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Preface

. . . mathematics may be defined as the subject in which we never know what we are talking about, nor whether
what we are saying is true.
Bertrand Russell

The idea that pure mathematics is concerned principally with the investigation of structures of various types in
complete abstraction from the nature of individual objects making up those structures is not a novel one, and can be
traced at least as far back as Dedekind's classic essay, ‘Was sind und was sollen die Zahlen?’ (originally published in
1888). It represents a striking contrast with the Fregean preoccupation with identifying “the objects” of particular
branches of mathematics, and it seems to have lain behind Hilbert's refusal to accept Frege's point of view on such
fundamental matters as the nature of mathematical definitions and axioms, mathematical existence, and truth.

With the rise of the comprehensive “logicist” systems of type theory and axiomatic set theory, however, the
structuralist idea was either neglected in favour of some arbitrarily chosen relative interpretation of ordinary
mathematics (number theory, analysis, etc.) within the comprehensive system, or else it was given metalinguistic lip-
service through the apparatus of Tarskian model theory, carried out within set theory itself.

Despite the attractive unifying power of modern set theory, embedding the structuralist intuition within it has its
disadvantages. Must we accept anything so powerful as, say, the Zermelo–Fraenkel axioms—categorically asserted as
truths about Platonic objects—in order to carry out a structuralist interpretation of number theory or classical
analysis? And what of set theory itself; can it not also be understood along structuralist lines, and would it not
constitute a philosophical advance so to understand it? “It”, after all, is actually a multitude of apparently conflicting
systems. On the standard Platonist picture, at most one of them can correctly describe “the real world of sets”. On a
structuralist interpretation, there is at least the



prospect of a healthy pluralism—that many different systems can be sustained as theories investigating different
structural possibilities.

A further main source of inspiration for the present study is Hilary Putnam's ‘Mathematics without Foundations’
[1967], which suggested that modal logic could be used as a framework for eliminating apparent reference to
mathematical objects entirely, including the objects of abstract set theory itself. Conundrums associated with a special
realm of mathematical objects, emphasized by a number of contemporary philosophers such as Nelson Goodman and
Paul Benacerraf in terms strikingly reminiscent of Dedekind—how to reconcile talk of such objects with the
multiplicity of “ways of taking them”, how we ever manage to refer to such objects, and the like—such questions
would be seen not even to arise on the modal logical eliminative interpretation. But the details and implications of such an
interpretation have remained to be worked out.

The present work is an exploratory effort at synthesizing these two strands of thought, “structuralism” and
“mathematics as modal logic”. The aim has been to provide for structuralism frameworks that are flexible, suitably
powerful, and as precisely delineated as those that have grown out of the logicist tradition and which have dominated
non-constructive foundational thought.

When I began working on this project several years ago, Putnam was my principal source for the idea that set theory
itself ought to be understood along structuralist lines and that such an approach contains the germ of a resolution of
the problem of proper classes. It was something of a revelation when I stumbled upon a classic opus of Zermelo, Über
Grenzzahlen und Mengenbereiche [1930], containing strikingly similar proposals. Although this work is known to
mathematicians for its leading mathematical content (including the “discovery” of inaccessible cardinals), its intriguing
philosophical perspective has yet to receive the attention it deserves. (Unfortunately, an English translation has yet to
be published. Doctoral language requirements in this area still have their point!)

Concerning personal acknowledgements, I owe deep and lasting gratitude to Nelson Goodman for years of intellectual
guidance and inspiration, although I am resigned to his finding all too little evidence of this in the present work. More
proximately, I am indebted to many people for encouragement, criticism, suggestions, and help. Among them are
students in graduate seminars in philosophy of mathematics that I have offered at Indiana University and the
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University of Minnesota, and members of many audiences at conferences and colloquia who have endured earlier
versions of various parts of this work. I am especially grateful to the following individuals: John Burgess, Jeremy
Butterfield, Nino Cocchiarella, J. Alberto Coffa, William Craig, J. Michael Dunn, Hartry Field, Richard Grandy,
Michael Hallett, W. D. Hart, Daniel Isaacson, Ronald Jensen, Akihiro Kanamori, Saul Kripke, Penelope Maddy,
Charles Parsons, Hilary Putnam, Jack Silver, Howard Stein, W. W. Tait, and, in all probability, a number of others for
whose understanding I must now plead.

Much of the work for this monograph was carried out with the support of the National Science Foundation, Grants
No. SES-8420463 and No. SES-8605286, for which I am very grateful.

G.H.

Minneapolis, Minnesota

8 July 1988
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Introduction

If the queen of the sciences occupies her throne because of the wealth and beauty of her results, where if not among
the lowly peasantry are we to locate the philosophy of mathematics? But social categories do not fix the physical
surroundings, and it would be misleading to picture this humble being as firmly rooted to the land. Better, perhaps, the
image of a forlorn fishing-vessel, doomed to chart its daily course between Scylla and Charybdis—its principal
“isms”—between its “platonism”, so satisfying in its respect for mathematical truth but so problematic in its treatment
of our mathematical knowledge, and its “constructivism”, representing a mirror-image situation, with “satisfying” and
“problematic” interchanged.

Is there any hope (through meditation, presumably) of our protagonist's breaking out of this wheel of existence? Is it
possible to develop an interesting alternative view in the philosophy and foundations of mathematics which somehow
retains the main advantages of the existing, antagonistic positions, while at the same time managing to improve
significantly on those positions by avoiding their principal weaknesses? Our overarching purpose in this work is to
explore this: to lay the groundwork for such an alternative by developing the formal and philosophical core of a view
that synthesizes certain “structuralist” ideas (traceable to Dedekind) and some intriguing suggestions (of Putnam)
concerning “mathematical possibility and necessity”, a core that can be further developed in various ways, but which
seems promising philosophically and, moreover, is very interesting in its own right.

But before delving into these ideas and their development, it would be desirable to agree, if possible, on the conditions
that prevail in Nirvana, on what we might ideally hope for from a philosophy of mathematics. Now, I am acutely aware
that one person's paradise is another's inferno, and that it is scarcely possible to lay down desiderata for a philosophy
of mathematics without appearing to be begging crucial questions. I will assume this risk, however, in the belief that a
brief list of desiderata will help motivate our inquiry and



that it will at least enable the reader to take into account what may be my own prejudices.

The first desideratum rests on the view that the queen merits the full respect of her handmaid: it is desirable to uphold
the objectivity of as much mathematics as possible. By “objectivity” here is meant determinateness as to truth
value—true or false—, and truth for the error-free portions; moreover, such truth is to be understood classically as
implying independence of the particular mathematical investigators. Even if no mathematicians had ever existed, still it
would have been the case that every infinite bounded set of reals has (would have had) an accumulation point, etc.

This first desideratum might be summed up by saying that a philosophical interpretation of mathematics should be
“realist”, as opposed to “instrumentalist”. This is one important dimension along which various interpretations of
mathematics can be arranged. Traditional platonist views, of course, count as realist: mathematical discourse is
understood as consisting of statements or propositions that have determinate truth value, independent of our minds.
Varieties of formalism, finitism, and constructivism that regard all or parts of classical mathematics as lacking in truth
value count as (more or less) instrumentalist. It is crucial, however, from our point of view, that this dimension should
not automatically be conflated with the contrast between “platonism” and “nominalism”. This second dimension
concerns whether such truth as is recognized holds in virtue of a realm of abstract objects (numbers, sets, functions,
etc.) which forms the subject-matter of mathematical discourse. Of course, if one simply reads ordinary mathematical
discourse literally, i.e. takes it “at face value”, one arrives at a platonist interpretation, one that is also realist. (Various
such interpretations are possible, depending on just what counts as “ordinary mathematical discourse”. It might be
taken as already “reconstructed” as set-theoretic discourse, for example, or it might not be. At this stage, such
distinctions do not matter, but at various junctures they must be brought into play.) But it must not be assumed that,
conversely, all realist interpretations must be platonist. On the contrary, we make no such identification, for we seek an
alternative, non-literal interpretation of mathematical discourse which can be understood as realistic but in which
ordinary quantification over abstract objects is eliminated entirely. To identify realism with platonism at the outset is to
assume in advance that no such interpretation is possible.

2 INTRODUCTION



A second desideratum concerns epistemology: a philosophical interpretation of mathematics ought to admit of an
extension that reasonably accounts for how we come to know or justify that mathematics which we can reasonably be
claimed to know or be capable of knowing. Here I assume that appeals to an irreducible “intuition”—to explain, for
example, how we have access to a realm of abstract objects—are unsatisfactory (much as appeals to “esp” in other
contexts are unsatisfactory). Of course, it must not be assumed that all true mathematical assertions are knowable,
even in principle. Nor should it be assumed that “knowledge” or “justification” is an all-or-nothing affair. Rather, we
incline to the view that mathematical knowledge, like ordinary and scientific knowledge generally, comes in degrees and
may admit of “justification” of diverse kinds. We do not wish to prejudge these issues. But what this desideratum calls
for is a reasonable integration of mathematical knowledge with the rest of human knowledge, something that
traditional platonist interpretations have difficulty in providing. (Here one should distinguish traditional platonist
interpretations, which take mathematical knowledge as absolute and a priori, from the more recent holistic, quasi-
empirical platonism of Quine,1 according to which pure mathematics receives its justification through its empirical,
scientific applications. On our own view, this approach has provided valuable insights, and, in fact, we will suggest
adapting aspects of it to the interpretation to be developed below.)

Perhaps the central puzzle raised by traditional “objects-platonism” (as I will sometimes explicitly call it, to distinguish
a kind of view that goes beyond realism in its explicit ontological commitments) is the difficulty in seeing how it is that
the posited abstract objects “play any role”—“make any difference”—in our knowledge and in our language. Prima
facie, at least, it is difficult to understand, for example, how it is that we justify construing mathematical reference as
reference to particular abstracta, as opposed to others forming a structurally isomorphic system—or how, for that
matter, such

INTRODUCTION 3

1 This standpoint on mathematics results from joining two recurrent themes in Quine's corpus, his holistic view of science, on the one hand, and his logistic approach to
ontology, on the other. See e.g. ‘Two Dogmas of Empiricism’ (1951) in Quine [1961 ], pp. 20–46, esp. pp. 45–6; ‘On Carnap's Views on Ontology’ (1951) in Quine [1976 ],
pp. 203–11, esp. p. 211; ‘A Logistical Approach to the Ontological Problem’ (1939) in Quine [1976 ], pp. 197–202; and ‘On Multiplying Entities’ (1966) in Quine [1976 ],
pp. 259–64.



reference ever gets established in the first place.2 Now indeed, there is not even general agreement as to whether such
puzzles are genuine theoretical problems or whether, in fact, they are pseudo-problems.3 All the more reason, then,
why it would be desirable to be able to bypass such questions entirely. From a mathematical point of view, questions
concerning the absolute identity of “objects of reference” seem entirely irrelevant to mathematical inquiry. Questions,
such as, “How do you know to which ω-sequence you are referring when you speak of ‘the natural numbers’?” seem
utterly alien to the discipline. (In fact, many working in the foundations of mathematics shun such questions entirely.
Perhaps it was in reaction to them that Kreisel was prompted to remark that it is the objectivity of mathematics—not
mathematical objects—that counts.4 The wrong emphasis here leaves philosophy of mathematics open to the
Allenesque caricature which has it asking, “Do numbers exist? And why? And must they be so silent?”)5 Surely, it
would be desirable to understand mathematical discourse in such a way that such questions are completely blocked
from the start.

Related to all this is a third desideratum: the prima-facie a priori status of mathematics must be accounted for, if not
upheld. In particular, the primacy of proof as the avenue to mathematical knowledge par excellence must receive a
natural explanation, even if other avenues are left open. One would hope further that the line between the
conventional and the non-conventional (‘analytic’ vs. ‘non-analytic’) should be clarified. And, it would be pleasant if
this could be done with the following happy result: mathematical principles, often taken as axioms, such as
mathematical induction or comprehension axioms (restricted in type), of which we should really wish to claim full
knowledge, can in some sense be understood as “analytic” or “almost analytic”; yet not all mathematics should turn
out empty,

4 INTRODUCTION

2 For discussion of some of the puzzles associated with objects-platonism, see e.g. Benacerraf, ‘What Numbers could not be’ (1965) and ‘Mathematical Truth’ (1973) in
Benacerraf and Putnam [1983 ], pp. 272–94 and pp. 403–20, respectively; and Dummett, ‘Platonism’ (1967) in Dummett [1978 ], pp. 202–14. For an approach to such
problems on behalf of platonism, see e.g. Maddy [1980 ].

3 For a critique of these “problems with Platonism” as not genuine, see Tait [1986a ].
4 A remark of Kreisel's along these lines is cited by Putnam in his ‘What is Mathematical Truth’ in Putnam [1975 ], pp. 60–78 at p. 70.
5 “Is there anything out there? And why? And must they be so noisy?” Allen [1971 ], p. 28.



or true merely by linguistic convention. (For our queen must not turn out to be a mere figurehead!)

Let us pursue this point just a bit further here. We have already spoken of one type of “bad questions”—questions
concerning knowledge of unique absolute reference to mathematical objects—that it would be desirable to block. A
clarification of the role of convention can help dispose of a second type: questions of the sort just alluded to in
connection with certain axioms, such as “How do you know that the reals are densely ordered?”, or even, “How do
you know that the sets (sic!) are well-founded?” There seems to be something badly misguided about such questions,
and yet, on standard objects-platonist accounts, it is difficult to dismiss them. (The platonist who reconstructs analysis
within set theory can reply to such questions about “the reals” by saying, “I've derived the property in question from
the axioms of set theory”, but it is much less clear what can be said when the question, such as our second example,
concerns an axiom of set theory itself (on standard formalizations).)6 On a structuralist view, however, there is at least
the prospect of a satisfactory answer to many such questions, for, on such a view, the mathematician claims knowledge
of structural relationships on the basis of proofs from assumptions that are frequently taken as stipulative of the sort of
structure(s) one means to be investigating. Thus, if asked to justify an assumption—such as well-foundedness of sets—which
can be assigned this stipulative role, there is a ready answer: “These are the sorts of structures I mean to be
investigating. One is free, of course, to investigate others.” But, how far can such an approach be taken? To which
“How do you know” questions is this “conventionalist” response appropriate? Our examples of density of the reals
and well-foundedness of sets seem to be clear cases in which it is appropriate, but what about the least-upper-bound
principle? Here the answer is less obvious, for we are perhaps prepared to recognize some value in the set-theoretic
reduction of analysis (in which the l.u.b. principle is derived from “more basic” set-theoretic principles). Thus, there
appears here to be a tension between “structuralism” and “logicism” which will eventually have to be resolved.

INTRODUCTION 5

6 On a very elegant alternative formalization based on cumulative levels, due to Scott [1974 ], well-foundedness can be derived as a theorem. This does not affect the point at
issue here, except in so far as it reminds us that very different axiom systems can turn out to be equivalent, so that, on a structuralist view, there are, in general, many
different ways of stipulating what sort of structures one is interested in investigating. Cf. below, Ch. 2, § 2.



The fourth and final desideratum I shall mention concerns mathematics in its applications: a reasonable account
should be forthcoming of how mathematics does in fact apply to the material world. Here, platonism fares quite well,
since it recognizes applied mathematical objects—sets of material objects, functions defined on them with numbers as
values, etc.—in terms of which whole mathematical-physical theories can be (and standardly are) understood. It is,
rather, constructivism that encounters special problems here. To cite one example: it is well known that the
intuitionistic continuum is not totally ordered.7 But, if we regard a line in physical space, or a stretch of physical time, as
totally ordered (as we normally do), how are we to carry out physical geometry? (This is symptomatic of a general
difficulty: the quantifiers of mathematical physics do not readily lend themselves to constructive interpretations, even if
those of certain portions of pure mathematics do.)8 This not to say that such problems are insurmountable (from
within a constructive framework). But it does point up the importance of addressing the question of application
explicitly, and cautions us against the assumption that, if only we can get a scheme or system of interpretation to work
for pure mathematics, applied mathematics will “take care of itself”.

These, then, are our guiding desiderata. Now we must take up the challenge of trying to forge a view that can meet
them.

As some of the discussion thus far already suggests, some kind of “structuralism” seems promising. On the sort of
view we should like to articulate, mathematics is the free exploration of structural possibilities, pursued by (more or less) rigorous
deductive means.9 This is an intriguing motto, perhaps, but how is it to be developed?What are its basic assumptions, and
to what extent can it provide an alternative to traditional objects-platonism? What light can it shed on problems of
justification, on the question of analyticity, and on the matter of distinguishing real problems from pseudo-problems?
Can such a view be made to work for applied mathematics? And what are the main problems it must confront?

A general structuralist outlook has been widely shared,10 and can be found in embryonic form, at least, in Dedekind's
classic essay,

6 INTRODUCTION

7 See e.g. Dummett [1977 ], pp. 47 ff.
8 This point is made by Putnam [1975 ], op. cit. n. 4, p. 75.
9 A point of view along these lines can be discerned in Stein [1988 ].
10 For discussion and bibliography, see e.g. Shapiro [1983a ].



‘Was sind und was sollen die Zahlen’.11 As I see it, however, there have been two main obstacles to the development of
“structuralism”. The first is the lack of an explicit, sufficiently precise interpretation of specific mathematical theories.
This involves at least the following three things: (i) presenting a translation of the mathematical discourse in question
(as commonly represented in quantificational languages) into a specified “structuralist language”; (ii) explicit
articulation of the structuralist theory, i.e. the basic assumptions of structuralist mathematics (at least, in so far as it
purports to serve as a framework for the given mathematical theories in question—we need not seek a single
“universal structuralist theory”); and (iii) a justification of the representation, in so far as that is possible. Until all this is
attempted, we remain pretty much in the dark as to the potential of structuralist interpretations.

The second problem, as I see it, is that, as usually presented, it is difficult to see in structuralism any genuine alternative
to objects-platonism. This is most obvious when the structures are taken as set-theoretic models, i.e. when the
structuralist theory is just set theory (perhaps with urelements), or as members of a category (the theory being category
theory, taken literally as quantifying over abstract objects called categories). But this worry also pertains to other
attempts (e.g. mathematics as a science of “patterns”, where these are taken as platonic entities in their own right).12

In what follows, we seek to overcome these obstacles by combining insights of structuralism with a related, more
recent strand of thought in philosophy of mathematics, roughly summed up as the view of mathematics “as modal
logic”. The locus classicus of this approach is Putnam's ‘Mathematics without Foundations’,13 in which it was suggested
that many of the problems plaguing objects-platonism

INTRODUCTION 7

11 Dedekind [1901 ]. In precisely what sense Dedekind was a “structuralist” is problematic, as is brought out in the combination of Parsons [1983 ], Essay 1, Tait [1986b ],
Parsons [forthcoming], and Stein [1988 ]. We will return to this matter briefly in Ch. 1, below, where different structuralist theses are distinguished for purposes of such an
assessment.

12 See e.g. Resnik [1981 ]. In addition to whatever problems there may be in countenancing patterns as universals, there is a special difficulty that arises in the attempt to treat
individual constants in standard mathematical languages as referring to “positions in a structure”. Simply put, how is one to identify a “position” in a unique way? In the case
of natural numbers, this is no problem since, between any two structures of the appropriate type, there is a unique isomorphism. But in the cases of, say, the rationals or the
reals, the order-preserving correspondences are not unique—there are infinitely many of them. What then is “the position” picked out by ‘.33333 . . . ’?

13 Putnam (1967), in Putnam [1975 ], pp. 43–59.



(and, in particular, the identification of mathematics with set theory) could be overcome by reinterpreting mathematics,
as standardly presented, in a modal language, in which a notion of mathematical or logical possibility is taken as
primitive. Since the work of Kripke,14 we have become familiar with the procedure of providing a set-theoretic
semantics for the operators of modal logic. What Putnam proposed was the opposite procedure of working with those
operators as primitive, and using them to reconstruct platonist discourse in such a way that literal quantification over
abstract objects could be made to disappear entirely. Some suggestive examples of how this might be done were
provided; especially intriguing was the idea of reconstructing Zermelo set theory in terms of a rather complicated
translation pattern in which one spoke only of what would be the case in possible extensions of “concrete structures”
of the appropriate type, that is, models for Zermelo set theory which were to be characterized somehow by employing
“nominalistically acceptable” primitives (e.g. one could speak of marks and arrows, but one could not employ ∈, set
membership). Moreover, such a translation pattern was thought to provide an alternative picture that was nevertheless
“fully equivalent mathematically” to standardly presented mathematics. However, intriguing as all of this was, and
while it did inspire some interesting formal developments in the area of modal set theories,15 little has been done to
develop the original ideas of ‘Mathematics without Foundation’, that is, to develop explicit translation patterns of
mathematical theories into suitable modal theories—capable of standing independently of set theory—and then to
justify these as “equivalent for mathematical purposes.” Like structuralism, the idea of “mathematics as modal logic”
has remained at the level of some seemingly promising suggestions, but it has not been developed even to the point at
which a serious philosophical assessment would become possible. One of our goals in what follows has been to
remedy this situation.

Our strategy will be to deal in detail with certain specific mathematical theories: to provide for them an explicit
“modal-structural interpretation” (“msi”) in which literal reference to mathematical objects is entirely eliminated; to
articulate the underlying assumptions behind the interpretation; to investigate the question of “equivalence (of the
reconstruction) for mathematical purposes”;

8 INTRODUCTION

14 Kripke [1963 ].
15 See e.g. Parsons [1983 ], Essay 11, and Fine [1981 ].



and to explore some of the main formal and philosophical implications of the reconstruction. We treat essentially three
theories: Peano arithmetic and real analysis (in Chapter 1), and Zermelo–Fraenkel set theory (in Chapter 2). These
have been chosen both because of their familiarity and because of their central importance, especially from a
foundational perspective. (In each case, as is well known, a straightforward formalist or deductivist treatment is ruled
out by the Gödel incompleteness theorems: no consistent formal system can generate all sentences standardly
interpreted as truths “about the intended type of structure(s)”.) However, the approach could well be applied to other
mathematical theories, and this should be borne in mind.

In the case of set theory, a modal-structural interpretation along lines suggested by Putnam [1967] has natural
applications to “higher axioms” of set theory, especially so-called “large cardinal axioms”. This is intimately bound up
with problems concerning “proper classes” and provides, from our point of view, one of the most interesting and
potentially fruitful applications of the present approach.

In this connection, it may be of some historical interest to note that there are striking similarities between the Putnam-
inspired approach to set theory to be developed here and some of the views of Zermelo's classic [1930] paper. The
formal content of this late work of Zermelo's (as yet, unfortunately, not published in English translation) is well known
among set theorists. Yet its philosophical perspective has yet, I believe, to receive the attention it deserves.

In developing the interpretations, we have made free use of already well-developed axiom systems. Yet we sometimes
speak as though we were “representing mathematical discourse”, as if the mathematician normally spoke in formal
languages. Of course, we make no such assumption. Rather, we assume that standard axiom systems are already a
more or less successful codification of significant portions of actual mathematical practice, successful enough to be
taken seriously as a starting-point in foundational work. (Here we share the outlook of many mathematical logicians.)16
If one further desires to relate our reconstruction back to less formalized practice (the “raw data”, as it were), one will
have further work to do. Although we will sketch a kind of “recovery” of “ordinary practice”,

INTRODUCTION 9

16 See e.g. Feferman [1978 ], with which we are in sympathy.



this is only part of the story. In particular, one would seek to supplement our account by showing that sense can be
made of actual practice which antedates the explicit formulation of axiom systems. That is a task which we have not
undertaken here. In contemplating this, however, due consideration must be given to the slack that always exists
between informal practice and formal reconstruction, whatever the theoretical inquiry may be. The formal
reconstruction is designed to serve certain theoretical purposes, especially to exhibit ways in which various
assumptions and methods can be justified. It should not be read as asserting that “this is the way mathematics has been
(or should have been) carried out”.

A final cautionary preliminary: our standpoint throughout will be “non-constructive” in the sense that we freely
employ the notion of “arbitrary subset of X” where X may be infinite (or we employ some essentially equivalent
notion in point of mathematical richness), and, more fundamentally, we allow—and even seek a kind of justification
for—talk of “completed infinite totalities”. We see no convincing reason not to take such notions as “meaningful”,
although we do not enter into anything like a full-scale defence of this classical stance here. As will emerge, some
“constructivist” criticisms of this stance may have to be revised in light of modal-structural alternatives to objects-
platonism, but we do not pretend to have resolved this central controversy.

It must be said, however, that, while we regard constructive mathematics as part of classical mathematics, and not as a
conflicting replacement,17 and while we have not entered into constructive systems in this monograph, we do see great
value in their development from a philosophical perspective. For they can be read as spelling out in detail just how
much can be achieved by more or less limited (and correspondingly secure) means. And that in itself is surely a large
part, if not the whole, of mathematical epistemology. Although consideration of constructive systems transcends the
scope of this study, it may be that certain of the ideas developed here can be adapted to such systems, and that this
could turn out to be valuable, especially in connection with the problem of finding support for those modal-structural
postulates that prove in the end to be unavoidable.

10 INTRODUCTION

17 Here we share the perspective of Tait [1983 ].



1 The Natural Numbers and Analysis

§ 0. Introduction
The natural numbers form a natural starting-point for this study—and in more than one way. Not only are they the
most fundamental and familiar objects of mathematical thought and practice; they also lend themselves most readily to
a structuralist interpretation according to which they—as particular abstract objects—are dispensed with entirely. It is a
widely, if not universally, accepted view that, in the theory of arithmetic, what matters is structural relations among the
items of an arbitrary progression, not the individual identity of those items. As one commonly says: “Any ω-sequence
will do.”

