and Lewi-Civita, 1901, 1, p. 138.
5. Show that ] ) :
o a;.: ...... 3};
splr=

a}:" ...... aj.:

and consequently that the d’s are the components of a tensor of order 2m.
Murnaghan, 1925, 7, p. 238.

33. Principal directions determined by a symmetric
covariant tensor of the second order. Let a; be the com-

ponents of a symmetric covariant tensor of the second order and
consider the determinant equation

(33.1)

* Of. 1909, 1, p. 17.

T Blaschke, 1920, 1, p. 97, considered the case when the fundamental form is
definite, in which case the only restriction is that lu‘, &) and the vectors Erf
defined by (32.9) be linearly independent. When the form is indefinite, it must
be assumed also that the determinants b, defined by (32.3) be different from
zero; in particular, this requires that the curve ¢ be not minimal,

|aj—egy| = 0.
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: i
Tn another coordinate system z'° we have

! mn
24 ax/m , 32 a1

ox o or 0x
9ij = Gim o’

(33.2) aij = aim—ﬁ Y

so that (33.1) becomes

2

/Ic

l(”m"@ﬂlm' l Py = 0.

Since by hypothesis the Jacobian is not zero, this equation is of
the same form as (33.1) and thus the roots ¢ of (33.1) are invariants.
If on is a real simple root of (33.1), the equations

(33.3) (i —on gip) " = 0

define, to within a factor, » quantities AM , which are the contra-
variant components of a real vector-field, as is seen by changing
the codrdinates and making use of (33.2). If g is another real
simple root of (33.1), we have a second vector-field defined by

(33.4) (aij— o1 g4) 7~Jzzi = 0.

Multiplying (33.3) by 2’ and (33.4) by An’, summing for j in each
case and subtracting, we have, since on 1 on by hypothesis,

(33.5) g }-h|i l/cuj =0,

that is, the two vector-fields are orthogonal.

From the algebraic theory* it follows that if the roots of (33.1)
are real and the elementary divisors are simple, there exists a
real transformation of the variables 2¢ such that at a point P
the forms . o
(33.6) ¢ = g datda/, Y = adatdz
are reducible to
¢ = alde) +-. -+ en(d™)?,

W == ¢ o (dz")?+ -+ cnon(dz™)?

* Of. Bromuwick, 1906, 1, pp. 80, 50.

(33.7)
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where the ¢’'s are constants none of which is zero and ¢y, ---, on
are the roots of (33.1), which are not necessarily different. In
particular, if ¢ is a definite form, the roots of (33.1) are real, and
the ¢’s have the same signs.*

If ¢, is a simple root, then at P the solutions of equations (33.3)
are Ay = 1, 4)“=0 (¢ =2, ..., n), to within a multiplier.
Hence the vector is not a null vector. Accordingly if all the roots
of (33.1) are real and simple, equations (33.3) define n» mutually
orthogonal non-null vectors, that is, an orthogonal ennuple (§ 13).

When p of the roots are equal, say ¢, = ... = g, then for
l=1, ..., p, equations (33.3) reduce to (gp4+o—gn) An* ° = 0 for
g=1,..., n—p, (p-+ o being not summed). These equations are
satisfied by the p linearly independent vectors whose components are

}'O‘fi - d:x (“:1;""}7577:1;"';”);

which evidently are non-null vectors. Moreover, any other solution
is a linear combination of these vectors. Consequently for a
multiple root of order p the rank of (33.1) is n—yp, and there
are oo?-! gets of solutions. _

If the cosrdinates are any whatever and Ae’ for ¢ = 1,..., p
are the components of p independent solutions, then

(33.8) El‘llL = ‘uaﬁ 7.ﬁ|i (¢, 8B=1,--,p;2=1,--+, 1)
are another set of solutions. If we choose the functions u,? so that

a . .
va 1a gy’ da F0 (@ ¥ ),

the p vectors of components §a|i are mutually orthogonal and are

é‘ . .
we 1, gy hy hg =

“not null vectors. The determination of the wg’s is equivalent to

finding an orthogonal ennuple in a space of p dimensions whose
fundamental tensor g,z is defined by gns = gy }-ali ).iglj. At a
point P in the co¢rdinate system giving (33.7), we have 4" = 0
for ¢ =p+1, ..., n, and consequently

g = ‘.aaﬁ| = Cl“'cpl'z‘alﬁtg*o (¢, 8=1,.--, p).

* Bicher, 1907, 1, pp. 171, 305.
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Hence functions . satisfying these conditions can be obtained
in accordance with the results of § 13.

(Gathering the foregoing results together we have the theorem:

If a; are the components of a symmetric covariant tensor such
that the elementary divisors of equation (33.1) are simple and the
roots are real, equations (33.3) define a real orthogonal ennuple;
this is unique when the roots are simple; when a root is of order p,
there are o0 P@=Y2 gefs of mutually orthogonal non-null vectors corre-
sponding to this root. :

The directions at each point defined by these vectors are called
the principal directions determined by the tensor a;; the = con-
gruences defined by the ennuple the principal congruences and
01, +++, 0, the principal iwariants.

Since the vectors are not null vectors, the components can be
chosen so that

(33.9) gij lmilmj = en (h =1,---,n),

and we have from (33.3)

(33.10) ag i A’ = 0, (h ¥ k),
o = en g hn nf.

Hence if none of the roots of (33.1) is zero, that is, if the
determinant [a;| + 0, we have

(38.11) ag I £ 0 (h=1,---, m).
Conversely, if ).hf are the components of n mutually orthogonal

unit vectors, and a; are the components of a symmetric tensor
such that the first of (33.10) is satisfied, then these vectors define

the principal directions determined by a;. For, if we define n in-

variants o» by (33.10), we have as a consequence of (33.5), (33.9)
and (33.10) o
(@G—ongi) b’ =0 Bk =1,---,m)

Since the determinant of the 4’s is different from zero, these equations
are equivalent to (33.3), which establishes the theorem.
If we write equations (33.3) in the form

)/
akj A = en Anlj,
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multiply by en4n;, sum for % and make use of (29.4), we obtain

’

(83.12) @y = ; eh O Anji Anjj.

When both of the forms (33.6) are indefinite, there is a possibility
that the elementary divisors are not simple. We consider this case
for 4-spaces and it can be shown that the results are general, If
one, or more, of the elementary divisors are multiple and real at
a point P, a real coordinate system can be chosen for which at P
the;f coefficients of the forms are of one of the following types.*

ype 1.

Gz — 17 gss = ks, Jaa = k4,

ty — kl? s — 01, Ogg = [ ks, Agqg = 04 k4’

Wwhere the &’s are constants, all the other g¢'s and a’s being zero.
The elementary divisors are (¢ — g,)%, (0 — os), (0 — o04).
1°. 01, 05, 04 ¥. The vectors given by (33.3) are

(0,1,0,0), (0,0,1,0), (0,0,0,1),

of which the first is a null vector and the others are not.
2°. 03 = ¢4 'The vectors are the first of the above, and any
vector of the pencil determined by the last two.
3°. 0, = ¢s. The vectors are the last of the above and any
vector determined by the first two. Any vector of the pencil is
orthogonal to (0, 1, 0, 0).
. 4°. o, = @3 = gs. Any vector for which the first component
is zero.
Type 2.
Ge = 1, gsa = 1,
= ki, e = @, gz = ks, asa = g
The elementary divisors are (o—g¢,)®, (0 — g5).
1°. o1 F ¢s. The vectors are (0, 1, 0, 0) and (0, 0, 0, 1), and
both are null vectors.
2°. ¢ = ¢s. Any vector of the pencil determined by the
vectors of the preceeding case.

* Cf. Bromwich, 1906, 1, p. 46.
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Type 3.
Gie = 1, gss = ks, gas = ky,
Az = 01, @os = 1, @33 = 01’!73, Ayy == Q4 k4.

The elementary divisors are (¢ —o)% (0—o0y).

1°. o ¥ ¢s. The vectors are (1, 0, 0, 0) and (0, 0, 0, 1), of
which the first is a null vector.

2°. 0 = @1. Any vector of the pencil determined by the pre-
ceeding two.

Type 4.

17 Y34 = 17
01, Q3 =— l,- Ugy == @1, gy == ky.

g1z
iz

|

There is one elementary divisor (o—e¢,)* and one vector (1, 0, 0, 0),
which is a null vector.

When two or more of the g¢'s are equal, the corresponding
elementary divisors are said to have the same base.

Combining the results of this section and recalling that when
the elementary divisors are simple there are m of them, although
some may have the same base, we have:

The muwmber of principal directions defined by (38.3) is equal to
the number of elementary divisors; when p(>1) of the divisors
have the same base, the vectors corresponding to this base are any
linear combination of p independent vectors; to a divisor which is
not simple there corvesponds a null vector when the base is not the
same as any other, and when it is the same as another base ome
or more of the p vectors is a null vector, according as it is the base
 of ome or more divisors which are not simple.

Thus in case the divisors are simple there are n principal directions,
and only in this case.

If we write

260
(33.13) o — Lukh

giAias’

the finite maxima and minima values of ¢ at a point are given by

the directions for which ai;;— = 0, for j = 1,..., n, that is,

(45— egy) # = 0.
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Hence we have:

At a point the finite maxima and minima of ¢ defined by (33.13)
are given by the principal dirvections at the point.

If the fundamental form is definite, ¢ is finite for all directions.
’ If it is indefinite, ¢ is infinite for all null directions, except those
which are principal directions; this exception arises when the
elementary divisors of (83.1) are not simple.

34. Geometrical interpretation of the Ricci tensor. The
Ricci principal directions. Let 25" be the components of any
unit vector, and i for k = 1,-..,n;k+ h, the components of
n-—1 unit vectors forming an orthogonal ennuple with the given
vector. The Riemannian curvature at a point for the orientation
determined by 45’ and any vector iz°, denoted by 7, is given
by [ef. (25.9)]

IS

(34.1) rnie = enek Rpgrs lhlp o ? lhlr Ail”

Since the right-hand member of this equation is zero for & = £,
we assume that rm, = O.
In consequence of (29.5) we have

1, Rl . : .
(34.2) ; Thie = €n qurs lh|p Z'h| ’ gqs = —é€n Rij )"hl ;“hl‘)'

Hence > r,, is the sum of the Riemannian curvatures determined
k

by the vector lmi and »—1 mutually orthogonal non-null vectors
orthogonal to it; moreover, from (34.2) it is seen that it is in-
dependent of the choice of these n—1 vectors. We denote it by o
and call it the mean curvature of the space for the direction ix°.
This result is due to Ricei,* who gave this geometrical interpretation
of the tensor which Einstein chose later as the basis of the general
theory of relativity.
If we write (34.2) in the form

_ Ryh'

34.3 . op = - _
(84.5) ¢ g " Ay’

*1904, 2, p. 1284.
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we see (§ 33) that the finite maximum and minimum values of the
mean curvature correspond to the principal directions determined
by the Ricci tensor, that is, the directions given by

(34.4) By + egy) ¥ = 0.
From (33.12) it follows that for these principal directions
(34.5) By = '—;eh O Anji An)j.

We call these the Ricci principal directions of the space.

A necessary and sufficient condition that the prineipal directions
for a temnsor a; be indeterminate is that a; = gg;. In this case
we say that the space is homogeneous with respect to the tensor ay.
We have at once:

A mecessary. and sufficient condition that a space be homogeneous
with respect to the Ricci tensor s that

(34.6) Ry = —:;Rgij,

that s, that it be an Hinstein space (cf. Ex. 2, p. 92).
35. Condition that a congruence of an orthogonal

ennuple be normal. By definition a congruence of curves in

aVy is normal when they are the orthogonal trajectories of a family
of hypersurfaces f(z', - - -, ") = const. If da* are the components
of any displacement in one of these hypersurfaces, then

of o i
(35.1) L dai = 0,

Consequently if lnf are the components of a normal congruence
of an ennuple, we must have

0
(85.2) 3£ = J,i = .“flnh’,

where p is an invariant (§ 14), and from (35 1) it follows that f
must be such that we have

(35.3) Xn(f) = &* Bf’ =0 (h=1,...,n—1).
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In order that these m—1 equations may admit a solution
which is not a constant, they must constitute a complete system.
A necessary and sufficient condition is that

(Xn, X) f = Xn Xi (f)— X X0 (f)

be a linear function of X»(f) forh, k=1, ..., n—1 (§23). From
(35.3) we have, in consequence of (30.2),
X X (f) = i’ O frg+ i M)
L WA RIA lZel rin A’

1,..,m—1

. . a
= I’ ' fi— 2 ea Yok Xe: (f) — en Vnin BJ:,
Hence
1.0, m—1 of
()(h, Xk)f == 2 Ce (}’ochk—}’tvkh) Xo (f) + en (}’nhk }’nkh) 35 .