It is one of the great ironies of our subject that this view—one that is implicitly recognized in modern set-theoretic
treatments of ordinals, where quite arbitrary stipulations are adopted and recognized as such—was explicitly rejected
by Russell,18 who championed a particular way, due principally to Frege,19 of reducing number theory to a theory of
classes. That approach certainly had its attractions (and still does).20 Russell was particularly enamoured of the ease with
which it accommodated ordinary counting: the relation between the enumerated class and the number counted was
simply membership. (The oriental kings were three on account of the class of those kings belonging to 3.) And, Russell
argued, if the natural numbers were identified arbitrarily with “any old ω-sequence”, you couldn't account for
counting.21 One might read Russell charitably here as saying that you couldn't as elegantly account for counting. For
surely you can—and you do in standard set theoretic treatments—by asserting the existence of a bijection between the
class enumerated and (say) the predecessors of the number reached (0 counting as the first number). This is slightly
more long-winded

18 In Bertrand Russell [1919 ], pp. 9–10.
19 In Frege (1884) in [1978 ].
20 For a recent formalization of the mathematical core of Frege's Die Grundlagen der Arithmetik in a second-order system provably consistent relative to classical analysis, see

Boolos [1987 ].
21 Russell [1919 ], n. 1.



than the Frege–Russell account, to be sure. But, as it happens, there are overwhelming advantages to the modern set-
theoretic treatments, as compared with Russell's, when the need to impose type restrictions on classes (or propositional
functions) to avoid the paradoxes is taken into account. (For then, Russell's numbers—classes of n-fold classes of a
given type—are reduplicated at all levels of the type hierarchy. And on a modern set-theoretic reconstruction, Russell's
numbers turn out to be proper classes—“too big” even to be found in Zermelo–Fraenkel set theory, and “too big” to
be collected in von Neumann–Bernays–Gödel set theory.)

Much closer in spirit to a modern structuralist view is the earlier attitude of Dedekind in his classic essay, ‘Was sind und
was sollen die Zahlen?’.22 There, having provided an analysis of what we today call an ω-sequence—in Dedekind's
terminology, a “simply infinite system”—as any system of elements together with a relation (of “successor”) satisfying
four axioms (in which we recognize the “Peano postulates”, with a second order statement of induction), Dedekind
made the following remarks under the heading “Definition”:

If in the consideration of a simply infinite system N set in order by a transformation φ we entirely neglect the special
character of the elements; simply retaining their distinguishability and taking into account only the relations to one
another in which they are placed by the order-setting transformation φ, then are these elements called natural numbers
or ordinal numbers or simply numbers, and the base-element 1 is called the base-number of the number-series N. With
reference to this freeing the elements from every other content (abstraction) we are justified in calling numbers a
free creation of the human mind. The relations or laws which are derived entirely from the conditions α, β, γ, δ in
(71) [Dedekind's statement of his “Peano axioms”] and therefore are always the same in all ordered simply infinite
systems, whatever names may happen to be given to the individual elements, . . . form the first object of the science of
numbers or arithmetic.

Later in the essay, having proved in effect that any two simply infinite systems are isomorphic (Theorem of § 132) and
a kind of converse, that any system isomorphic to a simply infinite system is also simply infinite (Theorem of § 133),
Dedekind remarked (§ 134):

. . . it is clear that every theorem regarding numbers, i.e. regarding the elements n of the simply infinite system N set
in order by the transformation φ, and indeed every theorem in which we leave entirely out of consideration the
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special character of the elements n and discuss only such notions as arise from the arrangement φ, possesses
perfectly general validity for every other simply infinite system Ω set in order by a transformation ψ . . . By these
remarks, as I believe, the definition of the notion of numbers given in (73) is fully justified.

Now, it is quite clear from these passages that Dedekind endorsed a structuralist view to this extent: he regarded
arithmetic as fundamentally the study of relationships within arbitrary ω-sequences and regarded the “special character” of
the items of any such sequence as of no concern whatever to mathematics. Surely this is why he took pains to prove
the categoricity of his axioms and the converse (which, in a modern model-theoretic treatment we would fill out with a
proof that isomorphic models are elementarily equivalent, i.e. agree on all the same sentences, not just the axioms).

Yet can we say that Dedekind endorsed the further structuralist thesis that, to make sense of arithmetic, it is not
necessary to regard number words as referring to any objects whatever, and that it is certainly not necessary to
construe them as referring to unique abstract objects, called “numbers”? It is tempting to read Dedekind as going this
far, but, apparently, that would be to misread him.23 It is tempting to read ‘N’ and ‘φ’ in § 73 quoted above as (universally
quantified) variables, typical of definitions. However, as emerges in subsequent sections of the essay—including § 134
which we have quoted—Dedekind in fact is using ‘N’ and ‘φ’ as constants, as names for a particular system of abstract
objects and a particular relation on that system, respectively. (Note the definite article as it occurs in § 134. And note
that the very statement of the theorem of § 132—“All simply infinite systems are similar to the number-series N and
consequently by (33) to one another”—becomes quite redundant on the universal quantifier reading.) These objects
are indeed the unique referents of number words, “the natural numbers”. They are abstract particulars; and they are
created by our minds (the very same ones by each of us?); and, presumably, they lack any “special character” (even the
character of having been created by Richard Dedekind, or by homo sapiens sapiens, as he likes to call himself?). Whatever
the precise position—and regardless of whether it is coherent—Dedekind's
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seems to fall into the objects-platonist category after all. And, it seems, with a vengeance: not only is the position
platonist; it is creationist as well!

Of course, we need not follow Dedekind in all of this (if indeed this rather literal reading of his words is accurate). We
can attempt to retain his structuralist insights and strip away his version of platonism. One way of doing this would be
simply to adopt a modern set-theoretic treatment of number theory, supplemented with an explicit recognition that
number theory isolates an isomorphism type, a class of pairwise isomorphic structures, any one of which can serve as
providing “referents” of number words. (A detailed analysis of natural language “reference to numbers” could be
developed in various ways, which need not detain us here.)

However, as already indicated in the Introduction, we seek an alternative to the set-theoretic articulation of
structuralism. Not only does that path involve the categorical assertion of set-theoretic axioms with their “abstract
commitments” (pending a structuralist reinterpretation of set theory itself, something which is fraught with special
problems, as we shall see in the next chapter); it makes number theory dependent on set theory in a way that, from a
mathematical point of view, it would be desirable to avoid. There is good motivation for understanding number theory
and analysis as capable of standing on their own. Surely we should resist saddling them—as basic mathematical
theories—with the problem associated with “Cantor's universe” (i.e. with “unsolvable problems the likes of which
mathematics has never known before”).24 Indeed, it is possible to give set-theoretic “reductions” of these more basic
theories in weak systems of set theory. But then, in addition to the categorical commitments to sets, sets of sets, sets of
sets of sets, etc. (at least through all finite levels), there is the problem that our structuralism for the more basic theories
will turn out to be too restricted: restricted, that is, to whatever structures of the appropriate type can be found within the
weak set-theoretic framework (which, of course, may include urelements). What will be missed is the full generality of
structuralism: arithmetic or analysis investigates relations holding within arbitrary structures of the appropriate
type—not just within those that happen to be recognized in a weak set theory.
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As an alternative, we shall make limited use of a logico-mathematical modality—a notion of logical possibility—as part
of the structuralist language. Just how this is to be understood will emerge from the role it plays in the interpretation.
By employing it, as we shall see, it will be possible to translate ordinary sentences of number theory (or analysis) so
that, on the interpretation, they say what would be the case in any (arbitrary) structure of the appropriate type without
literally quantifying over any objects at all. (For definiteness, we carry out the analysis for Peano Arithmetic in the first
instance. It can readily be adapted to more powerful theories, such as Real Analysis, as will be made clear later.) This, of
course, must be spelled out by means of a specific translational pattern, and that will be presented below (§ 1). Since
modal conditionals are involved, I call this the hypothetical component of the (ms) interpretation (“msi”). However, as will
emerge, there must also be a categorical component, a set of basic assumptions of the structuralist theory, from which the
mathematics as ordinarily practised can be recovered. As we shall see, care in the choice of postulates will allow a
natural derivation of the (first) axiom of infinity (in the relevant form of modal existence) (§ 2). The use of modality will
thus have mathematical foundational relevance beyond the more “philosophical” questions of “platonism”. Once these
components have been set out, we can turn to the questions of justification. These are some of the most interesting
problems confronting the approach. As we shall see (§ 3), it is relatively easy for the set theorist (platonist) to justify the
translation scheme (and the categorical component as well), but this is a justification “from the outside”. If the
structuralist view is to stand on its own, it ought to be able to answer certain questions concerning truth-
determinateness from the inside, i.e. without going outside the ms framework. Once the translational pattern has been
given, it will become apparent what must be established, and we will outline the key steps in what seems to be a
satisfactory solution (§ 4). It will then be indicated how these methods can be extended to a ms treatment of more
powerful theories, in particular Real Analysis, including the second-order version involving quantification over sets of
reals (§ 5). As a kind of corollary, it will emerge that a great deal of classical mathematics—far more than generally
supposed—can be understood “nominalistically” (apart from the modality); and the internal justification can be so
understood as well (§ 6).
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§ 1. The Modal-Structuralist Framework: The Hypothetical
Component
Intuitively, we should like to construe a (pure) number-theoretic statement as elliptical for a statement as to what would
be the case in any structure of the appropriate type. In this case, the structures are, of course, “progressions” or “ω-
sequences”, so what we seek to make precise is a translation pattern that sends a sentence of arithmetic S to a
conditional such as,

(1.1)

We now confront two distinct problems in formalizing this, corresponding to two distinct desiderata of the
programme: (i) to avoid literal quantification over abstract structures, possible worlds, or intensions, in order to
provide a genuine alternative to objects-platonism, in which literal reference to such objects is eliminated; (ii) to respect
the full, classical truth-determinateness of the mathematical theory in question. (i) guides us in the matter of relative
placement of modal operators and quantifiers while (ii), on the other hand, constrains the choice of non-modal
primitives to be admitted into the modal-structuralist language. Let us consider these in turn.

Note that (1.1) contains, implicitly, a universal quantifier. It is already a step toward formalizing the more purely
English version,

(1.1′)

in which the pronomial cross-reference indicates that the apparent existential quantifier is really universal (on the plan
of ordinary examples, such as “if someone objects to this procedure, she or he should speak up now”, so confusing to
beginners in logic). However, the “if there were” serves to distinguish the intended sense from that of “For any (actual)
x, if x were . . . ”, where we contemplate of each (actual) thing what would be the case were the antecedent to hold of
it. (Think of simple examples, such as, “if there were seven-legged horses . . . ”, as opposed to, “If anything (i.e. any
existing thing) were a seven-legged horse . . . ”.) The upshot of this is that we should represent (1.1) as having the outer
logical form,

(1.1′′)

with the quantifier within the scope of the modal operator. So long as we adhere to this plan, our translates will have
the intended generality.
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Moreover, we will attempt to formulate existential assumptions in a parallel fashion. The categorical component of the
interpretation (of PA) will assert

(1.2)

not

Thus, immediately we see that the background modal logic must not contain the Barcan formula. (As to what else it
should contain, the natural choice will be S-5 since we are concerned here with an absolute, mathematico-logical sense
of possibility.)25 As a result, the interpretation will be neutral with respect to the actual existence of mathematical
structures. And as a consequence of this, questions of actual reference to such structures as objects will simply not
arise. The structuralist intuition—that such questions as, “How do our words attach to abstract structures in the
absence of any interaction between them and us?” are misguided—will be sustained.

It should also be stressed that, in our unwillingness to quantify over possibilia, we avoid such extravagances as “the
totality of all possible ω-sequences”. From our point of view, such totalities are illegitimate, much as “the totality of all
possible sets” is illegitimate. While it may be possible to treat such totalities without literal contradiction, countenancing
them runs counter to the open-ended
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connection with mathematical objects are actually sustained on translation: where ‘O’ is a predicate for such objects, the statement e.g. that If Os are possible, then Os are

actual (i.e. actually exist)

can be understood as asserting that

where “actual (mathematical) existence” is interpreted as (mathematical) possibility; and the statement that If Os are actual, then Os are necessary (i.e. necessarily exist),

comes out as

The first formula is an instance of the characteristic S-4 modal axiom; the second an instance of the characteristic S-5 modal axiom (which implies the S-4 axiom,
incidentally).



character of mathematical construction, which the msi seeks to respect. (In the present case, any totality of ω-
sequences could form the basis for a new one, much as any totality of sets satisfying, say, the ZF axioms could be
extended to a richer model. Such “extendability principles” are taken up in Chapter 2.)

So much by way of outline on the first problem of formalization. What about the second? Here we need to express the
notion of “ω-sequence” and, it seems, “holding” or “satisfaction”. Now one way of accomplishing this would be
simply to use the language of set theory, since we know how to express both “ω-sequence” and “satisfies” in terms of
set membership; (1.1) could then be made precise by

(1.3)

where ∧ PA2 is the conjunction of the (finitely many) second-order Peano axioms, and satisfaction is defined so as to
guarantee that models of these axioms are “full”, i.e. the second-order quantifier in the induction axiom,

ranges over all subsets of the domain of X.26 One disadvantage of this choice is that the translates all become
metalinguistic, and this is surely an awkwardness, if not a fatal misrepresentation of arithmetic discourse. But even
more serious is the problem that the structuralist programme, so articulated, becomes just a piece of modal set theory,
and for reasons already stated above, we do not wish to follow this course.

Nevertheless, if we are to insure the full truth-determinateness of our translates, some higher-order notions will be
needed. Even if we could write out all the first-order axioms of PA (i.e. with all instances of the induction scheme),
taking this infinite conjunction as the antecedent of a modal conditional would not express the intended restriction to
ω-sequences (as a familiar Henkin compactness argument shows). But unless such a restriction is expressed, the
scheme will confront problems in connection with non-standard models: sentences not decided by the first-order
axioms will all be treated as “not true”, in that they would not hold in all models of the

18 THE NATURAL NUMBERS AND ANALYSIS

26 NB. X here, of course, is a pair, a domain together with a valuation interpreting the predicate (or function) constants of ℒ(PA2 ). A single such, for successor, suffices.



axioms. The structuralist interpretation would then lapse into a semantic equivalent of deductivism.27

The point bears emphasis, and can be brought out by considering the categorical modal existence assumption, (1.2),
that, as we shall insist, must accompany the hypothetical component of any adequate modal-structural interpretation.
The intended assumption, intuitively, is

not the weaker claim,

Some model of the first-order axioms is possible.

The latter is equivalent to the mere claim of formal consistency, whereas (1.4) expresses more. In familiar parlance,
(1.4) expresses the possibility of a standard model, not an arbitrary model. But it is the stronger claim, not the purely
formal claim, that a realist structuralism requires. (This point will emerge in a more precise form below, when we turn
to questions of justifying the translation scheme. For now, simply note that, once we interpret arithmetical sentences as
elliptical for what would hold in a class of (hypothetical) structures, such translates will be true only if all the structures
in that class agree on the sentence in question. Immediately, we see that all the relevant structures must at least be
elementarily equivalent. The structuralist naturally desires that they moreover be pairwise isomorphic. As is well
known, the models of any first-order theory of arithmetic—even the highly non-recursively-enumerable theory of all
truths of the standard model—do not satisfy this latter condition.)

Thus, the modal-structuralist framework for arithmetic must transcend first-order arithmetic, even in its non-modal
primitives. And, as just indicated, here “for arithmetic” means “for either first-order or second-order arithmetical
sentences”. (That is, even if we restrict the translation to first-order sentences, higher order primitives will be needed to
insure truth-determinateness of the scheme.) If, however, we wish to stop short of full set theory, we are naturally led
to consider languages which make some, but only a modest, use of
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set-theoretical or allied concepts. Our prime candidate here is the framework of second-order logic.28

Now, as Parsons has recently put it, one of the beauties of second-order logic is that it is susceptible of so many
different interpretations.29 Interpretation there must be, for, as Quine has insisted, some predication relation is hidden
in the notation ‘F(x)’, once we admit F as a quantifiable variable. And if we eschew intensional objects (attributes), we
are naturally led, in the first instance, to construe F as an extension, i.e. as a class, in which case predication is indeed
(the converse of) membership. However, to countenance classes of individuals is one thing; to countenance iteration of
the power set operation is another (not to mention iteration into the transfinite!).30 If we abstract from the concerns of
a strict nominalism, this extensional interpretation of second-order logical notation is a natural candidate for
articulating structuralism. In effect, we allow classes as occurring exclusively on the right of ∈: we collect whatever
individuals of a domain we are given (actual, or hypothetical), but we go no further in “collecting these collections”.
Similarly, we allow talk of arbitrary k-place relations (hence functions) on a given domain of individuals—relations
obeying extensionality—but we do not go further and collect or relate these. (Formally, we shall adopt the ordinary
comprehension axioms of second-order logic. See below, Chapter 1, § 2.) Not that it would be incoherent to do so.
Rather, to do so is to introduce iteration, hence a theory of iteration, i.e. set theory, and, on the structuralist view, this is
a special mathematical theory investigating structures of its own. How, ultimately it should be treated remains to be
determined, but, as already indicated, we wish to give a structural interpretation of theories “lower down” which is
independent of the full-blown iterative theory. To do so, we need to speak, at least hypothetically, of structures, and the
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formulating various mathematical theories. For an especially insightful recent example, see Boolos's reconstruction of Frege's Die Grundlagen der Arithmetik, cited above, p. 11,
n. 3.

29 See Parsons [1990 ].
30 Cf Shapiro's [1985 ] distinction between “logical” and “iterative” conception of “set”. Cf. also Maddy [1983 ] and Tait [1990 ].



language of classes and relations embodied in second-order logic is well suited to the task.

Two related final preliminaries: first, in employing the phrase “second-order logic”, we are referring to a well-known
notation and its metatheory; we are not committed to the view that it is “genuine logic”. Nor are we committed to any
particular way of drawing a line between logic and mathematics. As we see it, structuralism does not need to draw such
a line. What matters here is not whether second-order logic is logic, but whether it is intelligible and useful. As the
remarks above indicate, we do see a certain mathematical content in the second-order formalism, and it is precisely this
content that is to be exploited in articulating structuralism. In fact, as will emerge in a moment, the non-schematic
character of second-order logic—i.e. the possibility of forming fully quantified sentences which, intuitively, have truth
value—turns out to be a crucial advantage for the structuralist programme.

Second, we are exploiting the well-known superior expressive power of second-order axiomatizations of mathematical
theories, manifest primarily in the fact that, by means of finitely many second-order axioms, a single type of structure
can be characterized up to isomorphism.31 The significance of categoricity has been a subject of controversy.32 In part,
we believe this to stem from failure sufficiently to distinguish two very different functions of axiom systems. On the
one hand, there is the purpose of codifying proofs; here, what we usually demand of proofs leads us to work with first-
order systems. But, on the other hand, there is the very important, distinct purpose of “expressing what we
mean”—on a structuralist view, the purpose of articulating the type of structure of mathematical interest.33 A good deal
of mathematical work itself may go into achieving this, and, of course, it would be anachronistic to insist that, prior to
codification, mathematicians “didn't know what they were talking about”. But understanding comes in degrees, and
once a categorical articulation has been achieved, it can be used to communicate more definitely what is intended.
Moreover, it can be used in developing an interpretation aimed at philosophical clarification.

Now, once we have the apparatus of second-order logic, we can
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attempt to express the hypothetical component of the msi in a direct, mathematical—as opposed to
metamathematical—way. In the case of PA, we can write out the conjunction of the finitely many PA2 axioms,
abbreviated ‘∧ PA2’.34 It is tempting then to take S in ℒ(PA2) simply as elliptical for

(1.5)

This has the virtue of simplicity, but I think the msi must do better. For, as it stands, (1.5) is problematic. It contains, in
addition to purely logical notation, at least a relation constant, ‘s’, for successor. But, if (1.5) is thought of as making a
definite assertion, how are we to interpret such constants? What, for example, does it mean to say, “If there were an
object which were the successor of no object & . . . ” (which is one of the PA2 axioms)? The platonist claims to understand
“successor” as a particular relation on a particular domain—either the natural numbers, unreduced, or identified
(arbitrarily) with a particular progression of sets, in which case the successor relation is set-theoretically defined. But
the structuralist wishes to depart from both styles of platonist interpretation and substitute something in a way more
abstract, which we wrote, intuitively, as (1.1) above. (1.5) simply does not articulate (1.1).

If the term ‘s’ is not understood as having a definite extension, how is it to be understood? The most likely answer,
from a modalist, might be “as expressing an intension”, e.g. as a distinct function in distinct possible worlds. But, in
this case, one has ascended to a possible worlds semantics of □, and the ms framework is really an objects-platonist
one after all. (Alternatively, one could simply take intensions as primitive, but this is surely no way to avoid objects-
platonism.) In effect, what has happened is that the predicate constants have, in the modal contexts, ceased to function
as genuine constants (in the usual sense, of having definite extensions). They are behaving rather as predicate variables.
But, then we have in (1.5) not a sentence but a scheme. In this case, we would be tempted to ascend semantically in
order to obtain definite sentences. We might, for example, introduce appropriate semantical machinery with which we
could then express that (1.5) is a model-logical truth. But then (a) our translate of S is really this metamathematical
statement, and not (1.5); and, more important, (b) the ms framework has embraced
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possible worlds or a full-fledged model theory after all, contrary to its aims.35

Now one advantage of the second-order framework is that we can bypass these problems by quantifying over
relations. We can form, e.g., the sentence,

(1.6)

in which a two-place relation variable f replaces the constant s throughout the conditional. This is now a direct, modal-
mathematical sentence corresponding to the more familiar metamathematical claim that A is logically implied by the
PA2 axioms (in the sense of full second-order logical implication, i.e. A holds in all full second-order models of ∧ PA2).

While (1.6) improves significantly upon (1.5), there is still a respect in which it is schematic. This concerns the question
of domains of the (possible) structures, explicitly involved in our initial intuitive formulations (e.g. (1.1)), but about
which there is no mention in (1.6). Usually, this would be brought in at the level of metatheory, as in the talk of logical
implication just cited. But we do not want to rely on metatheory to express even this component of structuralism.
There is, however, a natural remedy: we can employ the device of relativized quantification with respect to a class
variable X, and then prefix the formula (following the □) with a universal quantifier, ∀X. This gives us

(1.7)

as our direct, modal mathematical translate, Amsi, of A of ℒ(PA2).36
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If we wish to restrict attention to translates of ℒ(PA1), we follow the same pattern, but with the following changes:
since the original language has symbols for addition and multiplication (say Σ and Π), either we may define these
operations explicitly from successor and second-order quantification in the familiar way, or we may add the recursion
equations for these as axioms to PA2 (obtaining PA2+); then, when representing a sentence A of ℒ(PA1), we replace Σ
and Π respectively throughout with three-place relation variables, so that Amsi becomes,

(1.8)

This, expresses—in effect—that A would hold over any domain and with respect to any relations on that domain
“behaving as successor, addition, and multiplication”. The part about behaviour is guaranteed by the axioms of the
antecedent; but “A would hold” is obtained, without introducing satisfaction, by means of the relativized form of A
with the substitutions indicated. (Saying “A would hold” is misleading in that, of course, the substitutions of ‘f ’ for ‘s’,
etc., are made throughout A as well as throughout the axioms.)

Let us adopt the schemes, (1.7) and (1.8), as giving the hypothetical component of the modal-structuralist
interpretation of ℒ(PA2) and ℒ(PA1), respectively. So far, they do nothing more than represent explicitly the “modal-
structural content” of ordinary sentences of the respective languages. But, of course, there is much more to
mathematical practice than the mere utterance of sentences. There is the deductive practice of theorem proving, and
for the classicist, there are claims of truth and falsity accompanying that practice. Let us see how, in broad outline, the
modal-structuralist can understand these fundamental matters.

§ 2. The Categorical Component: An Axiom of Innity and a
Derivation (Inspired by Dedekind, With Help from Frege)
To begin, it should be clear how the practice of theorem proving can be “recovered”. If we make the simplifying
assumption that that practice is already reasonably codified by standard axiom systems for PA (to fix ideas, let us say
first-order PA), then the modal-structuralist
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has a straightforward way of arriving at Tmsi, for any theorem T of PA. The first step is to adopt a standard axiom
system of second-order logic, including the full comprehension scheme,

(CS)

where the xi are individual variables, R is not free in A, and A may contain parameters, but no modal operators. (This
latter restriction enables us to avoid quantification into modal contexts at this stage of the programme.) (CS) will
enable one to derive, among other things, any instance of the first-order induction scheme from the second-order
induction axiom. The next step is to apply the translation scheme ((1.8), in this case) to each line of the original PA
proof. The axioms of the original proof go over to (necessitations of) theorems of second-order logic, and it is a
(tedious) exercise to show that the rules of inference preserve this relation. (One needs to show that the relativization
of a theorem is a theorem.) Thus, if T was correctly deduced from (finitely many) first-order axioms, Tmsi will be
deduced in second-order logic together with the most elementary rules for □.

It should be noted that, in view of the rule of necessitation of axiomatic modal logic (in particular, the system S-5, to
which we shall appeal), we have, not merely (CS), but its necessitation,

(□CS)

with the same restrictions given for (CS) above. This will prove useful below, at several points in the justification of the
interpretation. Observe that the initial □ is the only modal operator occurring in these comprehension principles. (The
importance of this will emerge below, cf. p. 31). Also note that the restriction that the xi range over individuals—a
restriction built into axiomatic second-order logic to block paradox (e.g. Russell's)—accords with our above-mentioned
aim of avoiding the iteration of any collecting (or relating) operation: with (□CS) we recognize (at most) only one
abstract level, not a complex hierarchy of classes and relations.

Returning to the matter of recovering proofs, a short cut runs as follows: replace all relation constants in the original
proof of T with relation variables of the appropriate type; use the deduction theorem to justify conditionalization,
inferring,
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where ∧ AX is the conjunction of the axioms used to derive T; replace the antecedent with ∧ PA2 (justified by the fact
that each instance of the induction scheme is derivable from the second-order induction axiom using (unrestricted)
second-order comprehension); relativize the quantifiers to X; apply universal generalization to the second-order
variables, and necessitation to this. Thus, ordinary proofs are simply construed as free variable arguments (the variables
being second order) relative to an arbitrary domain. In this way, deductive practice (codified) in the original system is
preserved.

Obviously, it is not being recommended that ordinary proofs be carried out in this way (any more than the proof
theorist recommends that ordinary proofs be replaced in practice by any of the usual codifications!). The point is
merely that the translation scheme is proof-theoretically faithful in that, in principle, ordinary theorems can be
recovered in the appropriate form and within a framework in which apparent reference to numbers or to “the standard
model” as an object has been entirely eliminated.

Recovery of proofs is, however, only the first step in justifying the translation scheme. As already emphasized, the
modal-structuralist aims at much more: in some suitable sense, the translates must be mathematically equivalent to
their originals, where these are understood classically, i.e. as determinately true or false (or true or false in the standard
model). Just how this “equivalence” is to be understood and how it may be established are questions to be addressed in
the following sections. Here a first step may be taken in that direction by drawing attention to what we have already
called the “categorical component”.

As already suggested, a categorical assumption to the effect that “ω-sequences are possible” is indispensable and of
fundamental importance. Without it, we would have a species of “if-thenism”, i.e. a modal if-thenism, and this would
be open to quite decisive objections, analogous to those which can be brought against a naïve, non-modal if-then
interpretation. Consider the latter. Suppose it represents sentences A of arithmetic by means of a material conditional,
say, of the form,

or some refinement thereof. Suppose also that, in fact, there happen to be no actual ω-sequences, i.e. that the antecedent
of these conditionals is false. (This could be “by accident” as it were. For the sake
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of argument, do not insist upon Cantor's universe of sets as “necessary existents” (please!). Consider, instead, the
stance of the “if-thenist” who seeks to avoid platonism.) Then, automatically, the translate of every sentence A of the
original language is counted as true, and the scheme must be rejected as wildly inaccurate. (Well, at least it gets half the
answers right—not the worst imaginable performance! Compare the case of the broken watch.)

Now the very same situation would obtain in the case of modal conditionals if ω-sequences were not possible, i.e. if there
could (logically) be no standard realization of the PA2 axioms. (This could be due to a formal contradiction, but, as we
know from Gödel's work, absence of a formal contradiction is insufficient for the possibility of a standard model. For
example, suppose there were an ω-inconsistency.) In that case, the translation scheme would not respect negation: all
the original sentences A would be translated as true. Thus, it is absolutely essential to affirm, categorically, an
appropriate version of (1.4), above. In the style of our preferred version of the hypotheticals, we can adopt,

(1.9)

as a basic thesis of modal mathematics. On the view under consideration, this affirms the coherence of the notion of
an ω-sequence, something that is generally taken for granted, but which nevertheless forms an indispensable “working
hypothesis” underlying mathematical practice.

In fact, on the modal-structuralist “rational reconstruction” of (pure) number-theoretic practice, the modal-existence
postulate, (1.9), can be viewed as a starting-point in ordinary reasoning “about numbers”. As we have just seen, that
reasoning can be reproduced entirely in terms of the ms-translates, in which all apparent reference to numbers as
objects disappears. But this is a cumbersome substitute for ordinary reasoning, which appears to be “about” a fixed ω-
sequence. Now, given a categorical assumption such as (1.9), the ordinary reasoning can be seen as a natural short-cut,
and the use of number-words as apparently referring constants receives a natural interpretation. One begins with (1.9),
informally put: “Assume an ω-sequence”.37 Next one applies “existential instantiation”, i.e. one
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says, let N (i.e. (N, s)) be such a thing. Formally, this amounts to writing (∧ PA2)N. Here ‘N’ is just a “dummy name”,
serving to facilitate our reasoning in the usual ways. One doesn't claim that ‘N’ refers to anything, any more than one
claims that ‘a’ refers to anything when one passes from a non-modal existential assumption—e.g. “there are black
holes”, to “let a be a black hole”. But, now, one will not hesitate to introduce the individual numerals as a convenience,
justified by the existence and uniqueness claims derivable from (∧ PA2)N, i.e. one will introduce ‘0’ as “standing for the
first member of N”, ‘1’ as “standing for the unique next member of N”, and so on. All further arithmetical reasoning
will be carried out with respect to this fixed N, and it will appear that there is constant reference to objects. But all of
that is just a façon de parler, justified as a short cut, beginning with a mere claim of logical possibility.

At this point, it is worth comparing the procedure just outlined with the “abstraction” that Dedekind employed in his
“definition” of natural number, quoted at the outset. For, without claiming that Dedekind would have endorsed the msi,
I think we can see in the above recovery of ordinary number talk a way of sustaining his structuralist insights without
lapsing into objects-platonism or creationism. Like Dedekind, we appeal to a second-order definition (essentially,
Dedekind's) of the type of structure of interest. But, instead of “creating abstract particulars”, we appeal to the logical
possibility of structures of the relevant type. Moreover, in entertaining such structures and in mathematical reasoning
concerning them, we “neglect entirely the special character of the elements, simply retaining their distinguishability and
taking into account only the relations to one another in which they are placed” by the hypothesized order relation of
the structure. (Cf. § 73 of Dedekind [1901] quoted above.) Furthermore, we do even arrive at talk of numbers as
objects, but this is just a convenience justified by our assumptions. Finally, creation even enters as well. However, it is
not, of course, “the objects” that we create, but the language of numerals—again, justified by our assumptions, and by the
need for efficient, compact forms of reasoning.

In one major respect, however, our procedure thus far departs radically from Dedekind's. For, whereas we have been
taking the
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modal existence of ω-sequences (1.9) as a postulate, Dedekind attempted to derive the existence of simply infinite
systems from more basic considerations.38 And it may well appear that, at this point, we must part company with
Dedekind. For recall that there were at least two flaws in Dedekind's “proof”: first, there was the problem of
meaningfully iterating a “the thought that . . . ” operator an arbitrary finite number of times, obtaining a new object at
each stage. And, second, there was the need to collect all such objects via some comprehension principle, which
Dedekind did not explicitly articulate. Frege, of course, did explicitly articulate such a principle, but it went too far. As
with Russell, modern set theory simply adopts an axiom of infinity without seeking a derivation, and it is easy to
acquiesce in such a policy. (As Russell stressed, the existence of infinitely many (non-mathematical) objects is a
contingent matter on which mathematics should not depend. And, once we accept cumulative set theory, à la Zermelo,
restricted comprehension (Aussonderung) no longer enables us to generate the set of all (set-theoretically constructed)
natural numbers without already having an embracing set. The axiom of infinity seems to be a true “axiom”.)

It is worth pointing out, however, that in the present framework—axiomatic second-order modal (S-5) logic—a
natural derivation of the mathematical existence of infinite sets, and indeed, of ω-sequences, can be carried out, along
quasi-constructive lines.

One begins, in the manner of Dedekind, with a rule prescribing the construction of a unique “next object”. It could,
for example, prescribe that a new stroke be added at the end of any presented terminating sequence of strokes (in
some fixed orientation). Call the rule R. Let A(x, y) be the predicate, “y is generated after x in accordance with rule R”.
Now, using this predicate, we can write down a first-order sentence saying, in effect, that the field of the relation A is
infinite:

(*)

(Here, it is assumed that the quantifiers are restricted to objects of the appropriate sort (strokes); this can be absorbed
by the predicate
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this the existence of simply infinite systems would follow. Cf. § 72.) We comment on this briefly below.



A. The discreteness condition expressed in the last clause is added to facilitate the connection with ω-sequences, to be
brought out momentarily.) Now, in fact, there may be no reason to accept (*), but there is every reason to accept that,
logically, it might be true,

(Potential Infinity)

Now, appealing to comprehension (CS), the following is provable:

where the quoted clause is spelled out in second-order notation as in (1.9). Then, appealing to modal logic and the
assumption ◊(*), we obtain

(Modal Infinity)

and, then, of course,

(1.9)

our key modal-existence thesis for arithmetic.39

Two remarks are in order concerning this derivation. Note, first of all, that it employs (CS), ordinary second-order
comprehension (CS). (Equivalently, if one works, say, with semantic tableaux, one can begin with ◊(*) and then invoke
(□CS), above.) Only ordinary (actualist) universal quantifiers are involved. The derivation does not employ “modal
comprehension”, either in the sense of comprehension
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question is not, however, resolved by the mere utterance of a metaphysical credo”! (ibid.).) From the modal-structuralist point of view, this debate can be bypassed entirely.
Dummett has conceded all that the classical mathematician requires of a first-level infinite totality.



for formulas with modal operators, or in the sense of a scheme with “possibilist quantifiers”, of the form,

It must be stressed that this latter is no part of the modal-structuralist framework we are investigating. It would give
rise to intensions, and moreover to monstrous intensions such as “the union of all possible ω-sequences”, which, as
already indicated, runs counter to the spirit of the interpretation. (This is closely connected with the msi's rejection of
proper classes. We shall return to this in Chapter 2.) The version of comprehension actually employed simply allows
ordinary mathematical reasoning to proceed under hypotheses entertained counterfactually (or, more accurately,
“neutrally” with respect to actual existence).

Second, note that the derivation is similar to Dedekind's attempt, in that it uses a predicate which we suppose we
understand, and, moreover, a predicate pertaining to a particular sort of object of no special concern to the
mathematical theory proper. (Note that Dedekind's unique abstract structure (N, φ) of the natural numbers is not the
same one whose existence he (almost) proves!) The appeal to a special predicate of concreta is merely a step in the
justification of the general modal-existence postulate. Reasoning in the theory is not construed as reasoning “about the
possibilities of marks” or anything so apparently irrelevant to pure mathematics. Furthermore, the predicate is used
counterfactually. (Dedekind too is naturally read in this way: it is in principle possible to entertain in thought any thought
that has already been reached, quite apart from how far anyone will actually ever get in this iterative process. We have
preferred to appeal to a constructive rule for generating sequences of marks as a somewhat “purer” example, involving
merely the “capacities” of a Turing machine (say, to add a stroke to the first blank cell encountered when moving along
the tape in a given direction).) To complete the derivation, we have appealed to Fregean abstraction in the modal
context of “Potential Infinity”: there could exist strokes satisfying these conditions, and then there would be the class
of those strokes, just as there would be the class of individuals satisfying any condition. Comprehension with respect to
first-order objects is completely general, and it applies regardless of the size of the collection (or whole) in question.
However, the fact that comprehension has been employed modally allows us to comply with Russell's
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requirement of “no contingent infinities” for mathematics. (The terminology “actual infinite” is, of course, confusing
in this context. Comprehension tells us that there could be an infinite totality (of some sort that we need not settle here),
and this is “actual” in the sense of “completed”, as opposed to “potential”. But, unfortunately, “completed” is even
more confusing in its own way in suggesting unintended absurdities, e.g. that a mechanism designed to generate
arbitrarily long finite sequences (in time and with bounded frequency) could at some time have generated an infinite
sequence. Some have actually taken classical infinitistic mathematics to be committed to some such absurdity.)40

To conclude this section, it is appropriate to compare the modal-structuralist view with standard set-theoretic
platonism on certain fundamental issues. Both accept as “meaningful” the highly non-constructive notion of “all
subsets of an infinite set” in one form or another. (We have purposely left open the possibility of, for example,
concrete interpretations of the ms second-order quantifiers as in the induction axiom, according to which “parts”
rather than subsets of certain totalities are recognized.) Both recognize “second-order logical consequence” as having
determinate sense, apart from our (in)capacities to verify or falsify particular cases. And, in rejecting deductivist
accounts, both rest with certain irreducible “mathematical existence” postulates which seem to defy all efforts to
sustain them as “analytic” or “true in virtue solely of linguistic meaning”. Modal-structuralism seems no more able to
guarantee the possibility of ω-sequences by the meanings of its words than Anselm could guarantee the existence of his
deity by the meanings of his. Nevertheless, the modal-structuralist and platonist treatments of mathematical existence
are quite different in interesting ways. The platonist can claim to eliminate problematic modal notions by means of
straightforward (?) existence claims: the characteristic ms modal-existence these are understood in terms of the
existence of models (e.g. (1.9) is accepted because of prior acceptance of the existence of a standard model of PA2, set-
theoretically construed). However—setting to one side questions concerning the “univocality of ‘exists’ ” on which this
reduction relies, and also the familiar questions concerning reference and epistemic relations—there is a significant
difference on the more directly mathematical question of the status of
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infinite totalities brought out by the above line of argument. For the price the set-theoretical platonist pays for the
elimination of modality is the need to postulate the axiom of infinity as a brute fact. (This is clear in the context of the
Zermelo–Fraenkel system: the first infinite level behaves as a strongly inaccessible cardinal, i.e. all the other axioms
hold in the structure of the finite ranks.) On the ms view formalized in modal second-order logic, the relevant sort of
existence of infinite totalities is not an additional extra postulate, but, as indicated, follows from the two more basic
assumptions, what we have called “Potential Infinity”, and second-order comprehension, each of which has
“constructive roots” in its own way. Potential Infinity, of course, has its roots in the most elementary procedures of
“adding one”, with which all constructive mathematics begins. (To what extent spatial or other geometric intuitions
may be involved can be left moot.) And comprehension, of course, is tied to linguistic construction, i.e. the
construction of predicates of the appropriate sort (although, of course, impredicative “construction” in this sense is
allowed). Both these constructive principles ought to enter very early in the foundations of mathematics, even if they
are to be transcended. The ms approach can claim to provide a way of accomplishing this which is actually fruitful at
least to the extent already seen: combining the two constructive principles immediately yields the most fundamental
infinite totalities required by classical analysis.

§ 3. Justifying the Translation Scheme
Turning back to the hypothetical component, we now confront the task of showing that the translation schemes (1.7)
and (1.8) are accurate and adequate. What do we mean by this? We have already seen that the practice of theorem
proving is respected. But, from a realist perspective, much more needs to be shown. What we should like to
demonstrate is that, for any sentence A of the original arithmetic language (ℒ(PA1) or ℒ(PA2)), Ap and Amsi “are fully
equivalent for mathematical purposes”, where “discovering truth” counts as a mathematical purpose. (Here, ‘Ap’ stands
for A on a literal platonist reading.) Thus, “demonstrating accuracy” means that we should be able to show that in
some suitable sense, Amsi “holds” iff Ap “holds”, i.e. the translation preserves truth. And adequacy would
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simply mean that this pertains to all sentences of the original language.

But here we confront a serious problem. What is the standard of truth to be? On the platonist view, “truth” means
“truth in the standard model” (either a unique model of “the natural numbers”, or a fixed set-theoretical model),
whereas on the modal-structuralist view, “truth”means—roughly—“truth in any possible model”, where this is spelled
out as truth of the relevant counterfactuals. Since the modalist does not offer a model-theoretic reduction of this latter
notion—not having available the set-theoretic framework for carrying it out—the notion of truth as applied to the
counterfactuals themselves is just disquotational. Moreover, the modalist recognizes no (actual) standard models at all;
at least, a strict neutrality on the question is maintained. Thus, it should be compatible with the modalist position that
all the platonist mathematical sentences are, strictly speaking, false. What is offered, in Amsi, is a replacement for Ap, not
a genuine equivalent. Literally, how could the modalist accept “Ap iff Amsi”? Similarly, the platonist may reject the modal
notions (as a Quinean platonist would); in that case, the equivalence would be equally out of reach.

The point is that the modalist and the platonist are operating in very different frameworks when it comes to evaluating
a translation scheme as truth-preserving or not. In what framework is a demonstration of accuracy of the translation
scheme to be carried out?

One might hope to define a “common core” system, a set of principles that both positions accept, and then to carry
out a proof of equivalence within that framework. But here one may be asking for the impossible. There may simply be
no system at all which (a) is capable of proving that Ap and Amsi are mathematically equivalent, and (b) consists entirely
of assumptions acceptable to both view-points. (Such situations are almost typical in philosophy. Think of
phenomenalist reduction programmes vs. ordinary (physicalist) material object discourse; or of classical logic vs.
quantum logic, and so on.)

How are we to deal with this dialectical impasse? Rather than insist on a common core system—which may be asking
for the impossible—, our strategy is to live with the impasse, and to let each side have its say separately. If the platonist
can understand the modalist well enough to prove equivalence in the platonist framework, that would at least eliminate
platonist objections to the msi on
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mathematical grounds. Moreover, that might carry interesting philosophical implications, for example, that the literalist
semantics associated with platonism is unnecessary and misguided.

On the other hand, it would be complacent of the modalist to rest with such an outcome. If the view is to be
philosophically satisfactory, it must at least be capable of its own “internal justification”. One must at least be able to
see, from within, that the truth-determinateness of the original sentences is respected. For if this could not be seen
without putting back on the platonist's glasses (which do help one see so much!), the modalist position would have to
be judged “dialectically unstable” in its own way. The upshot would be a kind of “resonating philosopher”, forever
flipping back and forth from one view to the other in the manner of the quantum field theoretician with his wave
models (coupled harmonic oscillators) and particle models (constant creation and annihilation). If such dizziness can
be avoided, the effort should be made.41

Let us first look at the matter from the external, platonist point of view. Looking back at the schemes (1.7) and (1.8),
apart from the question of interpreting the modal operator, it should be fairly obvious that, from the platonist
perspective, if an original arithmetic sentence, A, holds in the standard model (sui generis number-theoretic, or set-
theoretic), Amsi should hold also, that is, the part following the box, call it Amsi

−, is just (the relativization of) either a truth
or a falsehood of second-order logic. Either A holds in the standard model, N, or it doesn't. If it does, then, since all
full models of PA2 are isomorphic, A holds in all of them; if A fails in the standard model, then it fails in all full PA2

models, i.e. not only is Amsi
− false, but (∼ A)msi is true. And, of course, the platonist agrees that “not both Amsi

− and
(∼ A)msi−”, since N is presupposed. Thus, using standard model-theoretic reasoning, the platonist sees that, apart from
the modal operator, the translation schemes are fully bivalent and truth-preserving. (All of this reasoning, of course,
could be formalized in set theory, either with the natural numbers as urelements or in pure set theory, taking ω together
with ordinal succession as the
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standard model.) All that is missing is a way of handling the modal operator.

But with the resources of set theory, the platonist confronts no insurmountable problem here. It is understood that a
logico-mathematical modality is intended, supporting the S-5 axioms. It is further understood that, in the modal
translates, all relevant conditions are explicitly set forth in the antecedents of the conditionals. That is, it is not
necessary to have recourse to ceteris paribus clauses, or to any notion of relative similarity among possible worlds in
evaluating these counterfactuals. They behave in accordance with the principles of strict implication, and, in this
respect, are to be clearly distinguished from ordinary or causal counterfactuals. As is well known, the latter are highly
sensitive to assumptions concerning “relevant background conditions”, and this sensitivity is the source of deep
problems in developing a semantics or theory of truth for these idioms.42 However, any objections that a platonist may
have to counterfactuals on these sorts of grounds simply do not carry over to the mathematical counterfactuals.

This suggests that the platonist may make reasonable sense of the modality in question by providing a set-theoretic
semantics for it, without having recourse to extra machinery beyond set-membership. This would, in effect, provide a
translation of the modal translates back into the language of set theory, and this could be used to compare Amsiwith the
original A.

In fact, the task of developing an appropriate semantics for logical modalities has already been carried out in sufficient
detail for our purposes.43 On this semantics, the part of worlds is played by model-theoretic structures of a given type,
built on a given, fixed domain. Since the intended notion of logical possibility contemplates as rich a variety as possible
of such structures, one is led to the “primary semantics” (in Cocchiarella's sense), in which all (set-theoretically
possible) structures of the appropriate type, over the given domain, are assumed to be in the set of worlds of the model
structure (for the modal language).44 Such model structures are called “full” (not to be
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problem (e.g. Stalnaker [1968 ], Lewis [1973 ]).

43 See Cocchiarella [1975 ], [1984 ].
44 Under the primary semantics, even modal propositional logic is incomplete in the sense that, provided the language contains a relational predicate, the set of logically true

formulas is not recursively enumerable. (See Cocchiarella [1984].) But axiomatic completeness is something the msi forswore long ago, when it recognized full second-order
(non-modal) implication.It should perhaps be mentioned that under this “primary semantics”, certain unusual phenomena arise in the connections between syntax and
semantics. For example, ‘◊ p’ is counted as valid, but ‘◊ (p & ∼ p)’ is counted as invalid, so that substitution for propositional variables does not preserve validity. Such things
are anomalous, but I do not think they undermine the coherence of the semantics.



confused with the “fullness” of the models of the second-order non-modal language (of PA), which has to do with
whether the range of the second-order quantifiers (of degree k) is the full power set of the (k-fold Cartesian product of
the) domain). The only adaptation we need make of Cocchiarella's primary semantics is to stipulate that the structures
for our non-modal, mathematical language—the relevant worlds—are themselves to be full, with respect to the ranges
of the higher-order quantifiers. As already indicated, of course, all worlds are mutually accessible.45 Summing up, a
modal sentence S in the second-order quantified modal language, Mscr; ℒ (PA2), based on ℒ (PA2), is valid or logically
true just in case it holds under all assignments in all full free model structures based on a given infinite domain, in
which the worlds of such model structures are full second-order structures, as already stipulated.

Now if we consider sentences A of ℒ (PA2), we have the following simple connection between A and its modal
translate, Amsi, interpreted according to the semantics just sketched:

(1.10)

Logical implication on the left is just the usual model-theoretic notion with respect to full second-order (non-modal)
logic, and logical truth on the right is the notion just introduced for modal sentences. The connection is just a matter of
tracing definitions. (It is entirely unsurprising, since ∧ PA2 is built into Amsi.)

Trivial though it may be, (1.10) does constitute a platonist equivalence theorem, in that, together with the well-known facts
concerning second-order (non-modal) implication reviewed above, it shows the ms-translation scheme to be accurate
and adequate. In this sense, the platonist can come to see that absolute reference to “the natural numbers” is
superfluous. But equally important philosophically, and more interesting technically, is the question whether the modal-
structuralist
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can arrive at a suitable equivalence theorem from within. Let us now consider this.

§ 4. Justication from Within
The first real task is to formulate in a precise way just what the modal-structuralist should be able to prove with regard
to the translation schemes (1.7) and (1.8). Obtaining (1.10) directly is out of the question, since it relies on general
model-theoretic notions of truth and satisfaction (for the modal and original non-modal mathematical languages), and
these are not available in their usual form in the restricted ms framework.

A brief comparison with Dedekind's procedure, in ‘Was sind und was sollen die Zahlen’, is again instructive. After
developing his definition of “simply infinite system” (i.e. ω-sequence, i.e. satisfying the PA2 axioms), Dedekind showed
that any two simply infinite systems are isomorphic, i.e. between any two there exists a bijection preserving the
successor relations. In modern treatments, this corresponds to the proof that the PA2 axioms are categorical: any two full
models of the PA2 axioms (equivalently of the PA2+ axioms) are isomorphic. This, of course, is stated and proved in a
set theory powerful enough to develop the formal semantics of ℒ (PA2). Dedekind, of course, did not have that. Still,
he gave a mathematically good proof of a good theorem:

Now one way of formalizing this would be to have recourse to model theory: “X,f is a simply infinite system” would
be rendered as “X,f ⊧ ∧ PA2”, etc. But this is not really necessary. Since only finitely many conditions are involved, one
can simply write out the PA2 axioms as conditions onX and f, i.e. one says directly thatX has a (unique) “first element”
(i.e. a z such that X(z) & x ≠ f(y), any y such that X(y)), each element has a unique “successor” (written out similarly in
terms of X and f), and so forth. But this is just what we have written as , in the language of second-order
logic. Thus, Dedekind's version of the categoricity theorem can be stated directly
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in second-order logic. ( It is obvious that the consequent of (1.11) can be. Note, incidentally, that if we were working
with PA2 +, similar clauses expressing that φ preserves addition and multiplication would be added. Nothing in the
present discussion turns on which version we consider; for notational simplicity, we will work with PA2.) Moreover, an
analysis of the proof reveals that it can be carried out entirely within second-order logic (making use of instances of the
comprehension scheme with parameters).46 The result of these reflections is this: The categoricity theorem ( for PA2) in the
form (1.11) can be proved within the structuralist framework we have been considering throughout. And this form is a direct and
natural way of making precise what Dedekind originally proved.

But, one may ask, where is the element of modality? (1.11) appears to quantify over ω-sequences, and would be
vacuous if in fact there aren't any, etc. However, there is a natural remedy. The modal-structuralist carries out the
argument by beginning, “ Suppose X, f and X ′, f ′ were any two ω-sequences; then there would be a mapping φ such
that . . . ” Thus the result that is proved is not (1.11) simpliciter but the necessitation of (1.11). This is the most
elementary modal logical step. Apart from it, modal logic plays no role in the proof. That, as I see it, is welcome news,
since so much controversy surrounds the modal idioms. On the current approach, they are not entirely dispensable in
mathematics, for they enable us to mark crucial distinctions and dispose of pseudo-questions (e.g. “What sort of object
is 17? ” etc.— recall our initial motivation). However, beyond this, the less heavily we rely on modalities in our
mathematical reasoning, the better. So far, then, so good.47
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46 One obtains the existence of φ with the relevant properties in the Frege–Dedekind way, as “the intersection of all relations such that . . . ”, where the blank is filled with the
defining conditions on φ (sending the initial element of X to that of X ′ and “preserving successor”). This is all expressible in the language of second-order logic.

47 Note that a modalist who takes seriously talk of possible worlds may be dissatisfied with the necessitation of (1.11), preferring instead a more complex modal formulation,
such as,

which is more general in considering the ω -sequences as occurring in different worlds. □ (1.11) in effect just looks at ω -sequences “within a world”. But on the more
general formulation, what is a relation or function between items in different worlds? These would be intensions, recognized as objects in their own right, and our logic
should then admit modal formulas into the comprehension scheme, giving rise to such monsters as “the class of all possible individuals”, etc. If modal-structuralism were
forced into this position, it would surely represent no gain at all. Our strategy must be to bypass all such modal complexities and attendant strong platonist commitments.



Now one may be tempted to suppose that, in recovering the categoricity of PA2, the structuralist has accomplished
whatever could reasonably be demanded by way of an internal justification for the translation schemes. For (1.11) is a
direct way of saying, within the second-order framework, that our axioms characterize a unique type of mathematical
structure; obviously, then, it does not matter “which one” we are “talking about” when we are doing the mathematics
of such structures. Isn't our justification complete?