Since 4, is not expressible linearly in terms of lmi for h=1,...,n—1,
6_,Sf_ is not expressible in terms of the X (f)'s. Hence:

n +

A necessary and sufficient condition that the congruence An° of
an orthogonal ennuple be normal s that

(35.4) Vnhk == }nkh k=1,..,n—1).

From (35.4), (30.2) and (30.15) we have:

A mecessary and sufficient condition that a geodesic congruence Any
be normal is that Ayi; be a symmetric tensor.

Suppose that the conditions (35.4) are satisfied. Equating the
expressions for f,; obtained from (35. 2) and for f;; from f,; = pan,
we get

t,j Anji + B At j = 5 Anjj+ 1 dnyjie

Multiplying by }m|j and summing for j, we have, in consequence
of (30.2) and (30.3),

al
(835.5) en aoj;” = v hnyi— Zel}’lrm Ay, v =y’ Py Jlog,u,
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Expressing the condition of integrability of these equations, we
obtain

V.j Anjp — ¥, Anlj v (Anji, j — An)j )

2 i
+2 el[ Ty — T2 b i (i —hli.j)] = 0.

Multiplying by lh|j lnli and summing for ¢ and 5, we have for the

determination of » the equations
0 97,
(35.6) en Bl '+‘ O 7 han + Y Yhun + Z er Vinn (7!hn _7lnh) =0
asn e 7
Pl =1,....,n—1).

Multiplying the above equation by lh;i }.k|j and summing for ¢
and j we have, in consequence of (35.4), the identities

(35.7) Bhnn __ O iemn + 2 e vim (o —yuw) = 0
osk osn )
(k7 7"7 I = 17 I n_l)-

We consider, in particular, the case when the congruence ln[i is
normal to a family of hypersurfaces f = const.,, where f is a
solution of the differential equation

(35.8) 9 fy = 0.

These have been called isothermic hypersurfaces by Ricei and
Levi-Civita* and are an immediate generalization of isothermic
surfaces as defined by Lamé.t

From (35.2) and (35.8) we have

g7 S = gij (1, Anpi + M}% Eh € Vnhk Muji Axij)
= wjha + M; enynih = 0.

From this equation it follows that » in (35.5) has the value
—% enynhh in this case, and consequently

1
(35.9) 3n%{ == —‘hzeh}’nhh}vnu"‘“;eh Thandni (h=1,...,m—1).

*1901, 1, p. 152.
+1857, 1, p. 1.
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Conversely, if the expression on the right is the component of
a gradient, the function f defined by (35.2) satisfies (35.8). Hence:

A necessary amd sufficient condition that a congruence Anji e
normal to a family of dsothermic hypersurfaces is that (35.4) be
satisfied and the right-hand member of (35.9) be the component of
a gradient.

36. N-tuply orthogonal systems of hypersurfaces. From
the definition of an n-tuply orthogonal system of hypersurfaces in
§ 15 it follows that the curves of intersection of these hypersurfaces
form an ennuple of mutually orthogonal normal congruences. As
there considered the coordinates ¢ are such that the congruences
are the parametric curves. When the cosrdinates are general, we are
able to find the condition that all the congruences of an orthogonal
ennuple be normal by remarking that in this case, as follows from
(35.4), we must have

rwa =y (R U=1,....n; bk 13F).
By means of equations of this form and the identities (30.3) we have
YRRt == Yhk == Yk = — Ykh = {Eh = VEh = — Vhki,

that is, yam = 0. Hence:
A mnecessary and sufficient condition that the congruences of an
orthogonal ennuple be mormal is

(36.1) Y = 0 (h, k,l =1,---,n; h, k,lfi:).*

As remarked in § 15 such an ennuple does not exist in a general 7,
The conditions, in general form, which a ¥, must satisfy in order
that such an ennuple exist are to be found by a consideration of
the equations which the components 4 of the ennuple and the
invariants ymg must satisfy in this case. From (30.6) and (30.7),
when (36.1) hold, we have

(36.2) Rngre b At A’ 1,F = 0 (R ED]

(36.3) Ry Ay gl Ap’ A" = 61” + ep ¥ipp Yrop—€r Yirr Yrop,
Sy

* Cf. Ricci and Lewi-Civita, 1901, 1, p. 151,
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Rm'klzhl ‘1 jllk
(36. 4) jk Al pla ol M .
— YVpp Vot 2 2
Er * 3 sp +el7pll+elepp+%:em7mll7mpp'

Since the left-hand member of (36.3) is unaltered when ! and r are
interchanged, we must have

(36.5)  Llwn_ 7w

2.8y 38 + eLYvll Yipp — Cr Vlor Yrpp = 0’

which is the form of (35.7) for the present case.

The characterization in invariant form of a V, admitting an
orthogonal ennuple of normal congruences is obtained by expressing
the condition that equations (36.2), (36.3), (36.4), (30.2) and

95 lh]i lmj = ¢, i lmi lk|j = 0 ER))!

possess a solution in the »® quantities lhf and the n(n — 1)
quantities yaur.

By means of the above theorem we are able to prove the
following theorem:

If a tensor ay is such that the wroots of (33.1) are simple,
a necessary and sufficient condition that the principal congruences
determined by a; be normal is that the components of these con-
gruences, as given by (33.3), satisfy the equations ’

(36.6) it M Am® =0 (B Lm=1,-..,n;h 1, m+)

In fact, if we differentiate the first of (33.10) covariantly with
respect to 2*, we have in consequence of (30.2), (30.3) and (33.10)

@i " By’ 4 2 e (on — @0) rmp box = O.
¥4
Multiplying by A, " and summing for %, we obtain
(36.7) g5 A’ Ay A ® = (on — €1) 7im (h £ 1),

from which we obtain the theorem.*

* For a discussion of the case where the roots of (38.1) are not simple see
FEisenhart, 1923, 6, pp. 263-280.
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Proceeding in like manner with the second of (33.10), we obtain

ia jak k0en __  Oon
(36.8) @ik An A’ Ay = endy Bk — Mg

We observe that (36.7) and (36.8) hold whether the roots of (33.1)
be simple or not.

37. N-tuply orthogonal systems of hypersurfaces in
a space conformal to a flat space. When the congruences
of a normal orthogonal ennuple are taken as parametric and we put

€

2 )
H;

(37.1)  gi =eHi, g5=0, ¢'= gi=0 G+

the functions H; being defined by these equations, we have

.1 ; L
B71.2)  A'= g, A =0, y=eH, =0 (%)
2

From (30.1) and (15.7) we have

1 oH;

(37.3) Vhii == ez'm Py (R 4: 7).

When expressions of this form are substituted in equations of the
form (36.2), (36.3) and (36.4), we obtain

Rhi}'k =0 (hy i7j7k :*‘)7
R — H( 0*H;  9H; ologH, 0H; 810ng)
hitk — €113 d o o 2t Iy 9k dah
(37.4) (h, 4,k 1),
= E o T (L 0 0 (1 00
B = HaH; [ef?ﬁ(Hh axh) e (H D

rereién BHh 3H1:|
+2 le axl axl ?

where ! is summed over the values 1,-.., % except % and ¢. These
equations follow directly also from (15.8) by means of (37.1).
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We introduce with Darboux* the functions Ay defined by

1 8H; e
(37.5) By = Ay (f + ).
If the V, is an S, equations (37.4) become in this notation
8 Bri L
(37.6) —a_mk—'—/ehkﬁkz = 0,

(hyi, ke F).

8 Brs 3 Bin o
ei 690’;; +en +;eleieh/8lh/8lz =0

Let y¢ be the generalized cartesian codrdinates of the Sy in
terms of which the fundamental form is

(31.7) 9 = cjdy' dy/,

the components in the y’s of the vector 4;’ in the z’s, we have
from the equations

i . oyt
Yy = /-jxka—i/g
and (37.2) iy
g ,
(37.8) oy = HYj'.

For the present case equations (7.14) become

8%yt _ 8yt { l}.
ol ok oxt \jkly

Substituting from (37.8) and making use of (15.7), we obtain

oy ‘ 0 YZ y i .
(37.9) %Y;k—l = B Yu, - aOZJ\ = '_Zejelﬁlj Yy *k % 5.

From (37.8), (87.1) and equations of the form (7.10) we have
(31.10) e Yu' Yy = e,

*1898, 1, p. 161.
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where
(37.11) ey == ex, e =0 k£

If the functions Bj satisfy the conditions (87.6), equations (37.9)
are completely integrable. Moreover it can be shown that any
n sets of solutions satisfy the conditions

¢ij Yi' Yy' = const.

Hence if we take any orthogonal ennuple of unit vectors at a
point, there corresponds a solution of (37.9) satisfying (37.10) and
(37.11), and having the given values at the point. If then there
exists a set of functions H; for which the right-hand members of
(87.4) vanish, and consequently (37.5) and (37.6) are satisfied,
there exist solutions of (37.9) defining an orthogonal ennuple in
S determined by an arbitrary orthogonal ennuple at a point.
Then by quadratures from (37.8) we can find the equations
y* = ¢'(a’, 2%, - - -, 2") defining an n-tuply orthogonal family of
hypersurfaces ' = const. for which the fundamental tensor is
given by (37.1).

The proof of the existence and generality of solutions of
equations (37.6) has been given by Bianchi*. He has shown also
that the solution of equations (37.5) for a given set of functions
B involves n arbitrary functions, each of a single 2. Hence we
have:

In a flat space of n dimensions any orthogonal emnuple of non-
null directions at a point are tangent to the curves of intersection
of the hypersurfaces of an n-tuply orthogonal system.

As a corollary we have:

If a Vu is conformal to a flat space, there exists an n-tuply
orthogonal system of hyperswifaces whose curves of intersection have
a given orientation at a point.t

We shall obtain a characteristic property of any V,, (n >>3) con-
formal to an §,. We have from (28.17) that for any orthogonal
ennuple in such a vV,

* 1924, 3, pp. 625-629.

T Because of the generality of the functions B, and H, satisfying (37.5) and
(87.6) it is evident that the n-tuply orthogonal system is not uniquely determined
by the given orientation.

See

App. 1
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(317.12) Ruijie g Aqt A’ 49 =0 (pra, 7, s %),

that is [Cf. (30.6)].
(37.13) Vpars = 0 (.p’ q, 7S :i:)

We seek conversely the condition that (37.13) hold for every
orthogonal ennuple. To this end we put

la]i = ezfalpli“{‘eq bay’,

Ty = by 4 ady,
(37.14) Byt = er b’ tesdiy’,

iy' = —ddy ey

Expressing the condition that ?aﬂ},d = 0 for every a, b, ¢ and d,
we get
ep Ysppr—€q ¥sar = 0,

(37.15)

€p Cr ¥rppr — CrCqVraqr—€p €s ¥ spps~t€q s Vsqqs == 0 (p,q,r7,s $).

From the first of (37.15) we have
1,.-,n

1
n—9o 2 €q Vsqqr -
- q

(3716) Cp Veppr — n

In consequence of (29.5) we have from (30.6)

i h L
(37.17) Zeq Vsqpr = Bnijic ls|h )'r!’ !/LJ = B Z'91 Z"‘l ’
q

so that (37.16) becomes

1
n—2

i j k
(37.18) €p Rh?’jk lsi h lp| lmJ lr'k = th ls|h 2.,«1 .

If we write the second of (37.15) in the form

(37.19)  ep, e, Vp,0,0,9,

= ep, €p, ¥p,0,7,0, T €y 0, VD,0,0,0, " €p; €0, VD, 0,2,05,
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we can obtain n—3 other expressions for the term on the left
by replacing ps and ps on the right by the respective pairs
P4, P55 Ds; Pes -+ +5 Pn—1, Pui Pu, Ps, Where pi, ps, ---, pn is some
permutation of the integers 1, ..., n. Adding together these n—2
equations and adding 2ep, ep, ¥p,p,p,5, to both sides of the resulting
equation, we have in consequence of (37.17)

— h E n k
(37.20) Nep, €p, Vo, 0,050, = B (efll Z'I’,I 27’1' +ep2 11,2| lp2l )

— 5
(eps €p, Vp,0,0,0, + *t T 6p,, Epy 717”1’31031)“) .