It would be pleasant to conclude this, but overly sanguine. For, while the inference just drawn from (1.11) may indeed
be intuitively obvious, really it demands a proof. For the inference pertains to language used to describe the structures,
viz. the sentences of ℒ(PA); yet (1.11) itself says nothing about these sentences. And, remember, it is a translation
scheme—a representation of sentences of a given mathematical language—that is to be justified. There is thus a
further step, from categoricity to a claim involving language, that needs to be taken.

Now, in a model-theoretic treatment, the step is well known. It is stated in the form of a general theorem, that
isomorphic structures are elementarily equivalent, i.e. that they satisfy the same sentences (of the language on which
the structures are based). That is, one proves,

(1.12)

known as the isomorphism theorem. It is really the combination of the categoricity and isomorphism theorems that
provides the full justification of the intuitive assertion that “it doesn't matter which ω-sequence we are talking about”.
And, indeed, if the set theorist argues rigorously that, for any A of ℒ(PA2), either A or ∼ A is logically implied by the
PA2 axioms, both theorems will be employed. But this is precisely the argument that the platonist can give for the full
bivalence of the translation scheme.48
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48 It should be noted that Dedekind, although lacking Tarskian model theory, was sensitive to the problem of justifying the “transfer of language” from one ω -sequence to
another. For he followed his categoricity theorem with a kind of converse:

(see Dedekind [1901 ], § 133), i.e. that any structure isomorphic to one satisfying the PA2 axioms also satisfies the PA2 axioms. This is a step on the way to proving elementary
equivalence of isomorphic structures, but of course it is not the completed result.



Now (1.12) involves a satisfaction relation not available to our modal-structuralist. Still, we may ask for the next best
thing, namely a proof, for each sentence A of ℒ(PA) (at least first order, better second order), of

(1.13)

which is a direct expression of bivalence (as the connectives are understood classically). (We have already seen that the
parenthetical “not both” presents no problem. Here we focus on the disjunction.) This is a natural and reasonable
substitute for (1.12); while this generalization over sentences is beyond the framework, (1.13) is firmly within it, and
approximates (1.12) in the way in which a proof of each instance of a theorem scheme approximates a metatheorem
which says that every instance is provable (or is true).

Now, in fact, there is a way in which (all instances of) (1.13) can be obtained. It is naturally broken down into two steps.
First one proves the following:

Elementary Equivalence Theorem:
In standard axiom systems of second-order logic, the following is derivable:

(1.14)

for each sentence A of ℒ(PA1), in which case, fill the ‘ . . .’ with ‘g’ and ‘h’, and construe ‘ω(X, f, g, h)’ as ‘(∧ PA2 +)X ’, or, in the second-
order case, of ℒ(PA2), in which case, drop the ‘..’ and read ‘ω(X, f )’ as ‘(∧ PA2)X ’.

This is a non-metalinguistic way of saying that the sentence A is treated in the same way by any two ω-sequences. (It is
our approximation to the model-theoretic claim of elementary equivalence.) The proof of this is somewhat laborious,
but follows as the limiting
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case of a corresponding lemma involving formulas with free variables, proved by induction on the complexity of A,
utilizing the categoricity theorem (1.11).49

Once we have (1.14), hence its necessitation (call it (1.14′ ) ), there is still the task of getting to (1.13). In this step, we
must attend to the behaviour of the modal operators, and, in fact, we need a further (mild ) assumption governing their
behaviour.

To see the problem, proceed by reductio, assuming ∼ [ Amsi ∨ (∼ A)msi]. This gives us something of the form,

(1.15)

(where we let ‘B’ abbreviate ‘ ’, and similarly for ‘B′’ ). But to contradict (1.14), we need to arrive at

(1.16)
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49 In the first-order case, the lemma is as follows: Let ‘Hyp’ be the conjunction of ω(X, f, g, h) , ω(X′, f ′, g′, h′ ) , and the statement “φ is a bijection from X onto X ′ & φ
preserves f, g and h ” ; then, for each formula A (x1 . . . xk) of ℒ (PA1) (all free variables displayed), the following is derivable in axiomatic second-order logic plus Hyp:

(*)
Where A is a sentence, this reduces to the consequent of (1.14). The second-order case is similar, employing the appropriate formulation of relativization to X in the
antecedent of (*) (see n. 18) and reference to “the relation induced by φ on the relation Ri” in the consequent.
Note that these lemmas allow a proof of each instance of (1.14) within the ms framework, which is weaker than the general statement of the theorem itself, viz. that each
instance is provable. To obtain this as well, it would be necessary to provide a ms treatment of syntax, either by means of Gödel numbering within any hypothetical ω-
sequence (a fixed domain of “the natural numbers” must be avoided), or by means of a direct theory of syntax, say along the lines of Belnap [unpublished], utilizing suitable
structural induction principles, and modalized so as to avoid any categorical commitment to (infinitely many) syntactic objects. (Talk of such is replaced by talk of what
would hold of any objects that satisfied the principles of syntax.) While it would be tedious to write all of this out, I see no obstacle in principle to its being done. In these
ways, then, the structuralist can assert and derive the general (proof-theoretic) result, and is not confined to the instances.



This would follow from (1.15) by prenexing and sentential logic if the modal operators were absent. But with them, the
move is not in general valid. We submit, however, that in the pure mathematical cases of interest, the move is harmless.
In fact, it is a special case of a general principle which we already have implicitly accepted in formulating categoricity as
we have ((1.11) above). Let A and B be any two sentences in the original arithmetical language, i.e. either sentences of
ℒ (PA1) or of ℒ (PA2). The principle asserts that if A can hold in an ω-sequence, X, f, and if B can hold in an
ω - sequence, X′, f ′, then it is possible that A holds in X, f and that B holds in X′, f ′, i.e.

(AP)

which may be called an accumulation principle. To use the possible worlds metaphor, any two possible ω-sequences
may be accumulated in a single world. (Of course, the primes on the variables play no role, but they would be
introduced in moving to prenex normal forms, so we have put them in in advance.) It was just this idea that led us to
rest with (1.11): if any two possible mathematical structures may be thought of as “in a single world”, then we may
speak of relations or mappings between them in the usual way, without further assumptions regarding intensions. The
scheme (AP) gets at this directly, without ascending to talk of worlds. Its justification lies in the fact that the
mathematical sentences (A, B, etc.) concern only what is internal to an ω-sequence; in a rather precise sense, they give
rise only to “internal relations”, as expressed in their relativizations to single ω-sequences in (AP). Thus, no conflict
between two such possibilities can arise—as it could if we had to deal with non-mathematical properties such as “being
the only ω-sequence created by Dedekind”— and the conjunctions in question are then also possible. (Note the effect
of quantifier relativization: in the second-order case, attempted reference to “all ω-sequences” comes out as “all ω-
sequences of items in X”.)

THE NATURAL NUMBERS AND ANALYSIS 43



But now we are home. For now an appropriate instance of AP will take us from (1.15) to (1.16), contradicting (1.14)
outright. Thus, from any instance of (1.14), the corresponding instance of (1.13) can be derived, completing this much
of the internal justification procedure.

Within the ms framework, it can be seen that the translation scheme is fully bivalent. But can it be seen to be accurate
in the sense of “getting the right answers”, as the platonist understands this? Yes, in a sense, this too can be seen, by a
very elementary argument. It is simply that the ms translate, Amsi, of A already expresses an accurate standard of truth
from the platonist point of view. Although the platonist might articulate a preferred standard in terms of a unique fixed
ω-sequence (“the standard model N”)—something which the modal-structuralist wishes to avoid—, the platonist will
also regard it as accurate to say that

in the sense of full second-order implication. But, if the platonist is prepared to reason modally at all, he will also
accept,

Thus,

is something the platonist can accept. Thus, the modal-structuralist, as well as the platonist, can see, by means of a
standard acceptable to the platonist, that platonist truth is respected by the translation scheme. In sum, the modalist
can see from within that the proposed representation is completely faithful for mathematical purposes.

§ 5. Extensions
Turning now, briefly, to more powerful theories, it should be clear that the above analysis can be carried out in parallel
fashion for real analysis, RA2, in which first-order variables (as usually interpreted) range over real numbers and
second-order variables over sets (and relations) of these. As is well known, in order to obtain a categorical

44 THE NATURAL NUMBERS AND ANALYSIS



system, the continuity principle, or least-upper-bound axiom, must be stated in second-order form:

(C)

Beyond this, there are different axiom sets that lead to the same result. One could take the theory to be continuity (C)
together with the usual first-order field axioms (F) and order axioms (O). Alternatively, one could take the theory to be
(C) together with axioms (O′) for a dense linear ordering without end-points, and the axiom of separability (S), stating
that there is a countable dense subset. In the latter case, “countable” can be spelled out by the statement that there
exists an ω-sequence together with a bijection between it and the dense subset. This can all be stated in second-order
logic. In either case, one can recover the “categoricity” as a pure, second-order mathematical theorem, analogous to
(1.11). (It is an exercise to check that the usual arguments, including the Cantor back-and-forth proof that the
structures in question contain “copies of the rationals”, do not transcend second order.) Furthermore, the internal
argument of the last section for accuracy of the translation scheme carries over intact (for both first- and second-order
sentences).

Of course, the argument for bivalence employs the relevant modal existence assumption,

(1.17)

asserting the possibility of (say) complete ordered separable continua. Like modal existence for PA2, (1.9), this is a
strong assumption not reducible to a claim of formal consistency. But, unlike (1.9), (1.17) cannot be derived from
anything with a claim to constructivity such as was seen in “Potential Infinity”. No doubt (1.17) has its roots in our
geometric experience, but the idealization motivated by such experience is far greater in the case of (1.17) than in that
of (1.9). Even more than (1.9), (1.17) must be regarded as a working hypothesis of classical mathematics, not as a self-
evident certainty.

It should be noted that RA2 is, in effect, third-order number theory, and involves quantification over arbitrary subsets
of reals. It is a very powerful theory, indeed. By making use of coding devices,
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virtually all the mathematics commonly encountered in current physical theories can be carried out within it.50

As indicated at the outset, there is a significant tension between structuralism and logicism, highlighted by their diverse
treatments of analysis. Logicism, of course, provides a reduction to set theory (or type theory): all the primitives of RA
are defined and all the axioms are derived. Structuralism, on the other hand, reflects the viewpoint of many texts which
simply present an adequate list of axioms and say that “real numbers are whatever satisfy these axioms”. It is worth
pointing out, however, that, to some extent, the structuralist can respect the logicist analyses. This emerges especially
clearly in connection with the choice of systems just sketched. If RA2 is taken in the second way (as the theory of
separable ordered continua), it will be necessary to introduce the field operations and recover the field axioms as
theorems. This is naturally accomplished along logicist lines. To summarize the construction: One is given an ω-
sequence, (X,f) (by the hypothesis of separability), and, via a number-theoretic coding, one can talk of pairs, triples, etc.,
of natural numbers. This enables introduction of the rationals QX (relative to X) and the algebraic operations among
these. By the Cantor back-and-forth argument, QX can be put in one–one order-preserving correspondence with the
(given) dense subset of the domain of “reals”, and this can be extended to a correspondence between Dedekind cuts in
QX and those reals. Finally one uses this correspondence to transfer the logicist algebraic operations on the cuts to the
reals in question. (One can then go on to define an ordering on the reals in terms of the algebraic operation of addition
and then show that it agrees with the original assumed ordering.) Thus, a good portion of the logicist construction is
respected and utilized in the structuralist account.51 The main item sacrificed, of course, is the derivation of continuity
(C)—the structuralist must simply assume it as part of the characterization of continua. On the other hand, set-
theoretic assumptions have been kept to a minimum. In fact, except for the classes and relations
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50 Cf. Burgess [1984 ].
51 It should be noted that the recovery of ordinary use of individual constants for rationals or irrationals depends on some construction or “means of introduction” such as the

one just outlined. In order to “fix the reference” of, say, ‘√2’, one may appeal to a hypothetical ω -sequence together with a mapping between cuts in rationals constructed
over it and the individuals of any hypothetical separable ordered continuum. Naming is thus relative to a construction, and there need be no absolute “positions” (cf. above,
Introduction, n. 12).



among individuals assumed in the second-order comprehension axioms, the structuralist ontology as we have
presented it need not transcend that of a strict nominalism. We conclude with a few remarks on the relation between
modal-structuralism and nominalism.

§ 6. The Question of Nominalism
As we have seen, modal-structuralism abstracts entirely from the “first-order objects”—i.e. objects in the range of
first-order quantifiers—of mathematical theories such as PA and RA. In short, it dispenses with such objects entirely.
All first-order content is captured in the structural relations in which any objects whatever would have to stand in
order collectively to constitute a mathematical totality of the appropriate sort. As a result, ontological questions such as
“What sort of entities are numbers?” fall by the wayside.

The same can hardly be said, however, with respect to the second-order content of mathematical theories. Both inside
and outside of modal contexts, the ms interpretation quantifies over classes of, and relations among, individuals.
Although it manages to avoid collections of these, and further collections of such collections, etc., still it countenances
one “abstract level”. And, one may well suspect, this is indispensable. For how could mathematical structures possibly
be characterized without any talk of classes or relations?

Contrary to this suspicion, however, there is in fact a way in which even the single abstract level of second-order logic
can be dispensed with. In effect, it is possible to read the ms interpretations given so far entirely nominalistically. This is
worth examining for two reasons: first, it helps emphasize the vast difference between nominalism and constructivism,
something that deserves to be better appreciated; and second, it is clearly relevant to “indispensability arguments” for
abstract objects such as classes and relations.

The main idea is to restrict the consideration of hypothetical structures to those with which nominalism can deal. The
nominalism at issue is a view which recognizes arbitrary sums of any individuals independently recognized.52 This is
partly formalized in the calculus
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52 For a nominalization programme that employs this “complete logic of nominalistic sums”, see Field [1980 ]. In Field [1984 ], modality is explicitly introduced into the
programme. The nominalization strategy outlined here is far more direct than that of Field [1980 ], and it respects the truth of (pure) classical analysis, in sharp contrast to
Field's instrumentalism. The present approach can be extended to applied mathematics (which is the focus of Field's programme), via the idea of “embedding (portions of)
the material world in a mathematical structure”. This will be taken up in Ch. 3.



of individuals, in which the basic notion is a part–whole relation, <, or a relation of “overlaps”, o, interdefinable with
part–whole (via x o y ≡ ∃ z(z < x & z < y), and x < y ≡ ∀z (z o x ∝ z o y)).53 In place of the usual second-order
comprehension scheme, one has instead,

(CΣ)

the antecedent serving to avoid any null individual. (The notion of (non-empty) product of individuals is readily
definable, and instances of the corresponding scheme, (CΠ), for products of all individuals satisfying φ are derivable.)

Now consider the case of arithmetic. Suppose we have a progression of concreta, strokes, stars, anything you like.
Imagine them arranged in a linear order in space. The first-order quantifiers of the PA2 axioms range over these
concrete individuals. And the second-order (monadic) quantifier ranges over sums of them—arbitrary sums of them.
Clearly, these are in one–one correspondence with the subsets. (This does not make the sums the same as the subsets,
any more than the correspondence between individuals and their single-tons makes these the same.) What guarantees
this correspondence? The fact that each sum is uniquely decomposable into items forming the progression. But this
was guaranteed by the fact that the initial items chosen were pairwise discrete (containing no common part). If
overlapping were permitted, it could happen that distinct lists of initially given individuals formed the same sum. To
ensure that this doesn't happen, one can add to the calculus of individuals an axiom of atomicity,

(AA)

where ‘A(y)’, “y is an atom”, is defined by,
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53 For an exposition of the calculus of individuals, see e.g. Goodman [1977 ]. It should be mentioned that the calculus of individuals may not be the only framework within
which to realize nominalist interpretations. The “plural quantification” conception of monadic second-order logic of Boolos [1985 ] may provide an alternative. There would
be a gain in that discreteness or atomicity assumptions (needed on the present approach) could be dropped. Such an alternative merits further investigation.



It follows that all atoms are pairwise discrete. Any progression of atoms exhibits “enough” sums, i.e. distinct ones
corresponding to each subset. Note, moveover, that these sums are, ontologically, on a par with the atoms themselves:
they are every bit as concrete, and they are “as objective”, i.e. independent of our powers of selection or “sum
formation”. They are simply parts of the whole progression, whether we select them—or like them—or not.

We have been speaking, intuitively, of concrete progressions, but how precisely is this to be expressed? We cannot yet
simply write out the PA2 axioms with the quantifiers interpreted as just mentioned, for what is to count as the
successor relation? Monadic second-order quantification can be interpreted nominalistically, but here we have polyadic.
How are relations in general to be handled within nominalist confines?

There are a number of approaches. One approach is not to quantify over two-place relations at all but simply to use
certain predicates, in writing out the PA2 axioms, which specify our intended meaning. We could, for example, use “is
adjacent to”, or “comes after”, etc., relying on our ordinary understanding of such terms to specify the relevant type of
structure. It may be complained that to proceed in this way is to make arithmetic and analysis dependent on geometric
ideas, and perhaps the complaint is just. If indeed we are thinking of our mathematical structures as embedded in a
geometric space, why not make this explicit in the well-known ways, building up number theory and analysis directly in
terms of geometric primitives?54 This is one familiar “nominalization strategy”, although as usually presented it
involves commitment to entities such as “points”, which to many seem as problematic as numbers or sets themselves.
In a modal-structuralist presentation, there is, of course, no commitment to actual points or other geometric objects.
Instead, there is the modal-existence postulate, that spaces of the appropriate type are possible. The stuff of which they
are composed is immaterial. (I acquiesce in the unintended pun.)

If one wishes to free number theory and analysis from geometry, one can, without transcending nominalism (i.e. modal
nominalism). One may consider concrete, atomic structures (i.e. wholes) with further concrete atoms to serve as
ordered pairs, triples, etc., of the
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original atoms.55 In effect, one is considering product spaces, X2, X3, etc., based on the ground space X, but, instead of
constructing them as one does in set theory (taking 〈x, y〉 as, say, {x, {x, y}}), one simply entertains additional
individual atoms appropriately related to the original atoms. One is here adopting a “structuralist” approach to ordered
pairs, implicit in mathematics texts which work with a notation for ordered pairs (say, “〈u, v〉”) without ever specifying
any particular objects to serve as realization of the notation.56 As everyone recognizes, all that matters is that the crucial law:

be obeyed, together with the implicit existence assumption, that for any objects u, v, of the original domain of interest,
there be something serving as ordered pair〈u, v〉. Any way of correlating u and v with an object〈u, v〉 obeying these
laws is sufficient for mathematical purposes. For the purposes of nominalistic interpretations, this could be formalized by taking a three-
place relation, OP(x, y, z), as primitive (understood as “z is an atom correlated with x and y as their ordered pair”), and
rewriting the uniqueness and existence requirements as axioms governing OP. The uniqueness requirement then takes
the form,

and if one requires ordered pairs only for (say) atoms satisfying a condition X, the existence requirement is simply that

Any interpretation of these axioms in terms of atomic individuals may be called a “concrete Cartesian space (of
order 2) over X”, and we may use standard mathematical notation (‘X × X’ or ‘X2’, or, more fully, ‘〈X, X2〉’ if we wish,

reserving ‘X2’ for “concrete Cartesian product”) to refer to such a space, with the understanding that it is a concrete
realization of the structural axioms that is intended, not the standard set-theoretic interpretation. The geometric
interpretations
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55 This is, in effect, what Putnam [1967 ] did when he considered concrete models of Zermelo set theory; the relation of membership was given by further
concreta—“arrows”—connecting the “points” of the model.

56 See e.g. Dieudonné [1969 ], Ch. 1, § 3.



alluded to above would be specific examples of such spaces. Obviously, further axioms could be written down for
concrete Cartesian spaces of higher order.

Given such a concrete Cartesian space, relations can be taken, nominalistically, simply as sums of tuples of the
appropriate degree. Since the ordered tuples are stipulated to be atoms, such sums are in one–one correspondence
with the subsets (speaking platonistically). In this sense, the nominalist is quantifying over arbitrary relations on a
domain. If we are representing just PA2, we only require X2, for any domain X, in order to characterize the structures
(since the successor relation suffices). But to represent arbitrary arithmetic operations, X3 will be needed. This also
suffices, for number-theoretic codings (definable from successor, plus, and times) can then be used to obtain ordered
k-tuples, arbitrary k. For RA2, just to characterize the structures, one requires just ordered pairs, in three roles: for the
basic ordering on the ordered continuum; for the successor relation on an associated ω-sequence (assumed in the
separability axiom); and for a mapping between the latter and a dense subset of the former. (And, of course, for set
theory itself, one again requires only ordered pairs.) Thus, an enormous amount of mathematics can be represented in
terms of concrete atomic structures with concrete Cartesian spaces of just these limited orders. And, of course, it is
never asserted that spaces of these sorts actually occur. It is enough if they are logical possibilities. Then one may
understand the mathematics in question as saying what must hold in any that there might be.

Finally, it should be pointed out that the model theory of these structures can also be carried out without positing more
than Cartesian triple products. Consider number theory. As just indicated, X3 suffices for interpreting arbitrary
relations via coding (where X satisfies the PA2 axioms). Further, the syntax of ℒ(PA) can be coded in X by Gödelian
techniques. But now arbitrary functions from syntactic variables (of first and second order) to objects of the
appropriate sort are available, simply as sums of the right sorts of atoms of X. (Individual variables, x, are assigned
atoms, a, of X; k-ary relation variables pk, are assigned various k-tuples, u, of atoms of X.) An evaluation of (first- and
second-order) variables will then be a sum of atoms of the form〈‘x’, a〉 and 〈‘pk’, u〉, (where quotation indicates “code
of”). Thus, all the machinery for introducing satisfaction (as additional theory) is available within this framework. Similar remarks apply
in the case of RA, since, once the algebraic
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operations on reals have been introduced, coding of k-tuples of reals become available; evaluations of (first- and
second-order) variables can then be identified with nominalistic sums of reals, and the theory of satisfaction for these
structures can be developed.
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2 Set Theory

§ 0. Introduction
We have seen how a framework of second-order modal logic can serve to represent a structuralist interpretation of
basic mathematical theories such as number theory and real analysis. To recapitulate the main points: on this
interpretation, ordinary mathematical statements are construed as elliptical for hypothetical statements as to what
would hold in any structure of the appropriate type, this being describable directly in second-order logical notation
(using a sufficient, finite set of axioms, suitably relativized, and generalizing on the relational primitives of the theory).
Absolute reference to mathematical objects is eliminated entirely. Instead, there is, in addition to the translation scheme
(the “hypothetical component”), a categorical component to the effect that structures of the appropriate type are
logically possible. This was found to be an irreducible, non-analytic working hypothesis associated with the
mathematical practice codified in the theory in question (PA2, RA2, etc.). It was then shown how both the traditional
“objects platonist” and the modal-structuralist—working from within their respective frameworks—could justify the
interpretation as accurate and adequate. In particular, the modal-structuralist was able to establish the truth-
determinateness of the translation scheme by recovering suitable versions of the categoricity of the theories in
question, and the “isomorphism theorem” (that isomorphic structures satisfy the same sentences).

Here we confront the task of extending this sort of interpretation to set theory itself. There are a number of reasons
for attempting this. First of all, it is of interest to know how far the approach can be extended. Does the msi constitute
an alternative point of view in general, or is it merely an alternative with respect to theories of the sort already treated?
Secondly, set theory represents both a great opportunity and a challenge to the approach; an opportunity since, as is
well known, so much mathematics can be represented within set theory. In so far as set theory yields to a ms treatment,
so does all



set-theoretically representable mathematics. (Thus, model theory—of special interest to logicians, but not directly
representable in the second-order framework of the msi—would become available, at least indirectly.) And set theory
represents a challenge since, prima facie, much of our ordinary talk and theorizing concerning sets seems quite
different from that concerning the number systems. One tends to think of sets as absolute objects, independent of
structure, in marked contrast to numbers, which we quite readily conceive as merely “positions in a structure” (in
Resnik's [1981] terminology). How are these intuitions to be accommodated?

Thirdly, there are certain puzzles—if not paradoxes—associated with our standard platonist picture of a fixed, actual
set-theoretic universe, “the cumulative hierarchy”. These come under the heading of “proper classes”, totalities “too
big” to be sets—but not “too big” to be very much like sets. For example, they contain members, i.e. are collections of
a sort; and they can even bear a (the?) membership relation to “superclasses” (or “hyperclasses”) obeying laws very
much like those of set theory.57 Such systems are provably consistent relative to certain natural strengthenings of ZF
(e.g. ZF + “There exists an inaccessible cardinal”).

One can put the central problem raised by proper classes this way: either we allow set-like operations (e.g. forming
singletons, taking power sets, etc.) to be performed on them or we do not. If we don't, this seems an arbitrary
restriction on those operations; and, in fact, as just noted, we can (relatively) consistently extend such operations to
these “objects”. But if we do “extend the operations”, we find our proper classes behaving just as a further level—an
inaccessible level, Vκ—of our initial cumulative hierarchy.58 Initially, proper classes were introduced (by Cantor, as
“inconsistent totalities”) in an effort to capture a notion of potential infinity associated with ordinals. In some sense,
there are “too many” ordinals for their totality to form a set. But—despite the formal convenience of proper classes
and the formal (relative) consistency of systems recognizing them—the dilemma they present is troubling.

But wait, you may say: what's wrong with ZF, which simply dispenses
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with proper classes, and which is, after all, the central mathematical theory employed by set theorists? In response: as a
mathematical theory, nothing is wrong with it; and, as we see it, it is perfectly right in refusing to countenance proper
classes. However, the standard platonist picture associated with the theory is at odds with this refusal, for it takes the
theory to be about a unique existing totality, “Cantor's universe”. Perhaps one can steadfastly refuse to talk this way
while still adhering to the standard picture, but it seems to be very difficult to do so. Consider the predicate “is a set”,
or “is an ordinal”. In our overall semantics, we naturally wish to assign an extension to such predicates. But, on the
standard platonist picture, such extensions would be proper classes. (Of course, they cannot be consistently treated as
“sets” in the technical sense; but they would be recognized as totalities of some sort, and this is enough to generate the
predicament just described.) It is worth attempting to develop an alternative picture.