If we add to this the n—1 equations obtained by permuting
the p’s cyclicly in the sequence py, ps, - - -, ps, the resulting equation
is reducible by means of (29.5) to

nP(epl €p, ;,7’11’21’21’1) = 2R—(7l'—2) P(ei’l €p, 71111’)2112111)7

where P( ) indicates the sum of the » terms obtained by the
process indicated above. Hence

(37.21) (’n—l)P(epl 6_1)2 }’plpz_pzpl) == _ZI)/.
The last expression in (37.20) is equal to

P(f’p, ép, J’plpgpgpl)_@pl €p, ¥, 00,0, " Cpyp, VD, 2,241,

— €p,,p, ?’p,.plplp,.+ €p,, €p, V0,03 0, D, *
In consequence of an equation of the form (37.19) the last three
terms of this expression are equal to —ep ep, 7p g5, Hence
(37.20) can be written

] S
(3722) (n——2) €p, ep, Rhijk Z’I’II ‘ ;u1,2i2 ;vp‘z(‘] 2'1’1|k

. R
= R (epl lpl{h lpllk + ep, Z'172|h lpzll) _ -

n—1"

Consider now any point P in V, and choose the cotrdinate
system so that at P g; = e;, g;; =0 (¢ 7). The tangents to
the parametric curves at P are mutually orthogonal, and the
components of the unit vectors in these directions are Az° = 0},
(h,s=1,...,n). From (37.12), (37.18) and (37.22) we have at P
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1 .o
Rup = 0, Buine = ——5 e Bk (h, 4,5, k),
1 eien B
Buin = 5 (eh-Rii+€’/ith)""(n_1) n—2)"

From (28.17) it follows that at P all the components of the con-
formal tensor are zero. Since P is any point, we have:

A necessary and sufficient condition that (37.12) be satisfied for
every orthogonal ennuple in aVa(n >3) is that theVy be conformal
to an Sp.*

Exercises.
1. If ¢ is any function of the x's, the coefficients of o1, g% -.., ¢ and ¢°
in the determinant equation —LI Py 09y | = 0 are invariants of degrees1, ... #

respectively in the second derivatives of ¢; the first of these is 4,¢.
Ricei and Levi-Civite, 1901, 1, p. 164.

2. Show that equations (38.3) can be writteu in any of the forms

(a¢j~9hdi))” t= 01 (a’ij—g;, 6{) )‘Mj = 01 (aij—(,hgij) Ahli = 01

i

where a/ and a” are associate to «,; by means of g,..
3. If in accordance with (29.7) the components of a symmetric tensor a, are

expressed in the form
a’ij = TZZ s 6 ¢, }'r!i l.:[j’
a necessary and sufficient condition that the orthogonal ennuple Aﬂ" consist of
the principal directions determined by a,; is that ¢, =0 (r ¥ ).
4. If there exists for a V, a symmetric tensor a, other than g,, whose first
covariant derivative is zero and the corresponding equation (33.1) has simple

elementary divisors, then the roots of this equation are constant.
Eisenhart, 1923, 5, p. 299.
5. If lM" and 4

. are the components of congruences determined by different
roots in Ex. 4, then y,,, =0 forl=1,..., n. Show also that if 4%, - - -, lmlf are
components of mutually orthogonal congruences corresponding to a multiple root
of order m, then the equations

of =0 k= m+1,..--,n)

'

are completely integrable. Eisenhart, 1923, 5, p. 300.
6. If A, for h,i=1,..., % are the components of »# mutually orthogonal

normal congruences and
M= ah bt

* Schouten, 1924, 1, p. 170.
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are the components of a normal congruence, so also are
B= —akf+bhr
Schouten, 1924, 1, p. 213.
7. If 1,7 are the components of an orthogonal ennuple, a necessary and suffi-
cient condition that the equations

.0
lmla—ﬁ.zo &k = p+1, .-, n)
form a complete system is that
. g =1, P;
7"1'-—7“1"_'0 . J ? 1 4] .
o H @yk:p+11"';”’
In particular, if the congruences J.jl" for j =1, ..., p are normal, these conditions

are satisfied.

38. Congruences canonical with respect to a given con-
gruence. In § 13 we showed that there are oo @ D@12 gets of
n» — 1 mutually orthogonal congruences orthogonal to a given non-
null congruence. In this section we define a particular set of »n—1
such congruences which was discovered by Ricei,* and called by
him the congruences canonical with respect to the given congruence.

Let 4,; be the components of the given congruence and put

1
(38.1) X; = _2‘(lnl7',j+}'n|j,i)'

We consider the system of n-}1 equations in the » -1 quantities
M@ =1,...,m) and ¢

dpi ki = 0
(38.2) ’

(Xy— o gy M- odn; = 0,
of which the determinant equation is

Xu—owgn - Xain —ogn ln]l
( ) 4 (@) Xin—ogm--- Xon— OYnn lnln
ln]l e Z'n|77 0

) Jor aroot w .
If the rank of this determihant is » —r-+1, o is an r-tuple root

in accordance with the general algebraic conditions for a multiple
root.

* 1895, 1, p. 301; also Ricei and Levi-Civita, 1901, 1, p. 154.
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‘We shall show conversely that the rank of A is # — r-+1 for
an s-tuple root of (38.3), when the fundamental form of V,, is definite.
To this end we choose a coordinate system so that at a point P
gu =0 and 4,; = O for ¢ = 2,..., n. At P we have

0 1 0 ... 0
Xn—ogn Xp-.- X

—

(38.4) 0 AXI,L ........ Xnn__. o gnn

Xos — wygor - .- Xon— @ Gon

Xoy— @Y - Xon— O Gnn

Since by hypothesis the fundamental form of V, is definite, so also
is the form g,z da® daf for @, 8 = 2,...,n. From the second
form of 4 in (38.4) it follows (§ 33) that the roots o are real and
that for an s-tuple root the rank of this form is »—»—1, and
for the first form of A in (38.4) the rank is n —r 41, as was te
be proved. If the fundamental form is indefinite and Xy da’ da/
is definite, the same argument applies.

In consequence of this result, it follows that for a simple root
equations (38.2) define a unique congruence orthogonal to 4,, and
for an »-tuple root oo” congruences the components of any one of
which are expressible linearly in terms of the components of r
mutually orthogonal congruences orthogonal to 4, (cf. § 33). Let
wr and oy be two different roots of (88.3) and denote by 4z and i’
the components of congruences corresponding to these roots. In
this case from the second of (38.2) we have

(38.5) (Xij— wn gi) 2l -+ on huj = 0.
Multiplying by 4’ and summing for j, we have

(Xy— ongy) Wl by’ = 0.
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Interchanging % and % and subtracting the resulting equation from
the former, we obtain

(386) 9i lh,z lk]‘] = 0, Xij lmz lk]J = () (h :i: k).
Consequently, the congruences corresponding to two different roots
of (38.3) are orthogonal to one another. Hence:

When either the fundamental form of Vn or the form Xidat dax/
is definite, the roots of (38.3) are real and equations (38.2) define
n—1 mutually orthogonal real congruences orthogonal to the given
congruence Ay°; the comgruences corresponding to a multiple root
are not uniquely determined.

We have also the following theorem:

When neither the fundamental Jorm of Vi, mor the form Xi; dat dat
is definite, a necessary and sufficient condition that equations (38.2)
define n—1 mutually orthogonal real congruences orthogonal to a
given congruence is that the roots of (38.3) be real and the rank
of A be n—r-1 for an r-tuple root.

The congruences so defined are said to be canonical with respect
to the given congruence. When we take them and 4,° for an
orthogonal ennuple and apply (30.2) to the definition (38.1) of
Xij, equations (38.5) become

. 1
(587) —2— MZLQM (}’nhm+ J/nmh) lm{j—am ;uhjj‘+‘ (43 l"lj = (),
Multiplying by lkﬂ for k+ %, k4 n and summing for j, we get

(38-8) Vnrte =+ ¥win = 0

From (38.7) follow also

Ik=1,.-.,n—1; h k).

1

(38.9) Wy = e }’nhI'L, on — 9 €n Yhan.

Conversely, if (38.8) are satisfied, the n—1 congruences of com-
ponents A for » = 1,..., n—1 are canonical with respect to
Jn’. Hence:

* Ricci, 1895, 1, p. 302; Ricci and Levi-Civita, 1901, 1, p. 155.
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A necessary and sufficient condition that the congruences lh(i Sor
h=1,.... n—1 of an orthogonal ennuple be canonical with
respect to the congruence Ay " is that (38.8) be satisfied.

From (38.8) and (35.4) follows the theorem:

A necessary and sufficient condition that n—1 non-null mutually
orthogonal congruences My for b = 1,.-., n—1 orthogonal to a
normal congruence be canonical with respect to the latter is that

(38.10) Vot = 0 (k= 1,..-, n—1;h$ k).

As a corollary we have:

When a space V, admits an orthogonal ennuple of normal con-
gruences, any n—1 of these congruences s canonical with respect
to the other one.

39. Spaces for which the equations of geodesics admit
a first integral. If each integral of the equations (17.8) of the
geodesics of a space satisfies the condition

dx™ da’m
"no ds ds

(39.1) dr,... = const.,

the equations (17.8) are said to admit a first integral of the mth

order. From the form of (39.1) it is seen that there is no loss.

of generality in assuming that the tensor a,...,, is symmetric in
all the subscripts. If we differentiate (39.1) covariantly with

respect to z*, multiply by %ﬁi, sum for % and make use of the

equations of the geodesics in the form (17.11), we obtain

da’ dx'm  dak

a?"l---i‘m,k ds oo ds ds fp— 0.

Since the equation must be satisfied identically (otherwise we
should have the solutions of (17.8) satisfying a differential equation
of the first order), we must have

(39.2) Par,...r, 1) = 0,

where P indicates the sum of the m -+ 1 terms obtained by per-
muting the subscripts cyelically.
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In particular, if (39.1) is of the first order, that is,

dxt
39.3 i =
(39.3) = const.,
the condition (39.2) is
(39.4) aij+aj; = 0.

The question of integrals of the first order is considered in § 71.
In this section we are interested primarily in the case when (39.1)
is quadratic, that is,

~ dot dx’
39. g O =
(39.5) TR Pl const.,
for which the condition (39.2) is
(39.6) aij, 1+ @i+ awi g = 0.

We consider the case when a; are such that the elementary
divisors of (33.1) are simple, and make use of the orthogonal
ennuple defined by (33.3). We observe furthermore that equations (39.6)
are equivalent to the equations

(39.1)  (ag,s+ i+ axi ) Ay’ Ag’ A" = 0 waer=1..-,n),

since the determinant of the A's is not zero. By means of (36.7)
and (36.8), according as p,q, v+, r =pFq and p=gq=r,
equations (39.7) become

(39.8)  (0p—09) 7pgrt(0qg—0r) Yerpt+{er—0p) ¥rpa =0 (p,0,7 %),

a¢
(39.9) @3£+2@—@wm—w (»+ 9,
(39.10) e
3sp

Conversely, when equations (39.8), (39.9) and (39.10) are satis-
fied, then a; defined by (33.12) satisfy the conditions (39.6). The
problem of finding all V,’s admitting a quadratic integral consists
in finding a tensor g; and an orthogonal ennuple lmi for which
the coefficients of rotation ym, and Ay’ satisty the conditions
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App. 13
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obtained by the elimination of the ¢’s from (39.8), (39.9) and (39.10).
The general solution has not been obtained, but we shall consider
two particular solutions of the problem.

If all the ¢’s are equal, equations (39.8) are satisfied identically,
and from (39.9) and (39.10) it follows that the common value of
the ¢’s is constant. Then from (33.12) and (29.3) we have a; = 0gy;.
This is the result obtained in § 17, namely, that (17.9) is a quadratic
first integral of the equations of the geodesics.

If we assume that all of the ¢’s are different and the principal
congruences determined by a; are normal, it follows from (36.1)
that (39.8) are satisfied identically. When we take the normal
congruences for the parametric curves, and make unse of (37.1),
(37.2) and (37.3), we have from (39.10) that ¢; is independent
of af, and from (39.9) that H;/(o;—e;) is independent of z/.

A solution of this problem has been given by Stickel* as follows:
Let ¢ for j=1,..., n be arbitrary functions of «* alone such
that the determinant @ of these n® functions ¢; is not zero. If
9% is the cofactor of ¢; in @ divided by @, then

0 1 ik

for a given value of & different from 1 satisfy the conditions

above stated. From (33.12) and (37.2) we have
2 gtk L
(39.12) aii = e o Hi = ¢; [Caek a; =0 (Z+7).
Since % can take the values 2, ... n, there are n—1 quadratic
first integrals other than the fundamental form.
We recall that the conditions of the problem are that the ¢’s
be different, that ¢; be independent of zf and that

H = fu (@—e) = .. = Si-1i(0i — @i-1)
(39.13)
= fitril@i—eit1) = - = fui (0i — on),
where fi; is a function independent of «* for 4,k =1,...,n;7 F L.
From (39.13) for a given ¢ and from

* 1898, 1, p. 486.
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Hf = filg—e) = - = fi-jlg—g-1) = -+

(39.14) coo= fui (0j—en)

for a given j, we get pairs of equations of the form

Ji e Ju g .
Jio__ Qi Si _ e—o .
fki 0 — ¢ ’ fkj 0 — 0 (l7=77 :‘:)y
from which follows
Ji | Ji
39.15 i Sfi g
( ) S - S

Again eliminating (o; — ¢;) from (39.13) and (39.14), we obtain
H}f;-+H fi = 0. Replacing 4,; by j,k and ki respectively
and eliminating H;, Hf and Hx, we get

Sy Sm fii _
(39.16) Yy 1.

The problem reduces to the solution of these two sets of functional
equations. Di Pirro* has shown that (39.11) and (39.12) give the
general solution of the problem for » = 3.

40. Spaces with corresponding geodesics. From equations
(17.7) it follows that the equations of the geodesics in a space 7,
in terms of any parvameter ¢ are :

do/ d*«*  da’ d*a)

dt A dt de

(40.1) 7\ dx/ i dw") dat da™
+({1m}ﬁ—{lmf dt

dt dt

If V, is a second space with the fundamental form
(40.2) ¢ = gyda da,

the equations of its geodesics are analogous to (40.1), and are

lzm} in (40.1) by the Christoffel symbols

* 1896, 1, pp. 318-322; he states without proof that the same is true for
any # and considers also the case when the roots are not simple. The reader
is referred to this paper and to Levi-Civila, 1896, 2, p. 292.

obtained by replacing {
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J\l } formed with respect to (40.2). In order that every set of

solutions of (40.1) define a geodesic in V., the equations

[ {z )_dﬁ'_(T}_ j })dwi]ix_lda;’”:
(40.3) [(umf lm} dt {Zm {lm dt | dat at
must be satisfied identically.

If we subtract equations (8.1) from the corresponding equations
for V,, the resulting equations may be written

(j l} { }) daf oa) da*
ijl] sat aa’® bat

FAETPARE

are the components of a tensor, symmetric in

(40.4) {;} —J » }

Hence if we put
(40.5)

the quantities a’,;
7 and .

When the expressions (40.5) are substituted in (40.3), the latter
can be written

oo dat o dat da™
i J -
Ok @m) 0 ~ar ar

(6IJG a/zlm -

Since these equations must be satisfied identically (cf. § 39), we
must have

67{: alem + fV a mk+ dgn azlkl = Ok a/JLm "}‘ 63 almk+ 62)1, avlkl .
Contracting for j and m, we get
i ; i
ax = 0 Wi+ 0 Yy,

where ¥ is the vector ajl,-/(1z+1). Hence in order that equations
(40.3) be satisfied identically, it is necessary and sufficient that

)\

4046) =1 +owtav,

SR 4

I
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where 1; are the components of a vector.* If now we contract

for 7 and j we have in consequence of (7.9)

dlogg  dlogyg _
(40-7) a xi - a xi + 2 (" + 1) 1/]7)
where g = |gy|. Hence ; is the gradient of a function v, that

is, ¥ ;, since g/¢g is an invariant.
Expressing the condition that the covariant derivative of g; with
respect to @/ and the form (40.2) is zero, and replacing the symbols

{zl]} by their expressions (40.6), we get the following equations
equivalent to (40.6):

(40.8) giwj = 29w Wi+ gk Yot g5 Y,

where gij is the covariant derivative of gu with respect to a2/ and

the fundamental tensor g; The conditions of integrability (11.15)
of these equations are reducible to

(40.9) Jmik Rmijl—{*iim Rmkjl = g5 Y — ﬂ_—il Wiy +.’77fj Ya— .a’fl Yij,
where we have put
(40.10) Yij = P5— P,

If we denote by R™; the Riemann tensor for g;, we have
from (40.6) and (8.3)

(40.11) R = R+ 00" wy— 8" wa.

From these equations it follows that (40.9) is equivalent to the
identity Ruj—+ Ry = 0.
When 7, is of constant curvature K,, we have from (27.1)

(40.12) Ry = Ko(0}" ga— o7 gy)-

In this case (40.9) and (40.11) reduce respectively to

g Aat __Ekl A+ gij Ai— ga A = 0,

40.13 _ -
( ) Bt = gnj Ada— g Ay,

*Cf, Weyl, 1921, 4, p. 100; also Eisenhart, 1922, 6, p. 234 and Veblen, 1922,

7, p. 349.
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where
(40.14) 4y = Kogy— Yy.

Multiplying the first of (40.13) by g/* and summing for j and %,
we find that
(40.15) 4j = egy

where ¢ is an invariant. Hence the second of (40.13) becomes
Rujt = o (gij ga—gm g5) and from § 26 it follows that ¢ is a
constant and V, also is a space of constant curvature. Hence we
have the theorem of Beltrami:*
The only spaces whose geodesics correspond to the geodesics of a
space of constant curvature are spaces of constant curvature.
From (40.8), (40.10), (40.14) and (40.15) we have for ¢ + 0

(40.16) Yoy = 2 Wi Y+ Y iVt Yr ) —4Y Y Y
—K, Qg ¥,;+ gjx Wi + 95 ¥, 0)-

In consequence of (40.12) the conditions of integrability (11.14)
of (40.16) are of the form

(40.17) Yge— a5 = Ko (W5 gi— Y.k g

which are satisfied identically by (40.16).
For ¢ = 0 we have from (40.15), (40.14) and (40.10)

(40.18) Yy = Y ¥+ Kogy,

which are readily shown ‘ta satisfy the conditions (40.17). Hence
according as we have a solution v of (40.16) or (40.18) we can
find a space of constant curvatare different from or equal to zero
with geodesics corresponding to those of V,. In the former case
g is given directly by (40.15) and in the latter by the solution
of (40.8). _

When ¢ in (40.15) is K,, V. has the same curvature as V.
From the considerations of § 27 we may think of (40.15) and
(40.14) for a given solution of (40.16) as defining a correspondence
of V, with itself such that geodesics correspond.

* 1868, 1, p. 282; also Struik, 1922, 8, p. 140 and Schouten, 1924, 1, p. 204.
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Contracting (40.11) for m and /, we have

(40.19) By = By+(m—1) ;.

If the expressions for vy from (40.19) are substituted in (40.11),
we find that

Wlijk =W lijlc,
where

. 1
(40.20) Wi = Rlyjp— sy (0% Ryy— 0 Rax).

This tensor was discovered by Weyl* and called by him the
projective curvature tensor.

In order that the components of Wlij]g be zero, in which case
Weyl calls V, a projective plane space, it is necessary and suf-
ficient that

1

(40.21) Buge =
—

1 (gr1 Bij— g Ba).

Since we must have Ry = 0, we find that for n > 2
Ry = egy

and consequently V;, is of constant Riemannian curvature.t

41. Certain spaces with corresponding geodesics. We
return to the consideration of equations (40.8). If we put
¥ = —}logu, the equations become

(41.1) 2ugi,; -+ 2gmp -+ g, + g = 0,

and from (40.7) we have
1

(41.2) p o= C(L) "H,
g

where ' is an arbitrary constant.

* 1921, 4, p. 101.
+ Of. Weyl, 1921, 4, p. 110.
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We assume that the elementary divisors of
(41.3) l95—egyl = 0

are simple and denote by lh;i the components of the orthogonal
ennuple defined by equations of the form (33.3). Equations (41.1)
are equivalent to the system obtained by multiplying (41.1) by
Ap' Ag* Ay’ and summing for 7, j and %, for p, ¢, r = 1,---, n
(cf. §39). According as we take p,q,r ¥, p=qFr,pFog=7r
and p = q = r, these equations are reducible by means of equations
analogous to (36.7) and (36.8) to the respective equations

(ep—eq)¥per = 0 (», a, » +),
0
3 (Au’gp) = 0 (p * q)y
8q
41.4 3
( ) 2u(ep—0¢) 7pagt Gq“—ag)' 0 = 0 (E )R
a 2 J—
asp (‘u/ Q}J) - O

We consider the case when the roots of (41.3) are simple.®
From the first of (41.4) it follows that y,e = O for p, g, r+,
and consequently the principal congruences are normal [cf. (36.1)].
If we choose these curves as parametric, equations (41.4) reduce,
in consequence of (37.1) (37.2) and (37.3), to

G S
57 we) = 0, G+ 7.
0 log H; 00; L
(41.5) 20i—e)— 7 T =0 G F ),
9 8oy .
v (w o) = 0.

From the first of these equations we have

1
(41.6) e =

* This case and the case of multiple roots when the fundamental forms of
V,and V, are definite have been treated by Levi-Civita, 1896, 2, pp. 255-300.
We refer the reader to this paper for the case of multiple roots.

R
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where ¢; is a function of a¢ alone, and from the third and (41.6)
that w/¢; is independent of 2%, Hence

(41.7) o= Cpy - P,

where ¢ is an arbitrary constant. From (41.6) and (41.7) it follows
that the second of (41.5) becomes

3 log HY
ox’

0
(41'8) - 5o IOg (q’j_(Pz')-

Hence if [];(9;—9:) denotes the product of the factors (y;—¢:)
for y =1, ..., » (jF17), we have that Hf/HJ'.(qaj——q»i) is at
most a function of 2¢ alone. Consequently the codrdinates a¢ can
be chosen so that, in consequence of (37.1),

419  gu = e H; = a|[1;(9i—9)l, gy = 0.
These expressions for H; are not changed if we replace ¢; by
¢;-- @, where o is an arbitrary constant, for =1, ..., n. Then

from (33.12), (41.6), (41.7) and (37.2) we have

— e 1
41.10) g = i @i—w
( ) Yii 6(931+ a) i — ((Pn+a) fpi'l'a' }I_I, (93.1 931)!7
95 = 0.
If we put
ay = p* gij,

from (41.1) it follows that a; satisfies the condition (39.6). Con-
sequently
1,--.,0

(41.11) 12 e (p1+a) - (pim1+0) (9iy1+a) - - -

, dxi 2
(k) [T (=99l (5] = const
is a first integral of the equations of the geodesics of V, with the

fundamental tensor ¢;. Since (41.11) must be a quadratic first
integral whatever be ¢ and the left-hand member is a polynomial
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of degree » —1 in a a, it follows that the equations of the geo-
desics admit n distinct quadratic first integrals.*

In the case just considered corresponding parametric hypersurfaces
of V,, and V, are n-tuply orthogonal. We shall obtain other solutions
satisfying this condition. From (15.7) and (40.6) in which v; is
replaced by the gradient of — logu, we have the following set
of conditions:

L 9gs _ 1 Ogu S

O Noods = —2 logJi 4

@41.12) 5710875 = 5 7log ] @+
0 - @ Gii
Py IOggu — oL log ‘uz .

We consider first the case when every gy is a function of all
the coordinates. Expressing the condition of integrability of the
last two of (41.12), we find that » must be of the form (41.7),
and then from these equations we have

— __ Ga
(41.13) gii pat
to within negligible constant factors. Then from the first of (41.12)
we have
9 9
WIOg!]ii = 3 log (p;— 2).

Comparing this equation with (41.8), we obtain equations (41.9)
and (41.10).

Suppose now that gee for ¢ =1, ..., m are independent of z® for
6=m-1, ..., n, then from the first of (41.12) it follows that gee
are independent of z¢. Proceeding as before, we find

_ Gex

“L14) p = o192+ Pm, oo = ¢a|[Tp (95— 91, ‘%“"—w

(¢, 8 =1,..., m).