In connection with proper classes, it should also be mentioned that there is a strong temptation to take them seriously
for purely mathematical reasons. This shows up especially in connection with strong axioms of infinity and large
cardinals. One important motivation for certain of these has been via reflection principles, which take the form: “The
universe V has largeness property P; therefore there should be a level Vα of the cumulative hierarchy which also has
P.”59 Any alternative view which rejects proper classes automatically must forgo this motivating strategy. How
significant a sacrifice this is must then be considered. We shall return to this issue below (§ 5).

The core idea of an alternative view rejecting proper classes can be found in Zermelo's classic paper of 1930.60 There,
after setting forth what is essentially ZF set theory (but using second-order versions of Replacement and Aussonderung),
and after proving a number of “quasi-categoricity theorems” (about which more below) intimately related to
inaccessible cardinals, he concluded with some intriguing remarks on how the results just set forth could be seen as
resolving the paradoxes associated with “inconsistent totalities”. Set theory should be seen, not as the theory of a
unique, all-embracing
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structure, but instead as a theory of an endless infinity of intimately related structures. (These would be described in
ZF as of the form (Vκ, Vκ + 1 ∈ | Vκ + 1), for inaccessible κ; they are linearly ordered by end-extension; see below, § 2.) In
this way, Zermelo hoped to sustain two closely related informal principles; (i) the generality of set-theoretic concepts,
summed up in the thesis that any (set-like) structure can be treated as a set; and (ii) the principle of extendability, that any
set-theoretical universe can be viewed as part of a more comprehensive one.61

However, Zermelo's concluding remarks were only suggestive, and they have never been developed in detail.
Moreover, it is, prima facie, not clear how they can be, since they embody a certain tension that can readily lead to
contradiction. On the one hand, we have the principles just mentioned. But on the other, we have the apparatus of
second-order logic—and, as is well known, it is essential to Zermelo's quasi-categoricity theorems that the theory (ZF2)
be formulated in second order.62 But the second-order comprehension principle immediately yields proper classes, e.g.
the class of all sets, or of all ordinals, or of all Vα, etc. Somehow, comprehension must be restricted.

A suggestion as to how this might be accomplished can be found in Putnam's controversial [1967]. Here, like Zermelo,
Putnam regarded set theory as concerned with a multiplicity of structures, and he even (independently) formulated the
extendability principle (in practically identical language, modulo translation into German!). However, Putnam's focus
was on “nominalist” interpretations, in which modality would play a major role in enabling one to posit the possibility
of sufficiently rich concrete structures (i.e. structures describable entirely within the calculus of individuals together
with “nominalistically acceptable” predicates). But, apart from the question of nominalism,63 modality can perform
other functions. In particular,
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it can be used to make explicit our informal talk of “potential infinity” in connection with ordinals. When this is done
in a suitable fashion, as we shall see below, a way of resolving Zermelo's dilemma emerges. This provides us, then, with
a fourth motivating reason for attempting to extend modal-structuralism to set theory: to try to use modality to
capture the informal distinction between actual and potential infinity in set theory, and to sustain—if
possible—Zermelo's principles: generality, extendability, and the use of second-order logic.

§ 1. Informal Principles: Many Vs. One
To guide our inquiry, let us list here, with explanatory discussion, what we take to be the main informal principles of
modal-structuralist set theory. These are inspired primarily by the views of Zermelo and Putnam just cited, and
represent our attempt at a synthesis, preparatory to a more formal treatment.

1.Multiplicity and mathematical existence of structures:
Set theory, as embodied in ZF and related systems, is the study of structures of a certain type together with their
interrelations. It is not to be conceived as the study of a single fixed universe. Of course, it is assumed that
structures of the relevant type are logical possibilities. The relevant type is to be specified by means of axioms,
and—in analogy with the ms treatment of arithmetic and analysis—such specification is seen as one of the
primary functions of axiomatics.
Remarks: This, of course, embodies the Zermelo–Putnam rejection of the unique cumulative hierarchy in favour
of a multiplicity of related structures. As we shall see, it is natural, from a classical point of view, to take these to
be (isomorphic to) the so-called “natural models” of set theory (see below, § 2). (This turns out to be the most
direct generalization (of which we are aware) of the treatment of PA and RA.) It also embodies a fundamental
assumption of mathematical existence, stated modally as in the cases of PA and RA. Such a categorical
assumption we take to be implicit in classical mathematical practice. It appears to be irreducible to any sort of
linguistic convention, and serves to distinguish modal-structuralism from the varieties of “if-thenism”. (For
further discussion of such principles, cf. Chapter 1, § 2.)

2.Non-absoluteness of “sets as objects”:
Sets are treated as such in
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virtue of their role in a structure of the relevant type. They need not be thought of as having an absolute identity.
In particular, ordinals are not taken as absolutely identified, but are treated only as ordinals of a model.
Remarks: It is a commonplace to regard the identification of ordinals with particular sets as merely a
convenience. They serve to represent types of structures in their own right, well-orderings. It makes no sense
(apart from arbitrary stipulation) to call something an ordinal number except as part of a well-ordered system.
The “absolute identity” of ordinals is as foreign to mathematics as is that of natural numbers or real numbers.
But this principle goes further in two respects:
(i) it extends this attitude to sets generally, despite our tendency in ordinary discourse to speak of sets of objects

as absolute (i.e. independent of their part in any richer mathematical structure). We can respect this tendency
by distinguishing (as others have, cf., for example, Shapiro [1985]) between sets as members (or parts) of an
iterative hierarchy, and classes as ordinary collections (if we cannot or will not avoid them entirely). This
distinction will emerge naturally in a formal treatment.

(ii) The principle also rejects the notion of “the totality of all (possible) ordinals”, in accordance with the ms
approach to potential infinity. Thus, we could not respect the principle by taking ordinals as a proper class of
(arbitrary) well-ordered urelements (as has been suggested, for example, by Menzel [1986]). Our only
recourse is to take them as parts of structures, but what sort of structures should it be? Why not, one may
ask, simply well-ordered systems, rather than models of set theory? Because the study of well-ordered
systems is part of set theory, as key theorems (e.g. Hartogs')64 teach us. (That is, the types of possible well-
orderings depend on interactions among the set-theoretic axioms, e.g. Power Set and Replacement; they
cannot be studied in full generality apart from such interactions.)

3.Full classical power set operation:
There is no objection in principle to using second-order logic as a means of describing the structures.
Remark: This attitude is already implicit in our treatment of PA and RA. It is the classical operation of power sets
that we are iterating when we come to set theory. The fact that there are basic questions

58 SET THEORY

64 The (ZF) theorem of Hartogs states that for any set x, there is an ordinal not equinumerous with any subset of x. Replacement is used essentially in the proof.



concerning this operation that we do not know how to answer (and may never know how to answer) is not, for
us, a reason to doubt that we have asked genuine questions.

4.No proper classes:
There is to be no totality of “all possible structures”, nor any union of the domains of all possible structures, etc.
Remark: As already indicated, this has to be squared with principle 3. A hint: note that in taking number theory
to be about what would hold in any ω-sequence there might be, we are in no sense committed to “the totality of
all possible ω-sequences”. The latter is alien to the open-ended nature of mathematical construction, the
recognition of which lies behind the rejection of proper classes.

5.Extendability:
Every structure (of the first principle) has a proper extension, both in the sense of inclusion and in the sense that
it, or some copy, occurs as a “member” of its proper extensions (i.e. in the domain of the relevant membership
relation).
Remark: This is Zermelo's and Putnam's way of saying, in effect, that “the ordinals go on and on”, and is closely
related to the rejection of proper classes. Note, however, that it is stronger than that rejection: not only are there
ordinals beyond those of any given structure, but there are structures of the relevant type as well. (This can be
made to follow from principle 4, together with 2.) And, as we shall see, such extendability principles provide a
natural way of generating many of the so-called “small large cardinals”.

6.Limited modality:

A primitive notion of logical possibility is employed, as in the ms treatment of PA and RA, in order to mark
fundamental distinctions, principally that between quantifying over objects (Quine's ‘∃’) and entertaining
conceptual possibilities (Putnam's and our ‘◊∃’, perhaps representing the “mathematical existence” of many
“platonist” mathematicians). In the context of set theory, it is also employed to distinguish potential from actual
infinity: inside a model, comprehension principles or other axioms guarantee infinite totalities (“actual
infinities”); but possibilia are not recognized as objects, and we do not have any totality of “all possible
structures”, or ordinals, etc. Moreover, we do not quantify over possible worlds or intensions; we simply use
modal operators.

Remarks: We are accustomed to giving set-theoretical semantics for modalities, and for a variety of logical
purposes this is perfectly in order. But the msi of set theory, while aiming to respect such semantics as part of set
theory, nevertheless, requires that its notion of
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logical possibility stand on its own. It functions as a primitive notion, and must not be thought of as requiring a
set-theoretical semantics in order for it to be intelligible. Instead, of course, we may give modal axioms. (As
discussed in Chapter 1, the natural choice of background logic would be S-5. To this, further modal-structural
axioms must of course be added.)

It must be emphasized that the “counterfactuals” encountered in translations of ordinary mathematical sentences
(e.g. of PA, RA, etc., and, as we shall see, of bounded set-theoretic sentences) involve a strict implication. In our formal
semantics, we would not employ any relation of similarity among “worlds”. And the “problem of cotenability”
afflicting ordinary and scientific counterfactuals (cf. Goodman [1955]) does not arise in these mathematical contexts.
As the categoricity theorems demonstrate, all relevant conditions are explicitly given in the antecedents of the
conditionals in question. Thus, there is no question as to what “further” background conditions need to be held fixed.

While we are on the topic of modality, let us consider the point raised early on concerning the alleged counter-
intuitiveness of employing modality in connection with sets. The point was that modal-structural language in
connection with sets seems strange since we conceive of sets as objects of a fixed, absolute kind. On this (standard
platonist) view, sets do “have a nature” as objects, as it were (a thought that probably could be articulated only in a
circular fashion, e.g. by saying that they are particular abstract objects which contain other objects, etc.). Thus, the
objection runs, any attempt to modalize away our reference to sets automatically involves us in a distortion: sets cannot
be just “points in a structure”.

On the present approach, this appeal to “the nature of sets” is otiose. It may perhaps be traced to our conceiving of
sets as determined by their members (extensionality): these—at the lowest level—are non-sets and presumably do
“have a nature”, or at least are taken as actual and are not to be modalized away as merely occupying positions in a
structure. Perhaps we quite naturally transfer this attitude upward from elements to sets or collections.65 But we can
resist this temptation. Reflecting on ways of introducing set-language, we can view the very introduction of sets-as-
objects-discourse as involving a reification of “results of selection activities,
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processes, or procedures”.66 Given objects of some type A and a selection procedure, p (or simply “selection” for
short), we speak of a collection or a set as “the result of applying p to the A objects”. And, correlatively, we introduce
“membership” as holding between any A object selected by p and “the result”. Modality can be understood as entering
in two ways: first, we say: “given A objects and given selection procedure p (of some specified kind, say), suppose there
were an object x correlated with p such that, for any A object, y, y belongs to x just in case p selects y. Suppose, further,
that every selection p (of the specified kind) gave rise to such an object. Moreover, suppose that such objects could
themselves serve as objects of further selections.” (The emphases indicate the modality.) This already involves us in an
iterative hierarchy, but it is restricted, implicitly, by the reference to specified kinds of selections. (A natural way of
formalizing this would be through comprehension principles, the predicates themselves serving as a generalization of
“selection procedure”. This actually provides us with a way of justifying comprehension principles, as we shall see
shortly.) The second use of modality is to free ourselves from the need to specify a selection procedure: we abstract
from any restrictions on kinds of selection procedures and speak of all possible ways of selecting objects of the given
type. When we combine this with the first stipulation, that “sets” may serve as “elements”, we have, in effect, the
operation of full power sets, the notion of possibly selecting (results of) all possible ways of selecting from among
given objects. On this view, then, far from being foreign from, or antithetical to, our ordinary set-theoretic talk, modal
idioms can be found, implicitly, at the very root of it. That sets are “permanent possibilities of selection” (as Putnam so
aptly put it)67 is more than just a picturesque phrase.

On this view, then, talk of the “existence of sets” is derivative. More fundamental is the idea of the possibility of
selections, in terms of which existence of sets can be introduced. Let us, for the moment, not worry about attempting
to recover a full system of set theory along these lines (something that would involve introducing axioms on “arbitrary
selections”), and instead focus on comprehension principles, which could be used in more limited mathematical
systems. Such comprehension principles can be arrived at as follows: let ‘F(x)’
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be a condition (possibly with parameters, and formulated in some specified language), and let ‘S(p, x)’ mean ‘p selects
x’. Then a typical set theoretic comprehension principle, of the form

can be understood as introduced to mean

where p ranges over selection procedures (of some type that could be further specified, if desired).

Of course, ‘F’ in either scheme cannot be arbitrary in view of the Russell–Zermelo paradox. Moreover, this way of
introducing comprehension principles applies most readily to predicative principles, in which the set quantifiers in the
formula range over objects “already introduced”, say at an earlier stage of a hierarchy. Whether such an approach can
work for impredicative comprehension principles (such as that of second-order logic which we have employed
throughout) is, I believe, an open question.

It should also be remarked that, if we wish to introduce talk of “possible results of selections” explicitly, we can by
expanding the last formula to

Formally, it complicates things a bit to distinguish between possible selection procedures and their possible results.
Philosophically, the distinction is important to this extent: we often deal with actual selection processes or procedures
without having to speak of “results” in an abstract way appropriate for mathematics, i.e. as part of an iterative
hierarchy. On the modal view, even in the case of actual selection processes, it is only necessary to entertain the
possibility of such results. But then, when we come to entertain possible selections, the distinction between selections
and results involves us in iterating ◊s. It would be nice to avoid such complexities, by dropping the distinction. For
mathematical purposes, it makes not the slightest difference whether we think of selecting results of selections or the
selections themselves. Ordinary axiomatic set theory, of course, dispenses with the distinction, and its convenience is
undeniable.

There are a number of immediate consequences of this way of looking at things, three of which are worth noting here.
First, we obtain a natural justification of comprehension principles, provided
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we merely extend the notion of “selection procedure” to include the ordinary semantic relation of application of
predicates (as suggested parenthetically a moment ago). For, in a comprehension principle, we are given a predicate,
‘F(x)’; and the principle can then be understood as merely asserting the possibility of using (applying) it; and such use
counts as a witness to the ‘◊∃p’ in ‘◊∃p∀x[S(p, x) ≡ F(x)]’. In other words, we understand the S relation in such a way
as to guarantee each such instance of comprehension simply on the basis of a Tarski biconditional:

which is itself readily justified on the basis of linguistic practice. (We needn't insist that it be “analytic”.)

A second consequence is that reference to the null set is made to disappear entirely. For

guaranteed by taking ‘F’ as, say, ‘x ≠ x’, comes to nothing more than

i.e. there could be a procedure which selects nothing, something we can be quite confident in by simply adopting a
posture of utter lassitude (preferring this perhaps to “honest toil”). (To obtain uniqueness of the null set, further
assumptions would be needed, such as an axiom guaranteeing that every selection procedure corresponds to a unique
possible selection result.)68
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(FCA)
in which ∃! abbreviates a uniqueness clause in the usual way, i.e. FCA fully written out becomes,

(Reasoning with modal quantifiers is exactly analogous to ordinary quantifier reasoning, as codified, e.g. in Cocchiarella [1966]. We would prefer to call Cocchiarella's system
a “logic of actual and modal quantification”.)An immediate consequence is extensionality, in the form,

whence,

which expresses extensionality for sets (i.e. the selection results). Further axioms for sets can be obtained from suitable axioms governing S. From the standpoint to be
developed below, this procedure for arriving at set theory encounters an awkwardness in connection with the use of unrestricted modal quantification over selections, since
an intended model of such axioms would presumably be inextendable (i.e. containing “all possible selections or sets”). Thus, a careful axiomatization along these lines should
seek to restrict the FCA in some natural way. One advantage of our direct, structural approach, to be carried out below, is that we can express extendability principles
explicitly and can avoid commitment to inextendable models.



The last consequence we shall mention is that we readily account for “exceptional claims” frequently made concerning
the possibility and necessity of “sets”, such claims as,

If it is possible that sets exist, then they actually exist,

and,

If sets actually exist, then they necessarily exist,

claims which are exceptional in that they involve a collapse of all modal distinctions for “objects of this sort” (whereas
one may still uphold those distinctions “in the usual sort of case”). However, if ‘∃’ for sets is understood as introduced
via ‘◊∃’ for selections, these statements are immediate consequences of the S-5 modal axioms (assuming “x actually
exists” is understood simply as, say, ‘∃y(y = x)’). If we write ‘S′(p)’ to abbreviate the statement that “p selects something
or is a selection of nothing” (i.e. p enters into the S relation), then the first claim can be understood as taking on the
form,

and the second as,

which are instances of the characteristic S-4 and S-5 modal axioms, respectively. (This sort of result could even be
taken as a kind of “confirmation” of our choice of S-5 as the background modal logic. Cf. Chapter 1, n. 8.)

Given this modal perspective, one could, at this point, attempt to arrive at a full set of axioms for set theory by trying
to formalize further these ideas concerning “possibilities of selecting”. This could proceed in various directions. By
suitably restricting the notion of “selection procedure”, one could build various modal systems of (more or less)
constructive set theory. But, from our non-constructive point of view, we would be trying to axiomatize a notion of
“arbitrary selection”, and, very likely we would find ourselves
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mimicking standard axiomatic set theories (substituting ◊∃ for ∃, of course, and referring to “selection of something”
or “result of selection of something”, in place of “non-empty set”). (Such axioms could be added to the fundamental
correlation axiom of n. 12, or to something along those lines.) Instead, there is a more direct approach. For, as we shall
see, once we admit the use of modality and the framework of second-order logic, we can carry out a modal-structural
interpretation by appealing to already well-worked-out axiom systems, in much the manner of the msi of arithmetic
and analysis. And we may justify our choices of axiom systems by appealing to their utility in actual mathematical
practice and to the fact that they can be used to characterize the types of structures of actual mathematical interest.
Indeed, further questions of justification—especially of modal existence postulates—will remain, but these are best
taken up case by case as they arise.

These, then, are our guiding principles. Let us now see how they can be given a more precise formal expression and
how they may be put to use.

§ 2. The Relevant Structures
It is taken for granted, at the outset, that the ZF axioms are “motivated” in the sense that they attempt to spell out—if
only partially—a coherent conception of “iterative hierarchy”. This conception (as emphasized by Gödel, Tait, and
others)69 is based on the joining together of two ideas, the idea of “forming all possible collections” from a given
collection of objects—no matter what they may be—, and the idea of iterating this “operation” into the transfinite. It is
striking that one may develop axioms designed to express these ideas in a variety of ways that initially appear to be
quite different but which in fact lead to the same result. Thus, in addition to the familiar ZF axioms, which can be
obtained from assumptions on “stages” (as in Boolos [1971], cf. Shoenfield [1977]), there is also the system developed
by Scott based on cumulative levels (see Scott [1974]), which turns out to be equivalent to ZF. (The striking result here
was that well-foundedness followed from what appear to be “more basic” axioms on levels.) These results strongly
suggest that we somehow
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make use of one or another of these axiom systems in attempting to characterize “structures of the appropriate type”
that can serve as “the subject-matter” of set theory on the iterative conception.70

To see how this may be done, recall (from Chapter 1) the ms treatment of number systems, e.g. the natural numbers.
Following Dedekind, we used his second-order axioms (of Peano Arithmetic) to define “ω-sequence”:

(2.1)

where the right side abbreviates the result of writing out the PA2 axioms with all quantifiers relativized to the second-
order variableX, replacing each occurrence of the successor symbol ‘s’ with the two-place relation variable ‘f ’. This led
directly to a ms interpretation of arithmetic in which ordinary arithmetic sentences were represented as saying what
would hold in any ω-sequence. We then appealed to the categoricity of the PA2 axioms in order to establish certain
desirable properties of this representation.

Something analogous can be done for set theory. If we employ second-order logic, we can replace the infinitely many
first-order Replacement axioms with a single second-order Replacement Axiom (as in Zermelo, [1930]), obtaining a
finite list, ZF2. We may then explicitly define “natural model (of set theory)” along the lines of (2.1):

(2.2)

in which, on the right, the two-place relation variable, ‘f ’, replaces ‘∈’ throughout. We may then attempt to interpret set
theory as the study of structures of this type.

What justifies the terminology, “natural model”? The answer to this question is central to the interpretation and will, at
the same
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time, explain why the choice of ZF2 is mathematically motivated and not simply a matter of technical convenience
(i.e. to obtain a finite list so that a definition like (2.2) can be presented).

As already indicated, the key technical results proved by Zermelo [1930] showed that full models of the ZF2 axioms are
essentially determined (i.e. up to isomorphism) by two parameters: the “width” (cardinality) of the urelement basis and
the ordinal height. If urelements (besides the null element) are not allowed (i.e. extensionality is unrestricted, as in the
usual presentations of the axioms), it follows from Zermelo's theorems that, for any two full71 models, M1 and M2,
either M1 is isomorphic to an end extension of M2 or M2 is isomorphic to an end-extension of M1 (where “M is an end
extension ofN” means that (i) the domain ofN is included in the domain ofM and ∈N is the restriction toN of ∈M (i.e.
M is an extension ofN), and (ii) for any x in N, if y ∈Mx, then y ∈Nx). (We may summarize this result by saying that ZF2

is quasicategorical.) It follows, moreover, that every such full model is isomorphic to one of the form (Vκ, Vκ + 1, ∈| Vκ + 1),
where κ is a strongly inaccessible cardinal. (Here Vκ is defined in set theory as the κ'th cumulative level (also
denoted Rκ), i.e.

where is the power set operation; the second item of the model, Vκ + 1, gives the range of the second-order
quantifiers occurring in the ZF2 language. To simplify notation, we shall sometimes denote such models merely
by ‘Vκ’.)

It is precisely models of this form that are called “natural models” in set theory. If one speaks in the usual way of a real
world of sets, the membership relation of these models is just the “real membership relation”, and the models Vκ are
thought of as simply initial segments of the real universe of sets (i.e. pure sets, beginning with just the null set). Hence
the term “natural”. Note that, unlike the universe, the domain of any natural model is a set, and any such model itself
can be treated as a set, i.e. as in the range of the first-order quantifiers of set theory. Thus, as standardly presented,
Zermelo's theorems are
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order n -ary relation quantifiers (n = 1, 2, . . . ) are full, i.e. each such range is the set of all subsets of |M |n , where |M | is the domain of the model M.



theorems of set theory, and in fact of the first-order ZF axioms.72 In effect, second-order logic is mentioned—when we
speak of models of the ZF2 axioms—but it need not be used.

It should be stressed, however, that this role of second-order Replacement is critical. It is a striking fact that natural
models of the ZF1 axioms—i.e. of the form (Vα, ∈|Vα)—need not have inaccessible height. (The height can be a
singular cardinal, as can be proved by a Löwenheim–Skolem type construction.)73 This is but another symptom of the
weaker expressive power of first-order axioms as compared with second order, analogous to the better-known fact
that models of the first-order axioms, including the Regularity Axiom, need not even be well-founded (i.e. they may
contain infinite descending ∈-chains). (In the second-order case, Replacement succeeds in ruling out such non-
standard models.)

Now the crucial point to observe, in the interests of a structuralist interpretation, is that the quasi-categoricity of ZF2

can be suitably stated and proved entirely within the pure second-order logical framework, much as the full categoricity
of PA2 and that of RA2 were recoverable from within that framework. The statement takes the following form:

Quasicategoricity of ZF2:

either ∃φ(φ maps X 1–1 on to a substructure (Y′, g| Y′) of (Y,g) such that

(i) g(φ(x), φ(y)) for any x, y such that X(x) & X(y) & f(x, y), and

(ii) (Y,g) is an end extension of (Y′, g| Y′));

or ∃φ(φ maps Y 1–1 on to a substructure (X′,f| X′) of (X,f) such that etc. (i.e. clauses just like (i) and (ii) but with
the roles of X,f and Y,g reversed))].

It is an exercise to write this out in detail as a second-order
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72 See e.g. Lévy [1960 ], who formulates similar theorems in terms of a ZF1 -definable notion of “standard complete model”. Cf. Drake [1974 ], pp. 122–3. A number of
results of this type were obtained, apparently independently of Zermelo, by Sheperdson [1951 ], cited by Lévy.

73 See Drake [1974 ], p. 111, Ex. 1.6(4).



statement. The proof also can be given in axiomatic second-order logic.74

Several remarks are in order concerning the significance of quasicategoricity, especially in this second-order form.

First, it should be noted that the talk of “structures” in the theorem and its proof is abbreviatory of direct second-
order statements (on the plan of ‘ ’ as short for ‘(X,f) satisfies ZF2’); a set-theoretic definition of
satisfaction is not involved. The reasoning takes place entirely within second-order logic, just as in the recovery of the
categoricity of PA2 and RA2. Thus, we do not have to think of these theorems as taking place either within a larger
model of set theory or within a fixed universe of “all sets”. This is significant, in that the first view encourages a kind of
relativism which may be unwarranted—i.e. the “background model” might be nonstandard—and the second view
encourages acceptance of proper classes. The second-order formulations attempt to get by without either.

In this connection, note that, since we do not need to speak literally of model-theoretic structures, we do not need to
invoke explicitly the distinction between full and non-full structures (i.e. between structures in which second-order
(k-ary) quantifiers range over all subsets of (the k-fold Cartesian product of) the domain, and those with smaller ranges
for the second-order quantifiers). Instead, we simply reason directly with universal second-order statements, e.g.
Replacement, and this suffices. (The slogan would be, “ ‘All’ means ALL.”)