* Cf. Levi-Civita, 1896, 2, p. 287.
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For the other ¢'s we have from the first of (41.12) and (41.14)

0gesc 1 dges
dx®  geu dx%’
@) q;“ .
T sa g g GT=mALmco),

and from the second and third of (41.12) we have ges = cs 2%,

w
From the second of (41.15) it follows that all the constants ¢ must
be equal, say 1/c. Then from the first of (41.15) we have

dlogg. ]
806"‘“ Y log (¢e— ¢).
Hence
1,...'m
(41.16) gos = 1] @a—0)fo (6 =m+1,--, ),
[+4

where f; are arbitrary functions of z7+, ..., on
From these results the general form (40.2) is obtained similarly
to (41.10) by replacing ¢; by ¢;+ e in the expression for w.

Exercises.

1. Solve equations (40.8) for the case where V, is of constant Riemannian
curvature K, 4+ 0 and V, is a flat space.

2. Determine solutions of (41.12) other than those given in § 41.

3. Show that if 4’ are the components of a geodesic congruence, then

B@ k) =0,

and consequently the determinant Ili,j+lj,il is zero.
4, If lnli are the components of a geodesic congruence, the congruences can-
onical with respect to it are given by [CE. (88.2)]

(Xij—wyij) M=0.
In particular, the congruence A} satisfles this equation for @ = 0.
Ricci, 1895, 1, p. 301.
5. If 1,,, are the components of an orthogonal ennuple in a V,, a necessary

and sufficient condition that the congruence of components u, = a? 4,,; be geodesic
is that the invariants a* satisfy the equations

oa®
k £ 77 e i d
a lkl € Vi @

Ricei, 1924, 6.
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6. A necessary and sufficient condition that the cougruences A, If for
a =1, -+, n—k of an orthogonal ennuple be normal to oc"—* sub-spaces V, is that

(e=1,+,n—kjo,t=n—k+41,: -, n).

Levy, 1925, 8, p. 41.

7. If every set of n—k congruences of an orthogonal ennuple are normal
to com—* sub-spaces V,, then all the congruences of the ennuple are normal.

Levy, 1925, 8, p. 42.

8. If o, is a multiple root of order m of equation (83.1) and all the elementary

divisors of this equation are simple, in order that m mntually orthogonal con-

gruences corresponding to o, be normal’ it is necessary that any m independent

congruences A ‘ for » =1,-+m corresponding to this root and any n—m

independent congmences correspondmg to the other roots satisfy the equations

Yoar = Vrac

S ik ; ry 8§ =1, ¢, m;
@y’ Ap? =47 00 = 0 h’—s_— m—i—’ly .. . 7; )
Eisenhart, 1923, 6, p. 265.
9. If the roots of equation (33.1) are simple or double and the elementary
divisors are simple, a necessary and sufficient condition that there exist a normal
orthogonal ennuple whose components satisfy (33.3) is that any orthogonal ennuple
satisfying (33.3) shall satisfy (36.1) and (36.6) in whick 4 and %, % and ! respect-
ively do not correspond to the same root, that the equations of Ex. 8 be satis-
fied and that (86.2) be satisfied, when ! and p refer to the same double root, and
q and # to any other root or roots. Eisenhart, 1928, 6, p. 267.
10. If the congruences i, ‘ for e =1,...,n—1 of an orthogonal ennuple
are normal, they are canonical with respect to the congruence 4 °.
Ricci, 1890, 1, p. 308.
11. If for a V, the equation | R, +eg,| =0 admits a simple root o, and a
triple root o,, the elementary dmsors being simple, and the principal directions
corresponding to o, and o, satisfy the respective conditions

b b =1, gyl h =1 h=234),

1] "1 7 m TRy

then
1
R{j—' _2_9in = ((’2 1) A]],: 1|,+ ((’1+92)yij'

Such a V, may be interpreted as the space-time continuum of a perfect flnid
in the general theory of relativity, the congruence 4, ° consisting of the lines
of flow. Eisenhart, 1924, 4, p. 209.
12. When the fundamental form is defined by (89.11), the determination of the
eqnations of the geodesics in finite form is reducible to quadratures (cf. Ex. 8, p. 60).
Stickel, 1893, 2, p."1284.

13. Show that the quantities

o] 1 ! Lt
I = = odid - e adu)

* and that this applies to every root.
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have the same values at corresponding points of two spaces in geodesic cor-
respondence, and that for a new set of codrdinates @ the correspouding func-

tions H‘g;, are given by
xf yype O , Oxi  dx
dx'® du'B =T o2'® [T, dw'® dx'B
1 <8logA ot 9 log 4 8:1:‘)
n41\ dx'® o8 2’8 xe/
T. Y. Thomas, 1925, 9, p. 200.

g

where 4 is the Jacobian

dx'e
14. By expressing integrability conditions of the second set of equations in
Ex. 13, derive the tensor W, defined by (40.20).

J. M. Thomas, 1925, 10, p. 207.
15. For the parameter f, defined along any geodesic by

t = fe_-"%f{l,i}‘w‘ds

the differential equations of the geodesics are

2 , dx?!  da?
H =0,
ik

de at T dt

where the functions rl'jk are defined in Ex. 13.
T. Y. Thomas, 1925, 9, p. 200.
16. Show that the parameter ¢ in Ex. 15 is the same for spaces in geodesic

correspondence.

17. Show that at corresponding points of two spaces in geodesic correspondence
a coordinate system % can be established such that the equations of the geodesics
throngh the given points in the two spaces are given by y* = %'¢, where 7 are
constants and ¢ is the parameter defined in Ex. 15; show also that the equations

PLyly =0
are satisfied identically, where P; are the fonctions for the y's analogons to
H in the x's defined in Ex. 18, (Cf. § 18).
Veblen and Thomas, 1925, 11, p. 205.
18. Show that the quantities H in Ex. 13 behave like the components of
a tensor under linear fractional transformatlons of the coordinates, and under

them alone. Veblen and Thomas, 1925, 11, p. 206.
19. A necessary and sufficient condition that there exist for a ¥, a symmetric

tensor g, where |§,..| 4+ (0, whose first covariant derivatives are zero, is that
dat daxd

the equations of the geodesics of ¥, admit the first integral gwdw d%.: const.
ds

and that the Vn with g, as fundamental tensor admit geodesic representationon V.
Levy, 1926, 1.

20. For a space of constant curvature # O the only tensor g, where |§,|+ 0,

whose first covariant derivatives are zero is given by g, = ¢g,;, where ¢ is a constant.
Levy, 1926, 1.
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21. A necessary and sufficient condition that a Riemannian space admit a
symmetric tensor a, other than g, whose first covariant derivative is zero and
such that the elementary divisors of the corresponding equation (83.1) are simple,
is that its fundamental form be reducible to the sum of forms ¢, = Iefs datdat,

where g,,; are functions at most of the «’s of that form; then
a, dzrda® = ; O P

where the ¢’s are constants. (Cf. Exs. 4 and 5, p. 124.) [Eisenhart, 1923, 5, p. 303.

22. The congruence corresponding to each simple root of equation (33.1) of
Ex. 21 is normal, and the tangents to the curves of the congrnence form a field
of parallel vectors. Eisenhart, 1923, 5, p. 803.

CHAPTER IV
The geometry of sub-spaces

42. The normals to a space V, immersed in a space V,.
Let V,, be a space with the fundamental quadratic form

(42'1) ¢ = g’ijdxi dxj (27.7 == 17 ct n)
immersed in a space V,, with the quadratic form
(42.2) 9 = aegdy“dy’ (6,8 =1,...,m),*

Va being defined by equations of the form (cf. § 16)

(42'3) yoc = .fa (mly Ty xn),
. e,

where the rank of the Jacobian matrix } ryeat RERC

For displacements in V7, we have
(42.4) s dy* dy? = gy dat dal,
and consequently

ay* oyf

(42.5) 8 oaf 2a T

Since the y’s are invariants for transformations of cosrdinates in Vy,
their first derivatives with respect to the 2’s are the same as their
first covariant derivatives with respect to (42.1). Hence we may
write (42.5) in the form

(42.6) tGap ¥ i85 = gu-

If A% are the components of a vector-field in V,, normal to V,
at points of the latter, we must have (§ 16)

(42.7) Qeg y P = 0.

*In this section Greek indices take the values 1,...,m and Latin 1, ..., n,
unless stated otherwise.
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Since the matrix of these equations in A% is the product of the
matrix [|* ;|| and the determinant

(42'8) & = Iaaﬂ|7

which we assume to be different from zero, it follows that this
matrix is of rank »,* and consequently equations (42.7) admit m—n
linearly independent sets of solutions; that is, there are m —n
independent vectors normal to V, at a point.

We consider first the case when m = n--1 and prove the theorem:

A mecessary and sufficient condition that the normals to a V,
immersed i a Vot form a null vector system is that the determinant g
Jor Vy be zero.

In accordance with the theorem of § 31 it follows from (42.6)
that the determinant g is the sum of the products of corresponding
n-row determinants of the two matrices [|aqsy® || and [lg* Il If
(42.7) is written in the form

y(x:i )ux = 07

it follows from this equation and (42.7) that corresponding deter-
minants of these matrices are proportional to 28 and lﬂ respectively,
and consequently g = oo a? g, where ¢ and o are factors of
proportionality. From this expression for gy the theorem follows
at once (§ 12; cf. § 14).

We consider now the case m>n-1 and indicate by Aq* for
¢ = n-+1,..., m the contravariant components of m —n inde-
pendent vectors normal to V,,. If we put

(42.9) 5 = A" (0,7 = mn+1,...,m),
7| |

where #; are functions of the z’s, the vectors with compopnents é},"
are normal toV,. In order that they be orthogonal to one an-
other, the functions # must satisfy the conditions

8

4 B8 Yo
el by tty =0

1] S
(:“7’}7""79 = n+17"'7m;7"4:9)7

o Eﬂa Eo = Qop

* Bicher, 1907, 1, p. 79.
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which we write
(42.10) Cur b By = 0.

The problem of finding m—n sets of functions tf satisfying this
condition is equivalent to the algebraic problem of finding a self-
polar polyhedron (§ 13) with respect to

(42.11) et = 0.

When the determinant |c,, | is different from zero, there can
be found m—n sets of ¢'s satisfying (42.10), none of which satis-
fies (42.11). Consequently m—n sets of mutually orthogonal vectors
normal to V, exist, none of which is a null vector.

If |c,| = O and the rank of the determinant is m—n—p),
there are p linearly independent vertices of the hyperquadric
(42.11),* and consequently p linearly independent null vectors are
given by (42.9) and m —mn—p other vectors, which are not null
vectors, orthogonal to the former. Thus there are m—n» independent
vectors .36'" normal to V,,, of which p are null vectors. For any
one of these null vectors, say &% we have

e @ B . ¢ 8 6= mn-t1,..., m;
e & &5 = 0 &, Yy . =0 ( o ’).
8 "1 0| «f Sy ‘/17' 2:1’...’”

Since |aqg|+ 0 by hypothesis, we cannot have og Ellu = 0 for
B =1,...,m. Hence there must exist relations of fhe form

a(F §_|u+ bi y(x,i — O’

where all the »’s cannot be zero, otherwise the m—n vectors &:*
would not be linearly independent. Multiplying by aaﬂf ; and
summing for «, we have bég; = 0. Since all the b’s cannot v’anish,
we must have ¢ — 0. Therefore the case |c,, | = 0 is possible
only when ¢ = 0, and hence ¥

When the determinant g of the fundamental form of a V, immersed
n a space Vi is different from zero, m—n real mutually orthogonal
vectors normal to V, can be found nmone of which is a null vector.

* Cf. Bocher, 1907, 1, p. 130.
t Ricer, 1922, 9, 10.