Secondly, provided we accept the second-order logical axioms,

SET THEORY 69

74 One way to proceed is to prove first that the ordinals of X (say, the von Neumann ordinals, in the sense of f ) are order-isomorphic (under a map ψ ) to an initial segment
of the ordinals of Y (in the sense of g ), or vice versa. This uses just second-order comprehension and transfinite induction insideX and Y, given by the hypothesis of the
theorem. Next one extends one of the maps (ψ or ψ−1 ) to a map φ on the Rα of the structures, ensuring that “membership is preserved”, i.e. if, say, φ is from X into Y
and the rank of x is α, φ (x ) will be that object y of Y of rank ψ (α ) such that any y ′ of Y bears g to y just in case it is φ (x ′) for some x ′ bearing f to x. The
properties of the theorem then follow. (In proving that φ (say it is from X into Y ) is onto the Rα (in the sense of g ) of a segment of Y, second-order Replacement is
used. If φ were not onto, there would be a descending g -chain of objects, each outside the range of φ ; by construction of φ, for each non-empty (in the sense of g ) item
of the chain there must be a further item of lower rank. By well-foundedness of the model (guaranteed by Replacement2 ), the chain must be finite; but then, it must
terminate in the null set of Y, øY = φ (øX ), which is a contradiction.)



quasicategoricity supports the conclusion that the ZF2 axioms do succeed in determining a definite type of structures,
given by the definition (2.2) (“natural models”). Once the urelement basis is fixed, only the height is left open (i.e. up to
isomorphism). As an immediate corollary, it follows that all sentences of ZF with bounded quantifiers (i.e. restricted to
sets below a given rank) are determined, i.e. their truth value is fixed identically in all natural models of sufficient
height. Such sentences may be undecidable from the first-order axioms, but, if one believes the quasicategoricity
theorem, they are determinate none the less. (Thus, e.g., the Continuum Hypothesis is determined already at Vω + 2, if a
flat pairing function is used. This isn't yet a natural model of ZF2 of course; but it follows that all natural models of ZF2

(which includes the Axiom of Infinity) agree on CH. Similarly, with Souslin's Hypothesis and all undecidables
pertaining to accessible levels.)

Now it may be (and has been) argued that quasicategoricity and the use of second-order logic are really irrelevant to
this determinateness (cf. Weston, [1976]). Determinateness, if guaranteed by anything, is guaranteed by our ordinary
understanding of the set-theoretic sentences themselves (in the interesting cases of CH, Souslin, etc., first-order
sentences), i.e. our understanding of sets and membership. Moreover, such understanding is involved in the
quasicategoricity proof itself (as ordinarily presented, that is, in our reasoning concerning full models of ZF2), and
hence cannot be relied upon even to bolster our faith.

However, on the structuralist view, the situation is different. The ordinary (bounded) set-theoretic sentences need not
be interpreted over a unique cumulative hierarchy. Rather they may be understood elliptically as saying what would be
the case in any sufficiently high natural model, on exactly the plan of the modal-structural interpretation of number
theory and real analysis, i.e. each bounded sentence S, of rank ρ of (ZF) (either ZF1 or ZF2) could be translated as 75).

(2.3)

Moreover, as just indicated, the argument does not rely on embedding the structures in a further model of set theory,
but, rather, on the far more modest second-order logical axioms. And, of course, no assumption of a unique
cumulative hierarchy is involved.76

Thirdly, the present formulation of quasicategoricity and the associated translation scheme (2.3) for bounded sentences
may be regarded as formalizing the distinction between “logical class” and “iterative set” (cf. Shapiro [1985]): logical
classes and relations are (an interpretation of) what the second-order logical quantifiers range over, whereas iterative
sets are construed structurally, along with ordinals, as arbitrary items interrelated in the right ways.

However, “logical classes” may not be the only way of reading the second-order notation. In addition to Fregean
concepts and various intensional interpretation (cf. the work of Cocchiarella, in particular [1986]), there is even the
possibility of “nominalistic” interpretations (as suggested in Putnam [1967]). The natural models could be thought of
as “concrete” (though probably not as concrete (an overly concrete special case?)), i.e. characterized by means of the
calculus of individuals together with “nominalistically acceptable” predicates. We shall not pursue such interpretations
here, but will touch on the question again in Chapter 3.

Having seen how to talk about natural models, we are now in a position to write out more precisely the modal-
existence postulates embodied in the informal principles of § 1, and to specify more precisely how modality enters in
resolving the tension between the use of second-order logic (principle 3) and the rejection of proper classes
(principle 4). Concerning modal existence, there is, first of all, the assumption that natural models are possible, which
can be written simply as
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75 If ρ can be proved to exist in ZF (as it typically can in cases of normal mathematical interest), the clause ‘X (ρ )’ is redundant. Otherwise, if ρ is provably unique in fulfilling
a condition C(x ), ‘X (ρ )’ becomes ‘∃x (X (x ) & C(x ))’. Actually, it suffices to require ∀β < ρ X (β ), but because we quantify only over ordinals in models (cf. our
informal requirement 2 of § 1), this becomes the more complicated statement that X contains (up to isomorphism) every β of any ZF2 model, (N, g ), such that N
contains an ordinal ρ such that C(ρ ) and β < ρ (< in the sense induced by g ).

76 Weston [1976 ] attributes such an assumption to Kreisel [1967 ], whose invocation of quasicategoricity in support of determinateness he criticizes.



(2.4)

This functions as a working hypothesis of realist set-theoretic practice, just as the possibility of ω-sequences or of
separable ordered continua function, respectively, in the practice of number theory and
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real analysis. However, (2.4) is much less directly tied to experience than these latter modal-existence assumptions, and
is, in this respect, far more speculative. How best to describe and assess our “evidence” for such a hypothesis remains
one of the most difficult challenges confronting mathematical epistemology.77 Here we are concentrating, however, on
the prior task of articulating basic assumptions and exploring their implications.

The second modal-existence assumption is the Extendability Principle (EP). Informally, stated, “Every natural model has
a proper extension.” This can be written in modal second-order logic as

(2.5)

in which the last conjunct abbreviates the (second-order) statement that X is a proper subclass of Y and f is the
restriction of g to X.78

As in the treatment of PA and RA, our formal apparatus is second-order S-5. However, it is essential that the
comprehension scheme of second-order logic be restricted to actualist instances, i.e. those in which the initial universal
quantifier is simply ∀, not □∀. We do not allow, for example,

that there exists a class of all elements of any possible model.79 Such a beast would be the modal-structuralist
counterpart of a proper class and would clearly violate the spirit (and, given other assumptions, even the letter) of the
EP. Such conflicts can be avoided by restricting comprehension in the following ways: (i) only actualist
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77 For a recent study of modal interpretations of set theory which supports the conclusion that the mathematical modality of a wide class of such interpretations is not
reducible to the notions of “naturalistic semantics”, see McCarthy [1986 ]. This accords with our own view throughout, that the characteristic modal existence postulates of
the msi cannot be understood as “analytic” in any useful sense.

78 Note that we cannot express directly in second-order notation that X or f occur as “elements” of Y (i.e. we cannot write Y (X ) or Y (f )). However, we can state (and
prove) that X and f are equivalent to elements of Y, e.g. that ∃y (Y (y ) & ∀z (X (z ) ≡ g (z, y )), etc. For mathematical purposes, this seems to suffice.

79 Such stronger forms of “possibilist comprehension” (for modal as well as non-modal formulas) are characteristic of some of the higher-order modal logics investigated by
Gallen [1975 ] and Cocchiarella [forthcoming].



initial ‘∀’ is permitted, as just explained; and (ii) only instances involving non-modal formulas are taken as axioms. (The
above example is thus ruled out on two counts.) The first restriction is the key to avoiding commitment to proper
classes while still employing second-order logic. The second enables us to keep quantification into modal contexts to a
minimum. (For our purposes, there appears to be no need to invoke comprehension with modal formulas.)

We do, of course, have the straightforward necessitation of (actualist, non-modal) instances of comprehension. Thus,
we may continue to speak of proper classes relative to a model. For example, in the context of a given model, its
domain or the class of its ordinals, etc., are recognized, and they behave like proper classes, relative to the model. But,
by the EP, they are represented as elements of a further model, i.e. they can be treated “as sets”. But we never have an
object corresponding to the “totality of all possible models”, or “the totality of all possible ordinals”, etc., much as, in
the case of arithmetic, we never countenance “the totality of all possible ω-sequences”. Such totalities are regarded as
incoherent, since any totality—treated as an object—can be extended.

§ 3. Unbounded Sentences: Putnam Semantics
We have seen that bounded sentences (of (ZF2), of a given rank) can be interpreted along modal-structuralist lines in
essentially the manner of the ms treatment of arithmetic and analysis. Now it should be clear that once we recognize
the possibility of essentially different models—as we do once we have adopted the EP—such a simple translation
pattern will not work for unbounded sentences. For example, let P(x) represent a large cardinal property (e.g. “x is
strongly inaccessible”), and consider the sentence, κ(P(κ)). Obviously, we cannot treat this as saying that in any possible
(full, well-founded) ZF2 model, there would be an object κ such that P(κ), for, if κ′ is the least κ such that P(κ), then (if P
implies strong inaccessibility) the class of sets of rank κ′ (speaking set-theoretically) would constitute a model lacking
any P. Thus, different models give different answers and the simple translation pattern in question would treat both
∃κ(P(κ)) and its negation as false.

It should be pointed out that, of course, there are ways of restricting the heights of models uniquely so that the simple
translation
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pattern would work. One could insist, for example, that there be no inaccessibles (i.e. one would add this statement as
an axiom to ZF2); the resulting theory can be proved categorical, so that the simple translation scheme would be fully
bivalent.80 However, there are (at least) two substantial objections to this course. The first would be the arbitrariness of
the Axiom of Restriction. If the aim is to produce a categorical theory, one can achieve this in infinitely many different
ways (e.g. add to ZF2 the axiom that there are exactly 17 inaccessibles, etc.), and no evident reason to single out one as
optimal. But second, and more fundamentally, such axioms conflict with the EP which expresses something too deeply
rooted in our use of set-like operations to renounce, the possibility of “going beyond” any definite totality.81 We must
try to live with Extendability.

Having made this decision, we may attempt to interpret unbounded set-theoretic sentences as saying what would hold
in relevant models and their extensions. Consider, for example, a simple AE sentence, say, ∀α∃β(β > α & Inac(β)). We
may construe this as saying that, for any natural model (X,f) and any ordinal α in X, it is possible that there is a (not
necessarily proper) extension (Y,g) of (X,f) with a β in Y such that β > α & Inac(β). (Here, α, β range over ordinals. ‘α in
X’ would of course be written X(α). Second-order variables can be treated by writing out Z ⊆ X, etc. We may employ
“in X” ambiguously to cover both cases.) One may carry out this plan for arbitrary, unbounded sentences, first putting
the sentence into prenex form and then iterating the appropriate modal quantification over extensions, for each
quantifier of the prefix. If we useM, N, etc. as special variables ranging over natural models (i.e. pairs (X,f), etc., treated
according to the definition of ‘natural model’ above), then a sentence of the form, say,

would be translated as

(Here the variables x, y, z may be first or second order, and ‘≤’
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80 Cf. Fraenkel's equivalent Axiom of Restriction, in Fraenkel, Bar-Hillel, and Lévy [1973 ], pp. 114 ff.
81 See Fraenkel, Bar-Hillel, and Lévy [1973 ], p. 118, for an expression of essentially this point, despite the authors' willingness to speak of “the universe”.



abbreviates the second-order conditions for “is a submodel of”.) It should be clear from this example how to generate
the Putnam modal translate of an arbitrary sentence S of (ZF2). We will refer to it as Smsi (“S on the modal-structural
interpretation”).82

What are we to make of this translation scheme? Surely, by itself, it provides us with no independent handle on
unbounded set-theoretic truth, for the translates contain unbounded modal quantifiers “over arbitrary extension of
models”. Without further assumptions—beyond the ZF axioms—on what sorts of models are possible, there are
many questions that we cannot expect to answer. However, it should be stressed that even so elementary an
assumption as the EP can have important consequences. As a cardinal example, consider the Axiom of Inaccessibles,

(AI)

Evidently, its modal-structural translate, (AI)msi′ is implied by our assumptions, the EP plus second-order logic. (Any
natural model, M, is of the form Vκ, κ strongly inaccessible; this is proved in essentially the manner of Zermelo [1930];
cf. also Drake [1974], p. 112. The proof can be adapted to the present setting by carrying it out relative to any proper
extension of M (which must contain κ).) Thus, this large cardinal axiom appears, not as an arbitrary extra assumption,
nor by invoking dubious totalities (e.g. by reflection on “the universe” (cf. below, § 5)), but as a direct consequence of a
structural principle motivated by our understanding of set-like operations. How such methods may be further
extended will be taken up in § 4.

Although our access to the modal translates depends on strengthenings of ZF, still we may ask for comparisons
between the msi and the usual fixed universe picture. It is not difficult to show that, from within the latter point of view,
there is complete agreement between the two with respect to all first-order questions of ZF, decidable or not.

Working within set theory (eventually, it will have to be at least as strong as NGB in order to speak explicitly of “the
universe”), it is possible to generate the Putnam translation scheme from a simple set of semantical rules for evaluating
sentences of the (non-modal) set-theoretic language ( (ZF2)) pointwise in the intended
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82 Essentially this translation pattern was originally proposed by Putnam [1967 ]. We have cast his informal exposition in second-order logical terms and have shifted from his
“standard concrete models of Z” to “natural models of ZF”.



structures, i.e. in full, well-founded models of ZF2, isomorphic to the natural models (in the usual terminology), Vκ,
with κ inaccessible. In presenting these rules, we make the simplifying assumption that the modal operators are
absorbed into the quantifiers with which they are uniquely associated in the translates (viz. ‘◊∃’ becomes ‘∃’ and ‘□∀’
becomes ‘∀’). LettingM, M′, etc. range over full ZF2 models, as above, and letting E, E′, etc. range over evaluations of
variables, we can introduce a new satisfaction relation, A[E], “M Putnam-satisfies A at E”, for A a formula of
(ZF2), inductively, as follows:

1. A atomic: M A(x, y)[E] iff M A(x, y)[E], where is ordinary satisfaction;
2. ∼ A[E] iff A[E];
3. A & B[E] iff A[E] & B[E];
4. ∃uA[E] iff ∃M′ ≥ M∃E′ agreeing with E except possibly at u such that A[E′].

‘∀’ is introduced classically in the usual way as ∼ ∃ ∼. Using this definition, if one simply reads off the relevant
quantifier clauses and applies disquotation (substituting quantification over items in the structures for quantification
over evaluations of variables), one recovers the Putnam translate of A (modulo the absorption of modal operators into
quantifiers). Note that Putnam semantics is just like ordinary semantics except for the quantifier clause in which ‘∃’ is
understood as ∃ with respect to some (possible) extension of the structure in question.

How do different intended models compare with respect to Putnam semantics? One might imagine that, as one
proceeds outward along a path of such models, the truth value of a ZF sentence could shift, as it can in the case of
ordinary semantics. However, it is easy to show that this cannot happen. Using the Zermelo quasicategoricity
theorems, there is (up to isomorphism) only a single path of relevant models (they can be identified with the natural
models Vκ, κ inaccessible), and one has a

Stability Theorem:

Let A be a sentence of (ZF2) and M a full ZF2 model;

The proof is by induction on the number of quantifiers in A. (See Appendix.) This immediately yields as a
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Corollary: All full ZF2 models are elementarily equivalent with respect to Putnam semantics, i.e. for any sentence A of
(ZF2) and for any such models M, N,

(Proof: Let A. By the Zermelo quasicategoricity theorems, we may without loss assume that either M ≤ N or N
≤M. In the first case, A by the stability theorem; in the second, if A, ∼ A and, again by the theorem,

∼ A, contradiction.)

Thus, Putnam semantics gives unique answers to all (ZF) set-theoretic questions, regardless of the point of evaluation.
But does it give good answers? Yes, in this sense: it gives exactly the answers to all first-order questions that the fixed
set-theoretic universe gives, assuming the Axiom of Inaccessibles. That is, we have a

Correctness Theorem:

Let A(a) be a sentence of (ZF1) with parameters a (= a1 . . . an) and suppose V A(a); then ∃κ such that Vκ is a
full ZF2 model, the ai are in its domain, and Vκ A(a).

The proof again is by induction on the number of quantifiers in A (see Appendix). Note that, by stability, this is
equivalent to proving, from the same hypotheses, that ∀κ such that Vκ is a ZF2 model containing the ai, Vκ A(a). The
converses then follow by the clauses for negation.

Note that the restriction here to first-order sentences is essential. For example, V satisfies the second-order sentence,
∃X∀α(α ∈ X), but no Vκ can Putnam-satisfy this, in light of Extendability (equivalently, the Axiom of Inaccessibles).
Although is defined for second-order as well as first-order sentences, it “agrees with the universe” in general only
on the latter. As the example just given illustrates, a rejection of proper classes is built in (as it should be, given the
viewpoint for which it is designed). But, in light of Stability, which applies to both first- and second-order sentences, the
rejection is “once and for all”.

It must be emphasized that the “correctness theorem” depends critically on the Axiom of Inaccessibles as this is
understood on the fixed universe view: the inaccessibles, hence natural models Vκ, must be cofinal in the ordinals. If
this assumption is relaxed—if, for example, we step outside the fixed universe view and do not even allow talk of a
structure with “all ordinals”—then the argument breaks down. And, in that case, further assumptions governing the
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possibilities of full models will be needed even in order to guarantee that all instances of the ZF1 axioms hold on
(at some or any full model). We have the following curious situation: although the simple EP suffices to guarantee that

i.e. the Axiom of Inaccessibles holds on , and although

i.e. the second-order Replacement axiom holds on , stronger extendability principles than the simple EP are needed
to guarantee that

for all instances of the first-order scheme. To see this, first observe that the second-order axiom does hold on . This
axiom is

In evaluating it on , at any givenM, we look at arbitrary extensions N ofM and any F ⊆ the domain of N fulfilling the
antecedent. Since we have this restriction on F, further extensions ofN brought in by the remaining quantifiers play no
role. The consequent is thus guaranteed by the assumption that N is a model of ZF2 (i.e. if F(u, v), u and v must both
already be in N).

However, suppose ∀F is dropped and ‘F’ is replaced by a formula, φ(x, y), with two free variables, i.e. we consider an
arbitrary first-order Replacement axiom. Then there is no built-in restriction of the function defined by the formula φ
to the domain of any model, and further extensions brought in by the quantifiers may be relevant. Consider, for
example, the formula ψ(i, κ) which says that κ is the ith inaccessible, for i ∈ ω. If the possible full models are assumed to
form merely an ω-sequence rather than a transfinite one, i.e. all possibilities are represented by

then there is no range of ψ on ω. But this is compatible with the
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simple EP. In order to rectify the situation, it is necessary to assume some stronger extendability principle.83

One such principle which suffices is as follows:

Let φ(x, y) be a formula “defining a function”, where this is spelled out by writing out the Putnam translate of the
usual condition; further let a be any set in any full model such that, for any x in a, Mβ is the least full model
containing the unique y such that φ(x, y). Then it is possible that there exists a common proper extension, M, of all
such Mβ. (Strong EP)

Now it can be shown that all instances of Replacement1 hold on . (I see no obstacle to formalizing the proof in
axiomatic second-order S-5.) And it may be expected that still stronger extendability principles will be needed to verify
stronger conditions on height.

§ 4. Axioms of Innity: Looking Back
We have already seen how (the possibility of) endlessly many inaccessibles can be generated from basic assumptions on
natural models, framed within modal second-order logic. Before considering further ascent, we should look back down
and ask about the very first axiom of infinity, the one that merely asserts the existence of some infinite set. Recall that
this is independent of the other axioms of ZF. ω behaves like a strong inaccessible. It is standard simply to adopt the
existence of ω as a further axiom. From a purely iterative point of view, this has always seemed a great leap, as indeed it
is. And, as Russell stressed, any assumption of infinitely many urelements, however favoured by one or another
physical theory, should form no essential part of pure mathematics. On the other hand, there is the Fregean approach,
via comprehension: having identified the natural numbers somehow as mathematical objects (e.g. sets à la von
Neumann or Zermelo), the extension of ‘is a natural number’ will be an infinite set, as desired. But, as usually
presented, such an
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argument would use unrestricted comprehension (for ∈-formulas), but then we prove too much. Zermelo's remedy,
through Aussonderung, restricts comprehension to subsets of a given set, and then, of course, the argument is circular.
So the Axiom of Infinity is simply taken as basic.

It will be recalled from Chapter 1, however, that the modal-structuralist framework we have been employing
throughout has the resources for restoring a Fregean derivation of Infinity, without paradox and without violating
Russell's requirement of “no contingent infinities”.

For convenience, let us repeat the core of that argument here. One begins with a constructive rule for generating a
“next object”, say a stroke, from any finite sequence of given objects of the same sort. Such objects are assumed to be
first order. Call the rule R, and let P(x, y) be the predicate (of “strokes”), “y is generated after x in accordance with R”.
Now the range of P, Rn(P) = y|∃x(P(x, y)), may in fact be finite, but it could, logically, have been infinite. More
precisely, we can adopt the following as an axiom:

(*)

where the quoted portion abbreviates the familiar first-order conditions. The next step is to apply necessitated
comprehension of second-order logic:

guaranteeing that “in any world” P has a range. But, of course, it can also be proved that

where (*)− is (*) without the initial ◊, and the quoted portion is spelled out in second-order notation (employing either
“X includes an ω-sequence” or “X is Dedekind-infinite”). But then from (*) and modal logic we have

as desired. It is only ◊∃ that matters, so that no contingent actual infinities need be assumed. Second-order
comprehension treats the predicate, “is generated in accordance with rule R”, as it does any
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other predicate of first-order objects. It has an extension. (No inconsistency here!) Logically, it could have an infinite
extension, and that is all that mathematics requires of its first axiom of infinity.

As was noted in Chapter 1, the assumption (*) is grounded in a constructive process and is of the sort that even
constructivist opponents of classical reasoning about the infinite have been prepared to grant (cf. especially Dummett
[1977]). However, it must be conceded that (*) is not as innocent as it might be from a constructivist standpoint. The
really innocent reading of the statement, “Any finite sequence of strokes can be extended”, could be written,

(where we understand the quantifiers as restricted to objects generated in accordance with a rule such as R). Here we
contemplate moving from any world in which a finite sequence has been generated to a (possibly different) world in
which the sequence is extended. No single world need be recognized satisfying

But such a world is precisely what is contemplated in (*). A strict finitist cannot be forced to accept it. It could
dogmatically be insisted, for example, that standard Euclidean models of space and time are logically impossible! Thus,
even with modality, the first axiom of infinity cannot be made innocuous.

On the possible worlds metaphor, the axiom postulates a fixed point of an operation on worlds: the operation involves
looking at the finite segments, σ, generated in a world w according to a (fixed) constructive rule, and moving to a w′
(uniquely selected somehow) in which each of those segments has a proper extension. A fixed point of this operation is
a world w* such that w*′ = w*; then w* answers to (*) and must be infinite. It is interesting to observe that stronger set-
theoretic principles, functioning as axioms of infinity, can be obtained in a similar fashion.

Consider Replacement (the second-order version, the one we naturally read and assent to when learning the ZF
axioms). So far we have taken it for granted, in the sense of postulating the possibility of a ZF2 model. I would suggest
that one reason why this seems reasonable is due to an analogy with the first axiom of infinity, as just discussed. The
analogy depends on reading and accepting the
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Extendability Principle (EP) as applying to models of Zermelo set theory (Z) (= ZF less Replacement but with
Aussonderung), i.e.

(ZEP)
84where the quantifiers are understood as relativized to Z models, spelled out in second-order form in the by now
familiar way. Now consider any possible Z model M and any function F: M → M. For any “set” a of M, F[a] need not
be a “set” ofM, but it will at least be a sub-collection of the domain ofM. But when we move to any proper extension
N of M, N will contain F[a] as a “set”, since the power set operation will have been applied to the domain of M in N.
Consider the operation of moving from M to the smallest extension N such that N contains as a “set” the range of
every F: M → M on every a in M. We obtain (the possibility of) Replacement by postulating a fixed point of this
operation. For such a fixed point will be an M* such that it already contains as a “set” F[a] for arbitrary “sets” a of M*

and F: M* → M*.85

To be sure, this is no derivation of Replacement. It is at best a replacement of a derivation: a placement of
Replacement in a new context, one which brings out an analogy with the first axiom of infinity: both have a similar
motivation in extendability principles, which automatically guarantee a requirement of richness with respect to objects
of any given model. The extra strength comes in postulating a fixed point in the relevant process of taking extensions.
As we shall see, further leaps may be motivated along similar lines.86
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84 In order to guarantee that a proper extensionN ofM effectively contain |M | as an element, the requirement thatN contain an equivalent, in the sense of n. 22, should
be added as part of the definition of “proper extension”. Lacking Replacement, we can no longer derive this condition from the ordinary weaker notion of proper extension,
as we could in the case of ZF models.

85 Strictly speaking, such talk of operations on models is naturally formalized as third order (if we insist on formalizing it). But it can be reduced to second order by treating
models operated on as (first-order) elements of any hypothetical background model (which we have already done, anyway, in speaking of proper extensions).

86 It is interesting to compare the motivation just given for Infinity and Replacement with Parsons' derivation of the modal translations of these axioms, in “theories of
potential sets”, from a principle allowing passage from certain statements of the form □∀x ◊∃y A(xy ) to those of the form ◊∀x ∃y A(xy ) (in Parsons [1983 ], p. 323).
This was precisely the move we found the strict finitist capable of resisting, above, in connection with the Dedekind-inspired derivation of Infinity. Mathematically, the
derivation given by Parsons corresponds to the well-known derivation of Infinity and Replacement from the Reflection Principle. (I am indebted to Charles Parsons for
calling this matter to my attention.) On the present approach, postulation of fixed points of certain extension-taking operations (an approach “from below”), replaces
reflection principles (which proceed “from above”). For further discussion, see below, Ch. 2, § 5.



§ 5. Axioms of Innity: Climbing Up
Having motivated Replacement2, the next step is to adopt it as a structure-characterizing axiom. In the present modal-
structuralist framework, this amounts to adopting (2.4) above, asserting the possibility of a ZF2 model (stated in purely
second-order terms). Such an assertion of possibility replaces the standard platonist “adoption of axioms” as truths
about a fixed set-theoretic universe.

Once Replacement2 has been adopted in the modal-structuralist sense, the Extendability Principle (EP) applied to ZF2

models—i.e. (2.5) above—yields strongly inaccessible cardinals, as already observed. The height of any possible full
ZF2 model, M, is such a cardinal and occurs in any proper extension of M. And since the EP implies that the
possibilities of extensions go on and on, one obtains the Putnam-translate of the Axiom of Inaccessibles, i.e. of

(AI)

The next step (upward) is to adopt this as a structure-characterizing axiom, i.e. to adopt

(2.6)

the intrinsic modal second-order assertion of the possibility of a full model of ZF2 plus the Axiom of Inaccessibles.
And, together with this, one naturally rewrites the EP so as to assert the possibility of properly extending any model of
ZF2 & AI. Let M be any such model and N a proper extension. Then in N, the height of M exists and is a
hyperinaccessible cardinal, that is, a solution to φκ = κ, where φα is an enumeration, in order, of inaccessibles (α an
ordinal of N). (κ is strongly inaccessible with κ strongly inaccessible below it.) Thus, the new EP guarantees endlessly
many hyperinaccessibles, hence the Putnam-translate of,

(AH1I)

the Axiom of Hyperinaccessibles. If one then adopts this as a structure-characterizing axiom (on the plan of (2.6)) and
modifies the EP accordingly, one obtains hyper-hyperinaccessibles, and (the
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Putnam-translate of) the Axiom of Hyper-hyperinaccessibles (AH2I), and so on.

It is worth noting that, at each stage in this process, the adoption of the new structure-characterizing axiom can also be
seen as the postulation of a fixed point of a suitable operation on models, in analogy with the procedures of the
previous section corresponding to Infinity and Replacement. Consider, for example, the step from inaccessibles to
hyperinaccessibles. LetM be any full ZF2 model and let O(M) be the smallestN ≥M such that, for each ordinal α ofM,
N contains an inaccessible κ such that κ < α. In general O(M) ≩ M (and κ can be found independent of α), but in case
O(M) = M, M then satisfies the axiom of inaccessibles and so has hyperinaccessible height. Thus, postulating a fixed-
point model for O is equivalent to adopting the new axiom, in this case the Axiom of Inaccessibles.

A next major step (further upward) is to the so-called Mahlo cardinals. It is known how these may be motivated by
reflection principles.87 Alternative motivation can be given, “from below” as it were, along lines similar to the above,
employing suitable extendability principles together with appropriate structure-characterizing axioms, which in turn
can be obtained by postulating fixed points on certain extension-taking operations on models. Let us see how this
works in the case of strongly Mahlo cardinals.

A cardinal κ is strongly Mahlo just in case every normal function f on κ has a strongly inaccessible fixed point, where a
normal function f on κ is a function from ordinals to ordinals > κ which has range unbounded in κ, is increasing, and is
continuous at limits (i.e. for limits λ, f(λ) = ∪ξ > λf(ξ)). If one adds to ZF2 the axiom,

(F)

one obtains a theory whose full models M are of the form Vκ with κ (strongly) Mahlo.88 This can all be stated in the
intrinsic second-order form we have been using throughout, and the proof that the height of any model, M, of ZF2 +
F2 is Mahlo can be carried out
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87 See Lévy [1960 ]; cf. Drake [1974 ], Ch. 4, § 4, and below.
88 NB. This depends critically on taking (F) as a second-order axiom, quantifying over arbitrary functions from ordinals to ordinals. If, instead, the first-order instances of the

scheme are taken as axioms (i.e. one for each formula ψ (x, y ) defining a normal function), the height of a model Vκ of ZF + the F instances need not be Mahlo. The
situation parallels that already encountered in connection with Replacement and inaccessibles. Cf. Drake [1974 ], Ch. 4, Ex. 3.7(3). Incidentally, the label ‘F’ is Drake's.



relative to any proper extension ofM. (Here and below, ‘F2’ denotes the second-order statement of (F).) Thus, once we
have adopted Axiom F2, the EP applied to models of ZF2 + F2 guarantees (endlessly many) Mahlo cardinals, as
“elements” of extensions. (In brief: Axiom F2 is to Mahlo cardinals what Replacement2 is to inaccessibles.)

What can be said by way of motivation for adopting Axiom F2 (i.e. in the sense of the possibility of a full model of ZF2

+ F2)? At least a strong analogy with Replacement2 can be seen on the present approach. Given a full modelM of ZF2,
one can consider the operation O of passing to the least extensionN ≥M such that, for any normal function f: Ord(M)
→ Ord(M) (i.e. from the ordinals ofM to the ordinals ofM),N contains an inaccessible fixed point either of f or of any
normal proper extension g of f. Now observe that, for any full modelM of ZF2 and any normal f: Ord(M)→ Ord(M),
the height of κ ofM will be an inaccessible fixed point of any normal g properly extending f. (κ is inaccessible and g(κ) =
∪ξ > κg(ξ) = ∪ξ > κf(ξ) = κ, the first equation by continuity.) Thus any proper extension of M will satisfy the condition, so
that if O(M) ≠ M, O(M) will be the least proper extension of M. Now consider a fixed point model M* of this
operation O, i.e. O(M*) = M*. Then for any normal f: Ord(M*)→ Ord(M*), M* already contains an inaccessible λ such
that f(λ) = λ, i.e. an inaccessible fixed point of f. Thus, M* satisfies Axiom F2.

Thus, just as in the case of Replacement2, proper extensions are automatically rich enough to fulfil the desired
condition with respect to all functions on the given model: the desired axiom, in the relevant form of modal existence
of a full model, says that there could be a model (of the weaker theory, ZF2 in the case of F2) already sufficiently rich in
the relevant respect. The same sorts of steps can be repeated to give higher and higher types of Mahlo cardinals.

The game of large cardinals has been played to staggering heights, and so far we have only motivated some of the very
tiniest that have been defined and explored. It is noteworthy that nearly all of these can be arranged on a linear
increasing scale, although the methods for their generation are remarkably diverse.89 A theoretically important break is
considered to occur with partition cardinals,
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beyond which the structurally interesting Axiom of Constructibility (“V = L”) is known to fail.90 Such cardinals are
really large (sometimes called “large, large”, as contrasted with the “small, large” ones we have been dealing with), and
would appear to be beyond the reach of anything like the modest methods employed here. But—in the spirit of true
climbing—the name of our game is not height for height's sake, but rather to explore the potential of certain quasi-
constructive methods closely connected to fundamental iterative principles. How far do they extend?

Without pretending to give a final or precise answer, we can observe that difficulties arise already at the level of the so-
called “weakly compact” cardinals, the next big step up beyond the Mahlo cardinals (as the route is usually described).
(The weakly compact cardinals are definable in several very different sounding ways, one of which will be utilized
momentarily. They are still “small” relative to the theoretically important break just cited, i.e. they are compatible with
V = L.)

The notion of weak compactness most readily adaptable to the present methods is that involving trees:

A cardinal κ has the tree property iff every tree T (= 〈 T, >T 〉) of cardinality κ such that every level of T has
cardinality > κ has a branch of cardinality κ.

A cardinal κ is weakly compact iff it is strongly inaccessible and has the tree property.91 That ω has the tree property is the
content of the König infinity lemma; weak compactness is a direct generalization of this.

Now, to obtain weakly compact cardinals on the present approach, one must formulate a sentence, S, of second-order
logic (in effect, a Π1 or Σ1 sentence) such that it can be proved that any full model of ZF2 + S has weakly compact
height. Postulating the possibility of such models and applying the EP will then give (indefinitely many) weakly
compact cardinals, i.e. the Putnam-translate of
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90 Key results in this area are due to Scott, Silver, and others. Details and references can be found in Jech [1978 ] and in Drake [1974 ].
91 Sometimes the requirement of strong inaccessibility is omitted from the definition and tacked on later when equivalence with other definitions is proved.



Next one would like to be able to motivate adoption of the modal-existence postulate (asserting the possibility of a full
model of ZF2 + S) in the manner invoked above, that is, by seeing the postulate as a fixed point of an operation of
taking extensions.

Now the first task is readily accomplished. One can formulate a second-order tree axiom with the desired properties as
follows:

(TA)

(Here the capitalized quantifiers are second order; the quantifiers over levels are second order, and (after employing the
usual definition of ‘level’) “level L is a set” can be expressed simply as ‘∃x∀y(L(y) ≡ y ∈ x)’, guaranteeing that L has a
cardinality, which is what matters here.) Now one can prove that any full model of ZF2 + TA is of the form Vκ with κ
weakly compact. (This can be given in the relevant intrinsic second-order form as in the cases of inaccessibles and
Mahlo cardinals, noted above.)

The problem, however, concerns the next step, motivating the modal-existence postulate. How can the possibility of a
full model of ZF2 + TA be made plaudible on the basis of taking extensions of ZF2 models? In the cases of
Replacement and Axiom F, extensions of any model of the theory less the respective axiom fulfilled the demands of
that axiom with respect to the objects of the given model. But TA has a different structure; it says that counter-
examples to the generalization of the König infinity lemma are not possible, and one cannot automatically remove such
a counter-example merely by moving to a proper extension.

This is not to say that there is no good motivation for weakly compact cardinals, but simply that such motivation must
come from elsewhere. One source is by a simple analogy with ω, which has the tree property. (Shouldn't an
uncountable inaccessible with the tree property also be a possibility?) Perhaps somewhat more compelling is an
analogy with inaccessibles, via notions of indescribability.92 Given a class, Ω, of formulas with only second-order
variables X1, . . . ,Xn free,
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an ordinal α is Ω-indescribable iff no formula φ in Ω describes α, where this means that for no φ in Ω is it the case that

but for all β < α,

(In case a formula φ meets this latter condition, α is said to be described by φ.) Now it can be proved that the strongly
inaccessibles are just the first-order indescribable cardinals (i.e. the Π0

1-indescribables).93 And it also can be shown that
the weakly compact cardinals and the Π1

1-indescribable cardinals coincide.94 If one accepts inaccessibles—i.e. Π0
1-

indescribables—should one not also accept weakly compact cardinals? And other analogies to smaller large cardinals
have been suggested, based on considerations of inductive definition (cf. Tait [forthcoming]). But however strong
these motivations may be, it seems interesting that the sorts of appeals to extendability principles we have made do not
carry us this far.

Still, the importance of motivating the smallest large cardinals—however minuscule they can be made to
appear—should not be underestimated. They are, of course, central to the whole subject of large cardinals, and
whatever reasons can be given for accepting them (i.e. their possibility) can affect our view of that subject. Usually one
approaches large cardinals only after learning the ZF axioms, and—in the face of their indemonstrability in ZF—one
thinks of them as esoteric. On the view we have been exploring, this is a misleading picture. The extendability of ZF
structures is firmly rooted in our informal notions of iteration, perhaps as firmly as the very notions formalized in ZF
itself. Stopping with Transfinite Induction (or Replacement) seems to us arbitrary. From this perspective, the study of
large cardinals is an intrinsic and virtually inevitable part of set theory.

In closing, it is worth making a brief comparison with alternative ways of motivating inaccessible and Mahlo cardinals.
Perhaps the most standard is by appeal to “reflection principles”. These come in various forms; some are expressible
in the language of ZF, others require
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93 It should be noted that this depends on the use of second-order parameters in the definition of indescribable. If they are omitted, Replacement will allow accessibles to be
first-order indescribable (cf. Drake [1974 ], pp. 268–76, esp. Ex. 1.11).

94 For the proof, see e.g. Drake [1974 ], pp. 292, Theorem 2.1.



the language of proper classes and beyond (cf., e.g., Reinhardt [1974a, b]). But all have in common the idea that what
holds in the Cantorian universe, V, ought already to hold “lower down”, i.e. in a restricted initial segment of V. In fact,
in so far as first-order properties of sets are concerned, an important formalization of this is provable in ZF:

where φ is any formula of ZF with just the xi free (and lacking abstraction terms), Vβ is the set of sets of rank < β
(i.e. the cumulative hierarchy up to β), and φVβ is the relativization of φ to Vβ. R0, it turns out, is equivalent to the
combination of the axioms of Infinity and Replacement (the first-order scheme). Of course, it does not yield large
cardinals, but strengthenings of it do. For example, if to R0 the condition is added that β be inaccessible, the result, R1,
can be proved in ZF to be equivalent to Axiom F (cf. Drake [1974], p. 121), and therefore implies the existence of
many kinds of inaccessibles. This is useless as motivation for simply strong inaccessibles, of course, since the Axiom of
Inaccessibles (AI) has been built into R1. But once given R1 hyperinaccessibles, etc. follow. And, if we permit ourselves
talk of V, Axiom F leads us to describe the proper class, Ω, of all ordinals (i.e. all ordinals ∈ V) as a Mahlo cardinal.
(This depends on reading Axiom F not as a scheme—whose instances R1 implies—but as the second-order statement
F2.) If one then (informally) applies reflection to this property ofΩ (or to the related property of V), one concludes that
some cardinal κ (i.e. a κ < Ω, hence a set) must be Mahlo as well. Further applications of Reflection can be used to
argue that in fact there must be arbitrarily large Mahlo's, and one can then adopt R2, just like R1 except for containing
the condition that β be Mahlo instead of merely inaccessible. This is turn will be equivalent to a scheme asserting that
every normal function has a Mahlo fixed point; the second-order version of this makes Ω hyper-Mahlo, etc., etc., . . . ,
etc., . . .

In fact, direct reflection on the universe as a mathematical object has been proposed as a key to motivatingmuch larger
cardinals (e.g. measurable cardinals, incompatible with V = L).95 And, of immediate concern to us here, it has been
proposed as the natural way to
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get strongly inaccessibles in the first place.96 Obviously, Ω, if we recognize it, must be strongly inaccessible. (The
cardinality of the power set of any set is a set, and the limit of any sequence of ordinals (< Ω) of length < Ω is a set.)
So, reflecting on this property of Ω, we conclude that there must be a set which is a strongly inaccessible cardinal.

To give one further illustration of such reasoning, let us use it to argue directly for Axiom F2, the full second-order
version. Let f be any normal function, f: Ω → Ω. Let g extend f by taking just Ω as argument. If g is normal, g(Ω) = Ω,
so that g has an inaccessible fixed point. (Or, we can simply stipulate that g(Ω) = Ω, as far as this argument is
concerned.) By reflection on this property of Ω, g, hence f, must have an inaccessible fixed point lower down, i.e. at
some set cardinal. But f was arbitrary, so F2 holds. Further reflection yields Mahlo cardinals as already observed.

There are two main objections to this sort of reasoning “from above”. The first concerns reflection itself. Even if
proper classes (V, Ω, etc.) are admitted as objects, what properties of these are reflectable? Obviously, not arbitrary
properties, e.g. “containing all set-ordinals”. In the case of R0, the provable Reflection Principle, no distinction need be
drawn, but in the above higher-order arguments, such a distinction is crucial. Why should ‘being inaccessible’ or ‘being
a fixed point of an extension of a normal function’ be reflectable? Whatever answer we try to give, it seems that we end
up appealing to the possibility of sufficiently rich models, which is exactly what the present approach from below
involves. Second, from the present point of view, of course, the appeal to proper classes as objects is a cardinal sin
(inaccessible or not!). Not only does it involve treating as “completed” what is not supposed to be completable; if one
is prepared to speak of functions taking Ω as argument or value, one is prepared to perform set-like operations on
proper classes after all, and it then appears that V, Ω, etc., are simply behaving as an inaccessible level of sets.

In contrast, the above-sketched approach “from below”, while frankly admitting the need for new axioms along the
way (modal existence of fixed-point models, and extendability principles), achieves the goal of generating small large
cardinals on the basis of a steadfast rejection of proper classes as objects. Dealing with many
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possibilities of set-theoretic structures (in the spirit of Zermelo and Putnam) is no doubt a bit more complex than
working with a single fixed universe, but it has its rewards—and it may ultimately help in the effort to sustain
Cantorian insights.97
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Appendix

Here we give proofs of the stability and correctness theorems for Putnam semantics stated in § 3 of the text. Recall
that Putnam semantics, the theory of , was introduced in § 3 as a relation between full ZF2 models and sentences of
the language of ZF2. In consequence of the Zermelo quasicategoricity theorems, we may restrict attention to models
linearly ordered by the relation of end-extension, i.e. for any pair,M, N, of such models, either M ≤eN or N ≤eM. The
stability of is given by the

Stability Theorem:

Let A be a sentence of (ZF2) and M a full ZF2 model; then

This follows from a more general result for formulas (allowing for free variables):

Lemma: Let A(u1 . . . un) be any formula of (ZF2) and M a full ZF2 model and E an evaluation of variables over M.
Then

M P A(u1 . . . un) [E] iff ∀ M′ ≥ M ∀ E′, an evaluation of variables over M′ agreeing with E on u1 . . . un, M′ P A
(u1 . . . un) [E′].

Proof by induction on the number of quantifiers in A. (We write this for the case of first-order formulas for ease of
exposition. Modifications for second-order formulas are straightforward.)

(i) A is quantifier free. Then the result follows by the clauses 1–3 in the definition of and standard facts about
ordinary .

(ii) A is ∃xB. (Again, for ease of exposition, let us revert to ordinary substitution notation in place of quantification
over evaluations of variables.) Let M ∃xB (i.e. at any E). Then ∃N ≥ M ∃z ∈ |N| such that N B(x/z),
whence N ∃xB. Now let M′ ≥ M. By the linear ordering of relevant models, there are two cases to consider:
(a) M′ ≥ N. Then by inductive hypothesis, as N B(x/z), M′ B(x/z), whence M′ ∃xB (by clause 4 of

).
(b) N ≥ M′. Then, as N B(x/z), by clause 4 of , M′ ∃xB.

(iii) A is ∀xB. Assume M ∀xB. Then, by definition,

(*)

Let M′ ≥ M. Then, by transitivity of ≥ and (*),



Therefore M′ ∀xB, by clause 4 of . This completes the proof.

The correctness of asserts that sufficiently rich ZF2 models treat first-order sentences on just as the ZF universe
V treats those sentences on ordinary . This can be proved in NBG together with the Axiom of Inaccessibles.

Correctness Theorem:

Let A(a1 . . . an) be any ZF1 sentence with the parameters displayed (i.e. the ai are sets of V assigned to free
variables x1 . . . xn by a given evaluation of variables), and let V A(a1 . . . an). Then there is a κ such that Vκ is a
full ZF2 model, the ai ∈ Vκ, and Vκ A(a1 . . . an).

Proof by induction on the number of quantifiers in A.

(i) A is quantifier free: Then for κ inaccessible and > max(ρ(ai)). (where ρ(x) is the ordinal rank of x), Vκ A, by
clauses 1–3 of the definition of and the fact that Vκ is a transitive submodel of V.

(ii) A is ∃xB(x, a1, . . . , an): By assumption, there is a set c such that V B(c, a1, . . . , an). By inductive hypothesis, ∃κ
> max(ρ(c), ρ(ai)) such that Vκ B(c, a1, . . . , an), whence Vκ ∃xB(x, a1, . . . , an).

(iii) A is ∀xB(x, a1, . . . , an): Let κ be the least inaccessible > max(ρ(ai)). We show that Vκ A. For this, we need to
show that

∀κ′ such that Vκ′ ZF2 and Vκ′ ≥ Vκ, ∀c ∈ Vκ′:

(*)

Let κ′ and c be as in the hypothesis of (*). By hypothesis of the theorem, V B(c, a1, . . . , an). By inductive
hypothesis, there is inaccessible κ′′ such that Vκ′′ B(c, a1, . . . , an) (with c, ai ∈ Vκ′′). In analogy with the corollary
to the Stability Theorem (Chapter 2, § 3), it follows from the lemma for the Stability Theorem above that Vκ′

B(c, a1, . . . , an) also. But κ′ and c are arbitrary, so (*) holds, whence Vκ ∀xB(x, a1, . . . , an). This completes the
proof.
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3 Mathematics and Physical Reality

§0. Introduction
As is universally recognized, mathematics throughout its history has been intimately bound up with our interactions
with the material world, from the most mundane practical enterprises of counting and measuring to our most
sophisticated theoretical efforts to comprehend its workings as the unfolding of physical laws. From a historical
perspective, it would be no exaggeration to say that physical application has sustained mathematics as its very life-
blood.

This perspective is reflected in philosophy of mathematics. Surely one of the strongest reasons—if perhaps not the
only reason—for taking mathematical truth seriously stems from the apparently indispensable role mathematical
theories play in the very formulation of scientific descriptions of the material world around us. As soon as we
undertake to convey the information that, say, there are more spiders than apes, we seem to be committed to numbers,
or classes and functions. Describing the behaviour of the stars and galaxies apparently involves us in a good deal of the
apparatus of differential geometry. And to probe the atomic structure of matter and the underpinnings of chemistry
and biology, we seem to be involved in the theory of Hilbert space and a generalized form of measure theory.
Whatever the details of this entanglement between physics and mathematics, surely a purely formalist approach to
mathematics would seem far more plausible were there no entanglement. If we strain our imaginations and suppose
(per impossible!) that mathematical theories and structures had no material applications—that they could somehow be
isolated from the empirical sciences—what objection would we have to treating mathematics as a purely formal game?
For such a “mathematics”, the question of truth might not even seem to arise.

Reflections such as these lead us to pose three interrelated fundamental questions concerning mathematics in its
applications. The first is this: granted that the role of mathematics in ordinary and scientific applications provides some
grounds for taking mathematical



truth seriously (that is, for taking a realist as opposed to an instrumentalist stance toward at least some mathematical
theories), are these the exclusive grounds, or are there others; and, if there are others, what are they and how powerful
are they? The second question—really a composite of questions—asks how much mathematics is really indispensable
for how much science? And, third, we must ask, just what does such indispensability demonstrate with regard to
mathematical objectivity and mathematical objects?

Having now perhaps piqued the reader's interest in the general subject, I must offer a disappointing apology in
advance: none of these questions will be answered definitively. At best, partial and tentative answers to the second and
third questions will emerge. As to the first, we shall be left hanging.

For the task that demands immediate attention is that of sketching how the modal-structuralist framework already
developed for pure mathematics can be extended to applied mathematics. How, in the first place, are we to represent
ordinary and scientific applied mathematical statements? What are the main assumptions that lie behind such a
representation? Having sketched the basic ideas and broached some of the main problems (in § 1), we may then turn
our attention back to the broader questions concerning indispensability. As we shall see (in § 2), there is a strong case
that modern physical theories—especially General Relativity and Quantum Mechanics—require (the possibility of)
mathematical structures so rich that even the chances of a “modal nominalism” in any reasonable sense are dim. This
case, as we shall present it, depends on a rather broad interpretation of ‘applied’ in the phrase ‘applied mathematics’:
questions of theoretical physics of a foundational character are included. But we see no rational basis for excluding
them (e.g. by drawing a sharp line between “ordinary empirical” applications and “theoretical” or even “meta-
theoretical” applications). And, it would be ironic indeed if foundations of mathematics took the stance that
foundations of physics need not be respected!

In fact, we shall further see that recent work on the implications of higher set theory raises the tantalizing prospect that
stronger and stronger abstract mathematical principles may have consequences of physical significance, undecidable in
weaker theories, suggesting that it would be futile to seek any a priori global framework for applied mathematics. (This
will be brought out in § 3.)

As we have already seen, the modal-structural treatment of pure
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mathematics invokes counterfactuals of a strict kind: all relevant conditions can be stated in the antecedents (as the
categoricity proofs show, where applicable). Thus, the notorious problems concerning what “relevant background
conditions” are to be understood as held fixed in interpreting ordinary counterfactuals (associated with the “problem
of cotenability”, cf. above, Chapter 2, § 1) did not arise in the context of pure mathematics. When we turn to applied
mathematics, however, there is a sense in which the problem returns to haunt us, as we shall soon see.

In the final sections (§§ 4 and 5), various approaches to this problem will be explored. How one reacts to it, in fact,
seems to depend on one's “realist commitments” concerning non-mathematical reality. If one's “realism” is sufficiently
strong, the problems seems to evaporate. But if the ms approach seeks to maintain a “metaphysical neutrality” on such
questions, thorny problems arise in the very formulation of the applied mathematical counterfactuals. Efforts to
overcome them raise some interesting points of comparison with recent “synthetic” approaches to physical theories
(motivated by nominalist concerns and aimed at challenging the alleged scientific indispensability of mathematics
entirely).98 As we shall see, some of the technical portions of such work (e.g. Field-style representation theorems) can
be of relevance to a ms programme, but such theorems go beyond what is required in crucial ways. And, from our
own perspective, the phenomenon of non-conservativeness of mathematically rich theories (highlighted in § 3) tends
to undermine any sweeping challenge to the indispensability of “abstract” mathematical theories.

Of necessity, we have concentrated here on problems of formulation involved in a ms treatment of applied
mathematics, and on some of the technical and philosophical questions immediately surrounding these problems.
However, the broader questions of justification of the ineliminable postulates of ms mathematics—especially the
modal-existence axioms—must not be forgotten. In this connection, applied mathematics can provide a crucial
epistemological link, much as it has been thought to provide under familiar platonist treatments. The point here is to
adapt Quinean indispensability arguments to the modal framework: rather than commitment to certain abstract objects
receiving justification via their role in scientific
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practice, it is the claims of possibility of certain types of structures that are so justified. Moreover, to the extent that
indispensability arguments can be adapted to the modal approach, their usual platonist thrust is actually undermined: a
fixed realm of abstract objects is not really shown to be indispensable; rather it is the weaker claims of possibility that
occupy such a position.