See
App. 14
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Suppose now that ¢ are the components of m—n such mutually
orthogonal vectors normal to V,. The magnitudes of these com-
ponents can be chosen so that

ep l“‘la l“‘lﬂ = &g (G = n-+1, .-, m,

where the quantities ¢, are plus or minus one. Then c,, = 0 in (42.10)
for ¥ v and c,, = e,, so that (42.10) reduces to Ye, i =0
" ~

for g, 0,7 =mn-+1,...,m(@F 7). The problem of finding such
functions ¢ is that of finding an orthogonal ennuple in a space
Sm—n (§26). Each such ennuple determines by means of (42.9)
a new set of mutually orthogonal non-null vectors normal to 17,.
Hence we have:

When m~—n mutually orthogonal unit vectors in Vi, normal to
a Vo tmmersed in Vi, arve known, linear combinations of their com-
ponents, whose coefficients are the components of any orthogonal
ennuple in a certain flat space of m—mn dimensions, are the com-
ponents of another set of mutually orthogonal normal vectors.

From the results of § 13 it follows that any one of these linear
combinations can be chosen arbitrarily, provided that the functions
are such that Zajea ()% £ 0.

43. The Gauss and Codazzi equations for a hypersurface.
Consider a space Vo1 of coordinates y* and a hypersurface V, of
coordinates af defined by the equations

3.1) AT LN

We take (42.1) and (42.2) for the fundamental forms of V, and
Vot respectively, and consequently have the relations

(43.2) aeg Y51 YP; = gy

between the components of the two fundamental tensors.
From the first theorem of § 42 it follows that the normal
vector to V, is not a null vector, since it is assumed that g 0.

*In this and subsequent sections Greek indices take the values 1,.--, 71
and Latin 1,..-,n.
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If &% are the components of the unit mnormal vector, we have
from (42.7) '

(43.3) aaﬁ ?/",i §‘3 == O, aocﬁ §a §‘8 = e

If equation (43.2) be differentiated covariantly with respect to
x* and the g¢’s, we have

aa/ag

ayyl Y e g W P+ e y® ) = 0,

If we subtract this equation from the sum of the two equations
o'btamed from it by interchanging ¢ and % and j and % respec-
tively, we obtain, in consequence of (11.12),

ag Yk Yy H B, rlay® s Py K = 0,
where the Christoffel symbols of the first kind are formed with

respect to a,g and evaluated at points of V,. When this equation
is written in the form

Gug Y71 (y‘”, it { M‘:} Y ?/”,j) =0,
@

it follows from the first of (43.3), since the Jacobian ||, | is
of rank n by hypothesis, that

(43.4) Y = — { l:: }a?/” 2y e s &,

where the functions 2y are thus defined. If these equations be
multiplied by dop £ and summed for «, we obtain

(43.5) Qj = g ¥ y" i+ v, Blay™ iy, B

Since.aaﬁ, 134 .and [wv,B8ls are invariants for transformations of
codrdinates a* in Vy, it follows from (43.5) that £ are the eom-
ponents of a symmetric covariant tensor in the z’s.

If .the first of (43.3) be differentiated covariantly with respect
to x/ and the ¢’s, we have
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App. 156
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0 (laﬂ

8y
= —y* iy, & (e, 8la+ (8, ala),

(43.6) 0g 1" 5 & +aag i ¥ = — v iy ;¥

in consequence of (7.4). By means of this result equations (43.5)
are equivalent to

(43.7) Ly = —aogy”i &, —Bv,ula v i/ &
These equations can be written in the form

o B B \ Mok 0
(43.8) g y”,i |5 + v }ay JE) = —

If the second of equations (43.3) be differentiated with respect
to z/, the resulting equation is reducible by considerations similar
to those used in (43.6) to

< of ﬂ W =y

From this equation and the first of (43.3) it follows that

»ﬁ fb . ’ — k. B .
s ’J+{FV}J = A%y’ x,

where the 4’s are determined by substitution in (43.8); in con-
sequence of (43.2) we have

i [ ;

Hence we have

.. B8 W
(43.10) #; = —ygmy ””—Jl py }ay N

In order to obtain the conditions of integrability of (43.4), we
make use of the Ricei identity (§ 11)

(4311) Y e — Y = Y m g’"h -Rhijk,

ci S n e e S
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where By r are the Riemann symbols of the first kind formed with
respect to the g¢’s. Substituting from (43.4) and making use of
(43.4) and (43.10) in the reduction, we obtain

Y% m g™ [Buge— e( 2y Que— 2ne 24)] — e 5 (4,6— 2 j)

—e A
— kK wa y‘u,i y”’j y.x=0,
where the components Ra/,,,;, are formed with respect to .z and

evaluated at points of V,. If this equation be multiplied by Qop f 2

and summed for «, and again by a,g Eﬁ, we obtain the two sets
of equations (after changing the indices)

(43.12) Rym = e(Qu u— 2 Q)+ lhyﬁyd Y ./ WY ./ Wb

— , P
(43.18) Dije—Liej = Rogpo v 0 U &

In consequence of these equations the conditions of integrability
of (43.10) are satisfied.
When V,4; is a euclidean 3-space and the ’s are cartesian

cotrdinates, equations (43.4) become
(43.14) Yy = Q.

These are the Gauss equations* for the surface, where in accordance
with the customary notation

(43.15) ' = wu, a*=v, @y =D, 2 = D, 2 = D"
In this case equations (43.12) reduce to the single equation

(43.16) Ry = DD"—D?,

the equation of Gauss, and (43.13) to the equations of Codazzi

(43.17) Qy— ;= 0.7

*1909, 1, p. 154.
+1909, 1, p. 155.
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Accordingly (43.12) and (43.13) are called the equations of Gauss
ond Codazz: for the hypersurface V,; they were established first
by Voss.* Also the quadratic form

(43.18) Y o= Qydx*dx)

is called the second fundamental form of V,.
When V., is a space of constant curvature K, we have
from (27.1)

(43.19) R—uﬁ;,,; = Ko (®oy 0ps— tap tgy) -
Because of (43.2) and (43.3) equations (43.12) and (43.13) reduce to

(43.20) Ry = e(Qu 21— Ly L) + Ko (g g1 — g gje)
and
(43.21) Qin— 2y, = 0.

44. Curvature of a curve in a hypersurface. Consider
a non-minimalt curve C lying in a V,, and defined by the «’s as
functions of the arc. When these expressions are substituted in
(43.1), we have the y's of the enveloping space V.41 as functions
of s. Consequently

dy® _ dar?
ds =V ds

Since the left-hand member is an invariant in V,, we have by
covariant differentiation with respect to x/

(dy"‘) e dat (ﬂ_ﬂ_ﬁf_)
ds | ;= YV 7as A WP 5

Substituting for y® ; the expression from (43.4), multiplying by

ax
%; and summing for j, we have

* 1880, 1, p. 146; cf. also Bianchi, 1902, 1, p. 361.
+ For the method of proceedure when C is minimal see the first foot-note
of § 24.
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By () d dy

ds? twl, ds  ds
-y = ¢ QyE® dat dx’ + (d xz_!_{ ¢ } ds’ _dxk)
AP v jkfyds ds )

From § 20 it follows that the left-hand member of this equation
is the component 7% of the principai normal of C in V,41, and
the expression in parenthesis on the right is the component w? of
the principal normal in V,. The first curvatures of ¢ in V, and
in Vuyy respectively are given by [cf. (20.8)]

1 e 1
44.2 — = V' gypt — = Qg 1% 78 |,
(44.2) o L gy 1t 1], p V]aws 7% 78]
The former of these is called the relative cwrvature of C with
respect to V.

If we put 1t da
1 x da’
(44.3) D R TR P
it follows from (44.1) that 1/R is the component normal to V, of
the first curvature of C in Vyy1. Its value at a point P is the
same for all curves of V, through P with the same direction.
Accordingly it is called the normal curvature of V, at P for a given
direction. From (44.1) we have:

The mormal curvature of o hypersurface for a direction s the
Jirst curvature in the enveloping space of the geodesic of the hyper-
surface n this direction.*

If we denote by 7* the components in the y’s of the vector u,
that is,

44.4) 7% = py®s,

equations (44.1) can be written
b1

44.5 ¢ = ¢—
(44.5) U 7 T
The vector 7% is called the relative curvature vector.
* These results and those which follow are immediate generalizations of well-

known ideas in the theory of surfaces in euclidean 3-space. Cf. 1909, 1,
pp. 131-133.
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If the vectors 4% and * are not null vectors, in consequence
of (44.2), equations (44.5) can be written

(44.6)

where now 5* and ® are the components of the unit vectors in

their respective directions.
Since the vector of components 4% lies in V,, we have

Aap & ’_qgﬂ = O,

and from (44.6) it follows that the principal normal in Va4 is
yne of the directions in the pencil of directions formed by the
orthogonal vectors & and 7% If we put

a,58% 77 = coso, aagn®7” = c0s7,

we have from (44.6)

1 C0S G 1  ecosco
.0 R~ o ¢ e
where a,57%7" = &. '
If the fundamental form for V,4: is positive definite, we have
e = 1, cose = sine, and consequently

1 Cos o 1 _ sinc
(44.8) B o o o

The first of these equations is the generalization of Meusnier’s
theorem to curved spaces of any order and the second shows
that the curvature of C relative to V;, is a generalization of the

geodesic curvature of C.*
45. Principal normal curvatures of a hypersurface and

lines of curvature. The principal directions in V, determined
by 2, are given by

(45.1) (Rh 'Qlj—glj) lhli = O’

*1909, 1, p. 118.
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where R, are the roots of the determinant equation
(45.2) | R 2y— gyj| = 0.
From § 383 it follows that Rj are the maxima and mlmma values
of the radii of normal curvature defined by

1 QN
(45.3) B = o

and 4" defined by (45.1) are the corresponding directions. The
roots of (45.2) are called the principal radii of normal curvature
of Vu. The curves of the congruences determined by 45" are called
lines of curvature of V,,. If the roots of (45.2) are simple, there
are n uniquely determined families of lines of curvature, and their
directions at any point are mutually orthogonal (§ 33). If a root
is of order » and the elementary divisors are simple, the corres-
ponding principal directions are linearly expressible in terms of
r directions, orthogonal to one another and to the directions
corresponding to the other roots. If the elementary divisors are
not simple, which can happen only for certain cases when the
fundamental quadratic form of V, is indefinite, it is not possible
to find » families of lines of curvature whose directions at a point
are mutually orthogonal. The lines of curvature corresponding to
a real root are always real. When the fundamental form is definite,
all the roots are real. This is not necessarily the case when the
form is indefinite. )

Suppose that the elementary divisors of (45.2) are simple, in
which case none of the vectors defined by (45.1) is a null vector
(§ 33). Hence there exist » mutually orthogonal unit vectors iz°
satisfying (45.1) such that

(45.4) gii b hy’ = en, gy’ =0 ¥ k).
Any unit vector-field in V,, say 4%, is defined by

(45.5) - €1 COS oy 11|i+ <o+ e, Co8ay lnltj,
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where (§ 13)

cosey = gij A Aoy’ g MV ="
Now (45.3) becomes
1 — .
(45.6) E = e .Q,jj At l-’,

and frﬁg (45.1) we have
1
By
Substituting in (45.6) from (45.5) and making use of (45.7), we
obtain

(45.8)

(45.7) = e 2y 1h|i 7~n|j .

en cos? oy

i B s

e elcos s

==

which is the generalization of Euler’s formula.*

We shall prove the following theorem:

The congruences canowical with respect to a normal congr uence
are the lines of curvatuve of the hypersurfaces normal to the congruence.

Let ¢ be the components of the congruence of normals to a Vy in
a Vi, and &, for =1, ..., n the components of the congruences
canonical with respect to the congruence &% From (38.2) we have

(45.9) [—;— (§a7ﬂ + &5 o) —on aaﬂ] Eh,ﬂ +on &, = 0,

where the covariant differentiation is with respect to the fundamental
form of Vi1,
Since

.:Jrl):“

« B8 & 98 , B &1'
Sp sy =y ’j(ayﬂ_SV\aﬂla pas @AY

and from (43.10) we have

é V
Z&; = aaj (tap *ﬂ) = ZJ’] ./ﬂ m oz Hlen, vlay v ¥,
x x
it follows that
- Im B
(45.10) Eep s = — 29" Y \m g

7 * Cf. Voss, 1880, 1, p. 161; Bianchi, 1902, 1, p. 370; also 1309, 1, p. 124.

O .
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From & g/g .J == 0 we have by covariant differentiation with respect
to the g's and by means of (43.4)

(45.11) S.0 0y i 2 =0,

If (45.9) be multiplied by ¢°; and summed for a, and:é‘mﬁ be
replaced by Az’ yﬂ, Jj, we obtain

1 .
(45.12) [? (8o, p+ E5.0) —on aaﬂ] v i = o.
Because of (45.10), (45.11) and (42.5) this reduces to

(244 on gij) y* = 0,

which proves the theorem.

As a consequence of this resu't and the last theorem of § 38
we have the following generalization of the theorem of Dupin:*

When a space Va admits an n-tuply orthogonal system of hyper-
surfaces, any hypersurface is cut by the hypersurfaces of the other
SJamilies in the lines of curvature of the former.

46. Properties of the second fundamental form. Con-
jugate directions. Asymptotic directions. If P(x)) and
P'(x*-+daf) are nearby points of a hypersurface V,, and C is the
geodesic in V, determined by these points, it follows from (44.5)
that | R| as given by (44.3) is the radius of first curvature of C at P.
From (20.6) it follows that p given by
(46.1) 2p = Qydatda’
is the distance from P’ to the geodesic of V, 4+, tangent to C at P,
to within terms of higher order.t This is the well-known property
of the second fundamental form of a surface immersed in euclidean
3-space.f Hence we have:

*1909, 1, p. 449.
+ Since the principal normal to ¢ is normal to V. and consequently is not

a null vector, the exceptional case treated in § 20 does not arise in this instance.
11909, 1, p. 114.
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If V, is the locus of geodesics of Vat1 tangent to a Vy at
« point P(z%), the distance from a point P'(@+da?) of Vato Va
is one-half the value of the second Sfundamental form for the given da',
to within terms of higher order.

Generalizing a concept* of the theory of surfaces, we say that
two directions at a point P determined by d 2¢ and 0ot are com-
Jugate, if
(46.2) Q;dx*dx) = 0.

From § 45 and (33.10) we have:

The divections of two lines of curvature at a point of hyper-
surface are comjugate.

Also we have the more general theorem:

A vector at a point of a hypersurface whose componenls are
linear combinations of the components of p vectors tangent to lines
of curvature is conjugate to the vector whose components are linear
combinations of the remaining m—p vectors tangent to lines of
cwrvature.

A direction which is self-conjugate is called asymptotic. Hence:
The directions at a point of a hypersurface defined by

(46.3) Qydridx) = 0
are asympiotic.

From (44.5) and (20.6) we have:

A geodesic of a hypersurface in an asymptotic direclion at a point P
has contact of the second or higher order with the geodesic of the
enveloping space. in this direction at’ P.

By definition an asymptotic line is one whose direction at every
point is asymptotic. From (44.5) we have:

When an asymptotic line is a geodesic of a hypersurface, it s
a geodesic of the enveloping space, and conversely.

It l;,[j and &," are the components in the x’s and y's respectively
of a vector-field in V,, we have
(46.4) g = 'y e
If equations (43.10) be multiplied by A’ and summed for j, we
have in consequence of (46.4)

*1909, 1, p. 1217.

e o et AR s

Exercises 1

-1

ot

(46.5) B8, = — Qg P lmj,

where &.,is the covariant derivative with respect to the fundamental
tensor of V,+1. From the form of (46.5) it is seen that the right-
hand member is the associate direction in V,4, for the displacement
of the normal vector in the direction £, unless the normal is
parallel along the curve {cf. Ex.5, p.158). In order that this associate
direction coincide with the direction &, the right-hand member
of (46.5) must equal ¢&,®. The resulting equation is reducible by
means of (46.4) to

(0 ¢ a4 ey s = 0.

Multiplying by a.zy“ ; and summing for #, we have, in consequence
of (42.5), .
(2uj + e gn) A’ = 0.

Comparing this equation with (45.1) we have:

A necessary and sufficient condition that the associate divection
(when it exists) of the normal vector to a hypersurface for a curve
i the hypersurface be tangent to the curve is that the curve be
a line of curvature.

In order that the associate direction be orthogonal to the curve,
we must have . _

s §1° 20"y i) = 0,

which is reducible by (46.4) and (42.5) to

ij7~h|j)~h}k = 0.
Hence we have:

A mecessary and sufficient condition that the associate direction
(when <t exists) of the mormal to a hypersurface for a curve in
the hypersurface be orthogonal to the curve is that the curve be an
asymptotic line.*

Exercises.

1. When the elementary divisors of equation (45.2) are simple for a hyper-

surface V. of a space of constant Riemannian curvature K, the scalar curvature

n

R of V, is given by

* These two theorems are generalizations of well-known theorems in the theory
of gurfaces in euclidean 3-space. Cf. 1909, 1, pp. 143, 144.
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R=c¢e [ : 1133_ (‘2%{:)2} + K, n(l—n),

where R, are the radii of principal normal curvature.

2. Let V, be a given hypersurface of a ¥, and refer the latter to a codrdinate
system «® in which the hypersurfaces x"t! — const. are geodesically parallel
to ¥, (§ 19), =™ being the arc of the geodesics normal to these hypersurfaces
measured from V,; then

¢ = e(dx )24 cijdw‘dwf' Gyj=1.++-,m),
and g, = () n+1 o Show that in this coérdinate system the components of
the normal to V, are =0 (i=1,..-,n), £&+' =1, and by means of (43.4) that

Y oc, )
k4 2 \ganrtt! 2+ —o
: Bianchi, 1902, 1, p. 359.
3. When a V, admits an n-tuply orthogonal system of hypersurfaces o’= const.,

the components in the a’s of the tensor £ for the hypersurface x®== const. are

H, o1, o .
'Qii:_ei"ﬁ-:a—wn“) "'.7=0 Gj=1l.-,n—1i¥j,
as follows from (37.1), (37.2) and (43.4); and the radii of principal normal
curvature are

1 1 O0H,

i

fn: - EHnﬂT = 7€V
Bianchi, 1902, 1, p. 378.
4, When a V, admits an n-tuply orthogonal system of hypersurfaces o'= const.,
the first curvature of the curves of parameter x* is given by [cf. (30.18) and Ex. 3]

[ TS ) e
2 &y

r

(r+h),

where R, is the radius of principal normal curvature of a” = const. for the
curve of parameter a®. Bianchi, 1902, 1, p. 379.

5. In order that the normals to a hypersurface along a curve of it be parallel
with respect to the curve in the enveloping space, it is necessary and sufficient that

dx’

vag = O

where ¢t is a parameter along the curve; show also that such a curve is an
agymptotic line.
6. For a V, the functions g, defined by (cf. § 31)

1
8 — rhi o8k 7
g = 4 I3 g ‘ghijk ,
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are the components of a symmetric contravariant tensor. Show that on taking
indices as equivalent which are congruent modulo three

gp" = Rr+1 r+2a+1s42°
. Ricci, 1895, 1, p. 292.
7. In a V, the Riemannian curvature at a point for an orientation orthogonal
to the vector 4, is given by
K = ——ﬂq A4
i ?
. 9,
where gV is defined in Ex. 6. Hence the principal directions determined by
8Y are those for which K has maximum and minimum values; these are given
by the roots of | g¥ —og¥ | = 0. Bianchi, 1902, 1, p. 354.
8. For a hypersurface of a space V, of constant curvature K, the lines of
curvature are the directions for which the Riemannian curvature are maximum
and minimum, and these are given by

K, = Ko+—~e—

R.Rk @J k= 1,2,8; 4,4,k #).
5Ly

Bianchz, 1902, 1, p. 371.

47. Equations of Gauss and Codazzi for a V, immersed
ina V,. Given aV, of coordinates 27 in a V,, of codrdinates y%; let
the fundamental tensors of V, and V,, be taken in the forms (42.1)
and (42.2) respectively*. As shown in § 42 there exist oo t»—mm—n—1/2
systems of real unit vectors in V,, mutually orthogonal to one another
and normal to V,. We choose a particular system of such normal
vectors and denote their components by &“ for 6 =n41, ..., m;
then we have
(47.1) O Eof Eof

Sq| — €0

aaﬂl‘al“'é B — 0

Sz

(67'[ = n+17"'7 m;o’#:'r),

where eq is plus or minus unity. These components satisfy equations
(42.7), that is,
(47.2) Oes¥™i Eof == 0.

If (42.6) be differentiated covariantly with respect to the quadratic
form (42.1), we have

Baaﬂ
(47.3) 217 y“,iyﬂ,jy7’,k—}—aaﬂ W awv? j+of py® ) = 0.

*In this and subsequent sections Greek indices take the values 1,.-., m,
unless stated otherwise, and Latin 1,..., n.
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If we subtract this equation from the sum of the two equations
obtained from it by interchanging / and %, and j and k respectively,
we obtain

Cap ¥ ki @B, 7Ly 0P sy = O,

where the Christoffel symbols are formed with respect to the form
(42.2) for V, and evaluated at points of V,. This equation may
be written

(44
aaﬂyﬂ,k(y",ij-f- J\[w l[ay”,i?/",j) = 0.

Since any solution of (42.7) is expressible linearly in terms of the
m—mn vectors & ¢ there must exist functions f2s; such that

6%
p [ e 2 «
(47.4) Yy = —J| W}ay‘“.iy JF ;06 L2611 &6
(6 = n41,..-, m).

From these equations we have in consequence of (47.1)
(47.5) gy’ it ol = — v, Blay®. 1y, Eaf + Loty

The functions E.,fg and [w», Bls are invariants for transformations
of codrdinates z¢ in Vy, y* are the components of a symmetric
covariant tensor of the second order in the z’s and y*; are com-
ponents of a vector. Hence it follows from (47.5), that for each
value of o the quantities Q¢); are the components of a symmetric
tensor in V.

Differentiating (47.2) covariantly with respect to 2/, and making
use of (47.5), we have

(47.6) gy ikl = — Qau— B vl iy & .
If we define functions p.,; by the equations
(47.7) L7 5-:1“ §a|ﬂ,j+ [, Bl ¥, & ;;Tiﬂ = H1gij>

then for each value of z and o the quantities p.4; are components
of a vector, since the term on the left of (47.7) is the component
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of a vector. Moreover, if the second of equations (47.1) be
differentiated with respect to 2/, we have from the resulting equation
and (47.7) that

(47.8) Mwyj’f':%r[j =0, foej = 0.

For a given value of j the quantities ?_E,,Iﬂ, ; are the contravariant
components df a vector in V. Accordingly we write

I .
5L =AY+ 2B & = nd1, ., m),
T

where the 4’s and B’s are to be determined by substituting this
expression in (47.6) and (47.7). This gives

4x 9a. = _QUW - [/“g7 V]a ?/y,i y‘l“j ;ca‘ﬁ’
B, = e Mrglj— €r [y, ﬂ]a ,'l/‘u,j E,ﬂr f_sﬂﬂ_

From the first of these we get, on multiplying by ¢ and summing
for 4,

1 1 , . g i
A = — 00" — B Vay i v i 5 g

If /lhf are the components of any mutually orthogonal unit vectors
in V,, we have from (29.5)
’Zeh 2'h|i )~h|l = gﬂ (h =1, .. ‘).

It a§h|“ are the components of these vectors in the y’s, we have
&% = M y": and consequently

! il . .
Ay, = —0 olij 9 yP 1 — [k, vyt 5 Z en &n” EnfP
3
Substituting these expressions in the above equation for é},]ﬂ ; and
making use of an equation of the form (29.5) for V,,, we have
(on changing indices)

k8 __Jﬂ

c B8 __ g T v -
(47.9) R ")GW‘G Yo in 1’l{a y}t,j Sl +20‘r HNrelj grlﬂ
/ T

(o, 7 = n+1,..., m).
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In order to obtain the conditions of integrability of (47.4), we
make use of the Ricci identity (cf. § 11)

¢ M — 14 ” -
(47.10) Y — Y% ai = y“.19" Buijr,

where the Riemamn symbols Ry are formed with respect to (42.1.).
Substituting from (47.4) and making use of (47.4) and (47.9) in
the reduction, we obtain

¥ t.qth [R;,.U;;—Zea ('Qo'lthUHk— Qzﬂhk -Qa{ij)]
' G
w € g — 4
—2 s S ['Qtflij,k_ Qo= 2 €5 (o Lalyy™ el J'ﬂfk)}
'3 T
— Ea‘m/). _1/‘“,1' yl,,j yl.k == 0,

where E",m is the Riemann tensor with respect to the fundal.nental
form (42.2) of V,, evaluated at points of V,. If this equz%tlon be
multiplied by a.s yf , and summed for « and again by a.g §(,|‘9, we
obtain the two sets of equations

Ry = 2 ea(Relac QLoljt— Lojir Laoijw)
g

(47.11) ~ ,
+ -R(t 0 ya,’i yﬂ,j ?/;;k yd,l
and

oiij,x— Rojire,; = 2 €r (n“-m|k 1= tglj -Q-rlik)
T

47.12 _
) +Rega i ¥ i P i ko (Gr=mn-+1,.. m).

Since &P jx = &g 1, the conditions of integrability of (47.9) are
reducible by means of (47.12) to

s
Zer (n“ﬂrlj, L), 3E'z'l ? +2 o b1 (#rr01 Horie ™ Hralk ’u,@ﬂj) 59]
T 6T

n Y = A
(47.13) -+ 2 e, 9" (Qojuk Lypyj— Loltj Reink) &+ Rﬂlw’ VRN
T

— " Y1 Bogo Y1 95 ¥k Eo = 0.

S A A e
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Multiplying this equation by &5 and summing for 8, we obtain

Mrol j, k™ Mzolk,j -+ 2&‘: €o (l“’gﬂ J Mooll: — Horlk Nealj)
(47.14) i
+ g™ ey Lol —Lelic Qirg) + By 45 4" 1 Eor? Eg = 0

(Q,O',T=7l+1,--', m)

When m = n--1, the quantities py; are zero, as follows
from (47.8). Then (47.11) and (47.12) reduce to (43.12) and (43.13),
and (47.14) are satisfied identically. Hence we call (47.11) and
(47.12) the equations of Gauss and Codazzi of a V, in a Vine*

If in accordance with § 42 we take another set of real mutually
orthogonal vectors normal to V, defined by

(47.15)

e

v ¢ = tg §U|a s
the functions # satisfy the conditions

o 0 _
Zea L tg =0, Zea(ti)zz €y
L g

(o,v,0 =n+41,-.., m; v+ o).

(47.16)

In consequence of the results of § 29 we have

(47.17) 251' t: t: = 0, ZEV (t:f)E == €ge

From equations similar to (47.5) and (47.7) by means of (47.15)
we have respectively

(47.18) avlz:i == tz Qolij,

— o T A
‘Ui'()]j = t,/ tg ‘"'U‘rlj + lze}- tV tgqj

(l,v,g,o’,'[:n—f—l, R

(47.19)

*These results for positive definite forms are due to Voss, 1880, 1, p. 139

and to Ricci, 1902, 2, p. 357.
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When these expressions are substituted in equations similar to
(47.11), (47.12) and (47.14), these equations are found to be

consistent with the latter in consequence of (47.17).
48. Normal and relative curvatures of a curve in a 'V,

immersed in aV,. In § 24 we considered the vectors of a
field in V,, at points of a curve in a V, immersed in a Vi, the
components of the vector being 4’ in the «’s of T’, and & in the y's
of Vi, and we obtained the following expressions for the com-
ponents 7® of the associate direction for V,, along the curve:

AT AY
.a}’ra 8{1; BJ'J

dAi 8P Cdat
ﬂ — ‘/ . l.l et (
i ds da’ + ds

+

Bt o)

In consequence of (47.4) this can be written
o i 00 dxl J 3
@8.1) % = iyt 2es Qay M & (0=n+1,.-m),

where u/ are the componeuts of the associate direction in V, for
the vector ¢ and are given by (24.2).

The associate curvature of the vector A% inV, is given by (24.4)
which now we denote by 1/r,, and analogously the assocmte
curvature in V,, is defined by

(48.2) r—a = me .

From these definitions and (47.1) we have, in consequence of (47.1-2),

3) = Der o g a2ty
r? ds ds

where e, and ¢, are plus or minus one when the respective associate
directions are not null vectors. From (48.1) it is seen that the
component in ¥, of the associate vector for V,, is in the associate
direction for V, and its magnitude is 1/r.

When 4¢ are the components of the unit vector tangent to the
curve,* equations (48.1) can be written

* For the method of procedure when the curve is minimal see the first foot-
note of § 24
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(484) ”“ = lu,.] y“,j + g“ — Eu_*_ ga’

where 7% and 9“ are the components in the y's of the principal
normals of the curve in ¥V, and ¥, respectively, and by definition

-~ t "
(48.0) §¢ = 260’ K d.’l? %§¢Ia7

which evidently is a vect01 normal to V,. Its magnitude 1/R is

given by
1 det da/ da* da
(48.6) = ' Zea Lo1ij Lol ds ds ds do; ;

it is the component normal to V, of the first curvature of the
curve in V. 1Its value at a point P is the same for all curves
of ¥, through P in the same direction. We call it the normal
curvature of V, at P for the given direction and the vector r®
defined by (48.5) the normal curvature vector. When the curve
is the geodesic through P, we have 7% =0, and consequently:

The normal curvature of a Vu, immersed in a Vn, at a point
and for a direction is the first curvature in Vi, of the geodesic of
Va through the point in the given direction.

The fipst curvatures of the curve in V,, and V, are given by
equations of the form (44.2); 1/¢, so defined is called the relative
curvature of the curve with respect to V,, and the vector 7% de-
fined by (48.4) the relative curvature vector. In this case equation
(48.3) reduces to

(48.7 ﬁ — eg
) e + Rﬂ ’

where ¢s, ¢; and e are plus or minus one, when the respective

vectors 5%, 4% and {% are not null vectors. When all of these

vectors are not null vectors, equations (48.4) can be written in

the form

48.8) /AR S
e R e

’

where 7% [® and 7% are components of unit vectors.*

* Cf. the results of this section with those of § 44.
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49. The second fundamental form of a V, in a V,.
Conjugate and asymptotic directions. Consider the biquadratic
differential form

(49.1) l,b == 200- '(')l:"?'jQO’[kl dat d:L‘J dxh dat (0' = 'n_*' 1, ety Wl).
[

When m = n -+ 1, the expression e is the square of the second
fundamental form of V, (§ 43). Accordingly when m >n--1 we
call (49.1) the second fundamental form of V,. From (48.6) an'd
the geometrical interpretation of R it follows that the form v is
independent of the choice of the m — % mutually orthogonal vectors
in Vi, normal to V,, in terms of which the functions 2 are
defined by (47.5).

Let C be a geodesic of V, through a point P, and consider first
the case when the principal normal of €' in V,, is not a null vector,
the components of the principal normal being defined by (48.4).
From the theorem of § 48 and equations (20.6), (48.6) and (49.1)
it follows that the distance from a nearby point of C to the
geodesic of V,, tangent to C at P is ome-half the square root of
the absolute value of ¥ for the direction of C, to within terms
of higher order. When the principal normal of C is a null vector,
we have 1/R =0 so that the distance is of the third or higher
order as follows from (20.6). Hence:

If V. is the locus of geodesics of Vi tangent to @ sub-gpace T
at a point P(), the distance from a point P'(x'+dz’) of ’Vn
to Vn is equal to one half the square root of the absolute value of Y
Sfor the given values of dat, to within terms of* higher order. .

Generalizing the concepts of conjugate and asymptotic directm_ns
of a hypersurface (§ 46), we say that two directions at a point
determined by daf and dx’ are conjugate, when

(49.2) 2 6 afij Qo A 0z da dal = 0,
g
and asymptotic, or self-conjugate, directions are defined by

(49.3) 2> o6 Qjij Qo drt dad d2¥ dat = 0.*
L

* Of. Voss, 1880, 1, p. 151.
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From (48.6) we have:

The normal curvature of a Vn in an asymptotic dirvection s zero.
From this result, the theorem of § 48 and (20.6) we have:

A geodesic of Vu in an asymptotic direction at a point P has
contact of the second, or higher, order with the geodesic of Vi in
the direction at P.

An asymptlotic line is by definition a curve whose direction at
every point of the curve is asymptotic. From (48.8) we have:

When an asymptotic line is a geodesic in V,, it is a geodesic
m Vi or its principal normal in Vi, is a null vector; and con-
versely, when a geodesic in V, is a geodesic in Vi, it is an asymptotic
line in Vy.

From equation (48.3) and § 24 we have:

When a vector in Vy ids displaced parallel to itself in V, along
a curve whose divection is conjugate to that of the given vector, it
moves parallel to itself in Vi, or its associate direction in Vi, is
a null vector.

In order that a vector displaced parallel to itself in Vy shall move
parallel to itself in Va, it is necessary that the direction of dis-
placement be conjugate to the vector in V,.

From (48.4) and (48.5) it follows that the components of the
principal normal in V,, of any curve of V,, through a point P are
expressible linearly in terms of » mutually orthogonal vectors &,
forh=1,.-.,nin V, at P and the n(n -+ 1)/2 vectors UZeaQawEgl“

for 6 =mn--1,...,m normal to V, at P. We denote by = the
number of linearly independent vectors in these combined systems.
Evidently + <, and also v <n(n--3)/2. If it is less than
n (n+8)/2, there must exist linear and homogeneous relations
between the functions 244 at B We denote by G, the variety of
order = consisting of all the geodesics of V,, through P in directions
determined by the z independent vectors. From the last theorem
of § 20 it follows that G, has contact of the second order with
every curve of V, through P. Hence we call G, the osculating
geodesic variety of V, at P.*

50. Lines of curvature and mean curvature. The principal
directions determined by each of the m—n tensors Q. corres-

* Cf.’ Bompiani, 1921, 5, p. 1122.
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ponding to a given set of m—mn mutually orthogonal unit vectors
normal to a V, in a V,, define an orthogonal ennuple of congruences
analogous to the lines of curvature of a hypersurface (§ 45). We
call them the lines of curvature of V, for the corresponding normal &;,“.
In order to obtain a geometric characterization of these lines, we
multiply equations (47.9) by 4y’ and sum for j. Making use of
(46.4), we obtain

(50.1) '§],,|a E,ﬂﬂ; « — T -Qa[lj glls ?/'B,k )'h[j + ; Cr flrg)j :51'[‘3 }’h\j :

Proceeding with this equation in a manner similar to that followed
in the case of (46.5), we get the theorem:

A necessary and sufficient condition that the associate direction
of a normal vector to aVp Jor a curve in the V,, be tangent to the
curve is that the curve be a line of curvature for the given normal.

Any unit vector % normal to aVj is expressible linearly in terms
of m—mn mutually orthogonal unit vectors normal to V,, as in
(47.15), and the corresponding temsor £2; is given by
(50.2) Qij = (agp ¥ e, Blay” iy ) &,

-
as follows from (47.5), (47.15) and (47.18). When the normal
vector is a null vector, its components &% involve an arbitrary
factor and consequently the corresponding £2; is determined by
(50.2) only to within a factor.

From equation (45.2) it follows that the sum of the principal
normal curvatures of a hypersurface is
(503) Q = gij ij.

This is the generalization of the mean curvature of a surface™
and is called the mean curvature of the hypersurface. In a similar
manner we call ), defined by

) = gij"Q“W}

(50.4)
the mean cuwrvature of V, for the normal divection & “.

*1909, 1, p. 123.
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Consider the vector normal to V,, whose components ¢ are given by

(50.5) £ = ; es 51 g¥ E5 .

Its magnitude A is given by

(50.6) M — ’Zeagawgﬂ(kl G g |
~ [

F'rom (47.15) ana (47.18) it follows that the vector £ is independent
of the choice of the m—m» mutually orthogonal vectors £6“ normal
to Vy.

Since the rauk of the matrix ||&5“|| is m—n, the compouents
of the above vector vanish, when, and only when,

(50'7) -Qa]i)‘gfj = ()

(6 = n+1, -+, m).

. . . . . .
.J‘he Invariant M is zero in this case, and also when the vector
1s a null vector.*

Suppose now that 3/ 4+ O and write ‘(50.5) in the form

(50.8) MEC = 2 052116 Eq|",
o

&“ being the components of the umit vector. Then from (60.2)
and .(47.5) we have for the components of the tensor £2; corres-
ponding to the vector &¢

(50.9) JI.Q,U = Zazeg.(!u..ij!lwkl gkl.

From this equation and (50.6) it follows that the mean curva-
ture of ¥, for the direction &% that is, ;4% is equal to M, to
within sign at most. Moreover, if the vector & is a null vector
we find that the mean curvature for this normal is zero. It wé
call M the mean cuwrvature of V, and the vector defined by
(50.5) the mean curvature normal, we have:

* Cf. § 52.