§1. The Leading Ideas
Much as in the case of pure mathematics, we may attempt to represent ordinary applied mathematical statements as
elliptical for modal conditionals of a specified form. Such conditionals spell out what would obtain were there any
suitably rich (pure) mathematical structure in addition to the actual non-mathematical objects or systems to which we
are applying mathematical concepts and theories. Here the modality of the counterfactual is a logico-mathematical one,
just as in the treatment of pure mathematics. Although we may be applying mathematics to physical objects, we are not
automatically constrained to hold physical or natural laws fixed in contemplating a purely mathematical structure in
addition for the purposes of carrying applied mathematical information. (Thus, for example, we are free to entertain
the possibility of additional objects—even physical objects—of a given type, to serve as components of a mathematical
structure. Such objects could be conceived as occupying a certain region of space-time but as not subject to certain
dynamical laws normally stated universally for objects of that type.) Just what must be held fixed is a matter to which
we shall return below.

But how, it may be asked, can an additional structure for pure mathematics (such as an ω-sequence or a complete
ordered separable continuum) be brought to bear on material objects? Imagining such a structure—whether thought
to occupy space-time or not—does no good unless we can also speak of relations between the material system in
question and items of the mathematical structure. Thus, to represent simple counting, for example, it does little good
to entertain the possibility of an ω-sequence in addition to the actual objects to be counted unless we can also speak of
correspondences between those objects and the items serving as “numbers” of the hypothetical ω-sequence.

One solution to this problem is to move immediately to models of
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set theory, that is, to entertain hypothetically models of a suitable set theory in which actual objects are taken as
urelements. Then we have the operation of set formation applied to those actual objects, and the usual apparatus of
mappings and number systems (set-theoretically construed) is available. This might be called the global approach, since, if
the set theory chosen is sufficiently rich, it can be invoked to handle virtually any present or foreseeable instance of
applied mathematics.

While there is a good deal to be said in favour of such an approach (especially concerning its intuitiveness, its power,
and its simplicity), there is also independent interest in pursuing a piecemeal approach, in which we limit the hypothetically
entertained (pure) mathematical structures to a level that is actually needed for the purposes of the application in
question. In part, such an approach is motivated by an independent interest in the second leading question posed
above (“how much mathematics for how much science”), which the piecemeal approach is forced to face. There are
also legitimate concerns over the consistency of powerful set theories, and over their “abstractness”. Do we really need
to iterate the power set operation beyond anything that we could be said to experience, beyond say the level of space-
time regions? If so, how far beyond such a level need we go?99

If we pursue the piecemeal approach, how are we to bring a hypothetically entertained mathematical structure to bear
on the material world? The most straightforward and general way is simply to continue employing second-order
formulations as we have in the treatment of pure mathematics. This allows us to speak of classes of whatever non-
mathematical objects we recognize and of relations between such objects and those of a hypothetically entertained pure
mathematical structure. In such a framework, the representation of a great deal of applied mathematics is then quite
straightforward.

To illustrate, let us consider a simple statement of numerical comparison, say, “There are more spiders than apes (and a
definite finite number of each).” (The parenthetical clause is added so that some apparatus of natural numbers is
required.) Using the second-order
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formalism of Chapters 1 and 2, with our language expanded to include the relevant non-mathematical predicates (in
this case, just ‘spider’ (‘S(x)’) and ‘ape’ (‘A(x)’), we can represent the statement by,

□∀X∀f[ω(X,f) ∝ ∃ φ ∃ ψ ∃ n ∃ m(“φ is a 1–1 correspondence between the class of all x such that S(x) and the f-
predecessors of n in X” & “ψ is a 1–1 correspondence between the class of all x such that A(x) and the f-
predecessors of m in X” & m <fn)], (3.1)

where the clauses in quotes are written out in the obvious way and where <f is the strictly-less-than relation on X
induced by f.

In ordinary language, we would read this modal conditional as a counterfactual: If X,f were any ω-sequence, there
would be . . . etc. However, there is a crucial proviso that must be understood: in entertaining an ω-sequence, it is
assumed that such a structure does not interfere in any way with the actual material situation to be described. Since we
shall have more to say about this, let us give it a name, say, the non-interference proviso.Without it, (3.1) would not express
what is intended. If we imagine, for instance, a world in which an ω-sequence were made up out of distinct apes, the
counterfactual would fail. What has gone wrong here is obviously that the wrong class of apes is being counted. One
might seek to remedy this by employing an “actuality operator” before the conditions ‘A(x)’ and ‘S(x)’, to try to
guarantee that it is the class of actual apes and that of actual spiders that are being compared.100 The problem with this,
however, is that we have still to guarantee that all the actual apes and spiders “show up” in any world hypothetically
entertained. For, remember, we are not treating relations and functions as intensions, i.e. as operating “across worlds”;
our second-order objects are treated as confined within any hypothetically entertained world. Thus, we cannot “move
back” to the actual world and have a relation φ map actual objects to non-actual “numbers”. Instead, we must stipulate
from the outset that the only possibilities we entertain in employing the ‘□’ are such as to leave the actual world entirely
intact.

Of course, in most applications of mathematics, only a portion of the actual world is in question, and in such cases it
would suffice to permit a broader interpretation of the ‘□’, allowing worlds which
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differ from the actual even in material respects so long as such differences occur only outside the region of application.
In such cases, there is no reason in principle why the atomic components of hypothetically entertained pure
mathematical structures could not themselves be taken to be material objects of the same sort as occur actually.
Moreover, in such cases, room can be allowed (literally) for further (mutually discrete) concrete objects to serve the
role of ordered k-tuples of the hypothetical mathematical objects together with whatever actual objects are recognized.
And then the second-order variables can be interpreted “nominalistically” in the manner of Chapter 1, § 6. Still, it will
be necessary to stipulate that whatever “extra” material objects are entertained for such purposes are “causally
isolated” from the region of actuality to which the mathematics in question is being applied.

Obviously there are limits to such an approach, since applied mathematics must also make room for cosmology,
indeed for any science in which the large-scale structure of space-time is at issue. In such cases, it may be necessary to
entertain “objects” as components of pure mathematical structures which are not themselves “in space-time”. The
options here are bound up with other issues concerning the “reality” of space-time, and, at this point, we wish only to
alert the reader to the question. The topic will arise again below, at which point we shall have more to say on it.

Already it should be clear that even the most elementary applied mathematics on the modal approach is intimately
bound up with conditions stipulating that at least part of (perhaps the whole of) the actual world be “held fixed”, when
reasoning about hypothetically entertained mathematical objects. So far, we have stated such conditions in rather
general, global terms, bringing in explicit reference to the actual world or the actual condition or state of (some part of)
the actual world. As terms such as “causally isolated” suggest, conditions of fixity or “non-interference”, thus phrased,
appear to embody some rather strong assumptions of “physical realism”, especially the assumption that it even makes
sense to refer to “the actual world”, or “the condition of this system of physical objects”, apart from any relativization
to a language or theory or conceptual framework, etc. This raises one of the most interesting questions that an inquiry
into applied modal mathematics uncovers: Is this apparent dependence of the cogency of applied modal mathematics
on non-trivial assumptions of “physical realism” a genuine dependence,
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or can it in principle be eliminated? And, if elimination proves to be impossible, just what conclusion should be drawn
as to the necessary commitments of the modal structural approach? We shall return to these questions below (§ 4),
after having first dealt with the relatively more tractable issues concerning the strength of suitable mathematical
frameworks.

Before proceeding, let us note a further assumption implicit in applied modal mathematics. Just as in the case of pure
mathematics, there must also be axioms of modal existence—of the possibility of structures fulfilling the conditions of
the antecedents of the counterfactuals. Without such axioms, of course, all counterfactuals with the antecedent in
question could be vacuously true, and the translation pattern would break down. Here, and in what follows, it should
be understood that the appropriate modal-existence postulate must accompany a fully explicit formalization of the
applied modal theory. (It should by now be clear how to write out such postulates, and we will not stop to do so.) Due
to the increasing uncertainties of such postulates as we move further from the realm of experience, there is a natural
motivation—on the modal approach, as on the platonist—for seeking to carry out as much applied mathematics as
possible within a minimal mathematical framework. Some aspects of this will be considered in the following sections.

Returning to illustrations, let us consider scalar magnitudes such as mass (say, non-relativistic, for simplicity). On
standard platonist treatments, such a quantity is represented as a real-valued function defined on a domain of objects,
either particles, or space-time points or regions, together with a given operationally specified unit. Suppose the worst,
that each space-time location is to be assigned a real mass (or density). On the modal-structural approach, it suffices to
entertain a single separable ordered continuum (as defined in Chapter 1, § 5), whose elements serve as “real numbers”.
These now can serve the double role of representing space-time points (via a pairing function which allows us to speak
of ordered quadruples of reals in the usual way) and of representing the values of scalar quantities. A quantity such as
mass is then a second-order object and can even be taken as a subset of “reals”, each such coding an argument and
corresponding value via the fixed pairing function. Thus, to represent a statement, ordinarily written as
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where ‘m’ is a function constant introduced as abbreviating ‘mass’, we can write (following the notation of Chapter 1,
§ 5):

(3.2)

where the clause in quotes must be spelled out as follows:

(i) F takes on (within limits of experimental accuracy) all actually measured values experimentally determined as
values-of-mass;

(ii) F agrees (within experimental limits) with all theoretically predicted values-of-mass under real world conditions
(the theory being Newtonian mechanics).

If our original singular statement is understood as a low-level empirical one—only loosely tied to a theory, as expressed
in clause (ii)—, these conditions are probably adequate. However, if the statement is understood as part of an
application of a whole theory—as it would be in any sophisticated application of mathematics—, then a further
condition must be added to the effect that the mass-representing (mathematical) object satisfies the laws of the theory,
or is part of a model of those laws. (Whether an intrinsic second-order statement of this over an RA2 structure can be
given, or whether ascent to richer structures is required, will depend on the detailed formulation of the theory in
question.) Given such a condition, the utility of normal mathematical applications in permitting inferences as to further
behaviour of the system in question will be accounted for, much as it is on familiar platonist (model-theoretic)
treatments.

Intuitively, (3.2) can be read, “Were there any separable ordered continuum (non-interfering with the actual material
world), there would be a mass-representing function assigning the value r (of the continuum) to point x”, where ‘mass-
representing’ is spelled out as suggested. Now it should be noted that the reference in these clauses to “measured
values-of-mass” and “predicted values-of-mass” must be interpreted in terms of operational procedures and symbolic
calculations. Since these conditions enter into the hypothetical conditionals designed to replace apparent reference to
mathematical objects, clearly ‘values’ cannot be taken as referring to mathematical objects. (Hence the hyphens in
‘values-of-mass’.) Rather, ‘measured values’ should be understood in terms of concrete “pointer readings”,
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generally associated with certain symbols for real numbers. (More realistically, they would be associated with symbols
for rational numbers; and, in some instances, some sequence of successively more and more accurate measurements
may be specified for generating a real number.) Calculations may be involved as well (as they typically are in any
sophisticated measurement procedure), and these generate number-symbols as well (e.g. decimal or binary
representations, etc.). These then take on a definite meaning when a hypothetical “structure for the reals”) is
entertained in a conditional such as (3.2). (Together with any separable ordered continuum there is an associated
correspondence between notations used in practice and the “points” of the continuum. This is induced by a
representation of rationals within the continuum (cf. Chapter 1, § 5).)

Nor is this appeal to operational procedures and correspondences between notations and various ways of identifying
real numbers and so forth a peculiarity of a modal-structural treatment. Standard platonist treatments of applied
mathematics implicitly must invoke quite similar machinery, and must recognize a “relativity of reference” to “ways of
taking” natural numbers, rational numbers, real numbers, etc. For the most common form of platonism, all such
objects are set-theoretic constructions, and, of course, an infinite variety of these can serve the purposes of
mathematical practice equally well. Within set theory, ordinary reference to a real number, say, is relative to a construal
of the natural numbers as sets, to a pairing function, to constructions of negative integers and rationals, and to
constructions of reals (e.g. via Dedekind cuts, or Cauchy sequences, etc.). The modal structuralist merely “does all this
relativity one better” in dispensing with any actual mathematical objects at all in terms of which “reference to
mathematical objects” is understood.

In any particular case, whether a hypothetically entertained mathematical object represents a physical magnitude is to
some extent a vague matter, due to the need to take into account the approximate nature of measurement procedures
in most scientific applications. This is, of course, reflected in the references to limits of experimental accuracy in the
above clauses. This means that, in general, there will be multiple, extensionally divergent mathematical objects
(functions) that qualify equally well as representations of a magnitude. Whether, for instance, to represent the path of
an object through space as a continuous function of time or as, say, a piecewise continuous one, or even a highly
discontinuous one, or whether even to
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represent time as a continuum in the first place, are matters under-determined by any direct experimental procedures.
Thus, choices must be made on other grounds, and probably the most decisive grounds in many cases are
considerations of simplicity and convenience—considerations such as that a well-developed mathematical theory of
continuous functions exists enabling us to perform vital calculations, and that, on such practical grounds, we seek a
theory couched in mathematical terms that we can handle. (As Chihara [1973] brings out, it is just this slack that raises
the prospects of constructivist substitutes for classical applied mathematics.) This, in turn, raises thorny questions
concerning the conventionality of our scientific theories, questions that certainly cannot be resolved here. In my own
view, it seems obvious that any sophisticated application of mathematics to the material world involves a significant
degree of idealization, which implies a significant degree of conventional choice based on pragmatic considerations. At
the same time, this by no means undermines the “objectivity” of our scientific theories, provided that that “objectivity”
is properly understood. While, in general, we cannot say that there are such and such magnitudes in nature represented
precisely within a unique mathematized theory, we still may be able to say that nature is such as to permit representation
within a range of mathematical models, and that this range includes such and such mathematically precise description.
Perhaps this is all the “objectivity” we ever require. In any case, without pursuing this further here, suffice it to say that
any thorough account of applied mathematics must at some stage come to grips with these questions. They are by no
means peculiar to a structuralist treatment.

With these essentials of the approach in mind, let us now turn to the question of how rich, mathematically, our
hypothetical structures need to be in order to support applications of our best modern physical theories.

§2. Carrying the Mathematics of Modern Physics: RA2 as a Frame-
work
As has already been indicated, the RA2 framework is known to be a very powerful theory with regard to the
requirements of applied
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mathematics.101 Moreover, as will be brought out below, there is a sense in which it defines a “limit of nominalism”, a
limit to the mathematical richness of what can be conceived of as “concrete structures”. Thus, there are special reasons
for focusing on the representing powers of RA2. Can it really do justice to modern physical theories, especially General
Relativity and Quantum Mechanics? A full-scale treatment of this would take us too far afield; but a brief glimpse will
suffice to call attention to some of the fascinating issues that arise in this area.

In the case of General Relativity, matters are complicated by the fact that the theory is standardly presented in two very
different ways. On the one hand, there is the “extrinsic” presentation—familiar to physicists—in which everything is
carried out explicitly in terms of coordinate systems and transformations among them; on the other hand there is the
“intrinsic” or “invariant” presentation in terms of abstract geometric objects making no reference to coordinate
systems.102 Now, it is the intrinsic presentation that is mathematically more elegant and, moreover, can be argued to
provide a clearer idea of the content of the theory and of such matters as how it compares with other space-time
theories (e.g. Newtonian gravitation). However, ordinary physical applications make use of coordinate systems, so that
a representation of the extrinsic presentation may be regarded as adequate for most purposes.

So long as we remain with the extrinsic presentation, there is little doubt that the system RA2 is powerful enough to
express and derive what is normally required. (That is, say, standard texts could be systematically translated into RA2

and all results derived.) Geometric objects—vectors, tensors, etc.—are treated in terms of their components in a
coordinate system and the rules for transforming them to other admissible coordinate systems. Coordinate systems
can be viewed as 1–1 maps from regions of space-time to ℝ4; and the components of a geometric object are given by
suitably continuous real-valued functions. (For example, the components of a tangent
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vector field Tσ to curve σ (σ = σ(u) being a smooth map from an interval of ℝ to space-time), relative to coordinates
〈xi〉 consist in four functions, , i = 0, 1, 2, 3.) Any such function can generally be coded by a single real, being determined by
its behaviour on a countable subdomain.103 (Think of the simplest case of a continuous function from ℝ to ℝ: a real
can code its behaviour at rational arguments. Even countably many discontinuities can be allowed. In the case of, say,
tensor fields on (a region of) space-time, a countable subdomain of ℝ4, as described in a given coordinate system,
suffices to determine the field. So long as we remain within a single coordinate system, it makes no difference whether
we regard the field as defined on (part of) space-time or on (part of) ℝ4 itself, via the coordinate functions. In an
invariant, coordinate-free presentation, however, the distinction becomes significant, and in some cases leads to greater
abstractness, since we then must in effect keep track of all coordinate systems at once.) The transformations
determining, say, a general tensor operate on finitely many component functions, hence, by coding, on finitely many
reals, and yield reals coding transformed functions as values, clearly within RA2. And, as just suggested, a (suitably
continuous) tensor field can be described, relative to a coordinate system, by a function which gives the component
functions as values on a countable dense subdomain of ℝ4. Hence, a tensor field can be coded as a single real number!
And all the usual operations on such fields, including covariant differentiation, can be introduced as functions from
reals to reals, within RA2 (which, recall, includes the full second-order comprehension scheme). This much should at
least make plausible the claim that all the mathematics actually required in any ordinary physical application of General
Relativity can be carried out without transcending third-order number theory (equivalently RA2). (And, by making
sufficient reliance on “approximating functions”, a great deal can probably be carried out in a predicative subsystem of
analysis, i.e. of PA2.)104

For ordinary applications, the story could end here. However, not all applications need be “ordinary”. This forces us to
raise a difficult
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question: is the intrinsic formulation really dispensable in favour of the extrinsic for all scientific purposes? Even if all
the usual sorts of applications involving specific calculations can be carried out in RA2 or in some weaker system, this
does not settle the matter, for there are questions of theoretical importance that go beyond such applications, but
which a mathematical framework ought to be capable of representing if it is to do justice to the “scientific enterprise”.
As a case in point, relevant in the present context, consider the whole issue of “relativity principles” and requirements
of “general covariance”, thought by many (including Einstein) to distinguish General Relativity from flat space-time
theories. Remaining at the level of coordinate-based formulations, one can readily be misled into thinking that General
Relativity differs from flat space-time theories in satisfying such a principle, since one considers transformations
among “general curvilinear coordinates” rather than a privileged class of “inertial systems”. However, if one considers
intrinsic formulations, it becomes evident that this is mistaken, and that the demand of “general covariance”—that
dynamical laws retain “their form” under arbitrary transformations among coordinate systems—really comes to
nothing more than the demand that those laws be given an intrinsic coordinate-independent formulation, something
that is possible for flat as well as curved space-time theories.105 In fact, if one looks at space-time theories model
theoretically, one sees that extrinsic formulations—in terms of equations involving coordinates—pick out a well-
defined class of models only relative to a choice of coordinates. In a different system of coordinates, the same
differential equations (e.g. one looking like a geodesic equation) will pick out a different class of geometric objects
(e.g. tangent vector fields), hence a different class of models.106 Intrinsic formulations automatically overcome such
problems.

Now, if we understand “applied mathematics” broadly enough to
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in which D is an affine connection (covariant derivative operator) and Tσ is a tangent vector field (to curve σ). If the manifold is flat, in an inertial coordinate system <xi >, this
equation takes the form,

but in a non-inertial coordinate system, <yi >, the same invariant equation takes on the form,

where the “correction terms” have the form

in which the a ′ are components of the tangent vector expressed in the non-inertial system.



include the theoretical insight that such comparisons yield, whatever mathematics is required in the abstract intrinsic
formulation cannot readily be dismissed as dispensable. Granted, this is an unusually broad interpretation of “applied
mathematics”. But the theoretical understanding in question is at the heart of the sciences, and, if a “dispensability
argument” (to the effect that mathematical structures richer than X are not “needed” to “do natural science”) is to
carry philosophical force, such considerations must be taken into account.

Thus, we cannot avoid considering the problem of representing the mathematics of the intrinsic presentation. While
the matter cannot be definitively settled here, the situation seems to be this: the abstract theory of manifolds transcends
the RA2 framework, but essentially only at the earliest stages, namely in the abstract characterization of manifolds
themselves. Once given a manifold, it appears that, in fact, with sufficient reliance on coding devices, the system RA2 is
capable of representing the rest of the mathematical superstructure of abstract differential geometry employed in the
intrinsic presentation of General Relativity. Moreover, a great many particular manifolds actually encountered in space-
time physics can be introduced explicitly in RA2, making use of second-order logic.

The intrinsic formulation begins with the idea that, at least locally, space-time has the structure of an 4-dimensional
smooth (C∞) manifold. An n-dimensional C∞ manifold consists in an arbitrary non-empty set M together with a
maximal system of charts—1–1 maps from subsets U of M to open sets of ℝn—suitably interrelated so as to induce
the “local smoothness structure” of Euclidean n-space on M.107 More precisely, an n-chart is a pair (U, f) where U ⊆ M
and f is a 1–1 map from U onto an open set of ℝn; an n-subatlas on M is a family of n-charts such that (1) they cover M,
i.e. the union of the domains of the charts is M; (2) for any two distinct points p, q of M
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there are charts (U1, f ), (U2, g) with p in U1, q in U2 and U1 Ø U2 = ø (Hausdorff property); and (3) any two charts (U1,
f), (U2, g) of the family are compatible, meaning that f°g-1 and g°f-1 are smooth (C∞), whenever defined on open domains.
Finally, an n-atlas is obtained from an n-subatlas by adding all n-charts compatible with all those of the n-subatlas. M
together with an n-atlas on M is an n-dimensional C∞ manifold.

Note that, while we could perfectly well take M to be ℝ, i.e. to consist of points “labelled as real numbers” for the
purposes of a coding in a logical formalism (while still abstracting from any undefined metric or topological structure),
and while we can always code the composite maps f°g-1, etc. as reals (being determined by their behaviour on a
countable dense subset of ℝn), we have no means of coding the f of the charts as reals. Charts are second-order RA2

objects. This makes maximal families of charts (atlases) essentially third-order over the reals, which is why the general
notion of manifold transcends RA2.

Moreover, when we develop calculus on manifolds, it appears that we are beyond RA2 once and for all, for, once we
leave coordinates behind, the very notion of a vector becomes apparently too abstract: A vector is standardly taken as a
derivative operator (“derivation”), i.e. as a map γ from all real-valued smooth functions about a manifold point m to
the reals, meeting the requirements of linearity (γ(f + g) = γ(f) + γ(g), γ(af) = ay(f)) and the Leibnizian property (γ(fg) =
γ(f)g(m) + f(m)γ(g)). As such vectors are third-order objects over the reals, beyond RA2, and then tensors and more
general derivative operators are at least as abstract. However, without appealing to coordinates, we can equivalently
take vectors to be tangent vectors to smooth curves σ (from a connected interval I of ℝ to the manifold domain M).
Given a smooth curve σ and s0 ∈ I with σ(s0) = p, a tangent vector σ|p to σ at p can be introduced via

for all smooth real-valued functions f on a neighbourhood of p. (N.B. The notions of smoothness for maps from ℝ to
M or M out to ℝ are introduced via the smoothness of composite maps from ℝ to ℝn or from ℝn to ℝ given by the
chart functions and their inverses.) Now, f°σ is a smooth function from ℝ to ℝ, and thus can be coded by a real.
Moreover, the derivative operator on the right is continuous so
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it, too, can be coded by a real. Thus, abstract vectors are brought down to the level of first-order RA2 objects. (The
proof that every original abstract vector can be taken as a tangent vector to a smooth curve in M is standard, but,
unfortunately for the RA2 reductionist, it cannot be stated in RA2.)

But now, tangent spaces, dual spaces, tensors, tensor fields, covariant derivative operators—in sum, all the further
apparatus needed to carry out the intrinsic formulation of General Relativity—come within the scope of RA2. The
tangent space Vm at a point m of the manifold is the set of all tangent vectors at m, and is a vector space
(of dimension n) over the reals. It can be taken as a set of reals via the coding of vectors just indicated. The dual space
Vm

* of linear real-valued maps on Vm is then also identifiable as a set of reals: each φ in Vm
* is determined, by linearity, by

its action on finitely many basis vectors in Vm (which can be chosen arbitrarily from any coordinate system about m);
hence φ can be coded by a real. Next, a general tensor—as a multilinear map T from finite cross-products of the form
Vm × Vm × . . . × Vm × Vm

* × Vm
* × . . . × Vm

* into R—is determined by its action on basis vectors in the component
spaces making up the domain of T; hence T itself can be coded as a single real. Thus, smooth vector and tensor
fields—maps assigning vectors or tensors, respectively, to points of open subsets of M—come within the purview of
RA2, as sets of reals. (Here we make use of real labels of the points of M. Then a field can be coded as a set of ordered
pairs of reals, hence as a set of reals.)

With one more step we have essentially all that is needed: we must have a way of talking about (quantifying over)
covariant derivative operators, or “connections” on M. Such a connection D is introduced as an operator assigning to
C∞ fields X and Y, with a domain A, a C∞ field DxY with domain A, obeying four conditions (ensuring appropriate
linearity and Leibnizian behaviour). Prima facie, such operators are third order over the reals, and beyond RA2 by one
level. However, the conditions on D imply that it is uniquely determined in any open domain by its action Deiej on a
fixed finite base field e1 . . . en of independent C∞ vectors.108 Since the ei (as fields) are
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108 See Hicks [1971], p. 57. The four conditions on D are(1)

Dx(Y + Z) = DxY + DxZ

(2) D(x + y)Z = DxZ + DyZ

(3) D(fx)Y = fDxY

(4) Dx(fY) = (Xf) Y + fDxY.

From these, it follows that if Xm (X at point m of the manifold) = Σn
1ai(m)(ei)m and Y = Σn

1bj ej on the domain of the base field e1, . . . , en (intersected with the domain of Y), then

Thus, DxY is fully determined by the Deiej together with the coefficients of X in the given base, the coefficients of Y, and the Xmbj (the directional derivatives of the Y
components alongXm). In sum, the action of D on the base fields allows computation of DxY in terms of the behaviour of Y on a curve that fits X.Incidentally, it should be
noted that, in appealing to a basis for the purpose of coding derivative operators or other objects, we are not thereby abandoning the invariant formulation. The coded
objects are still invariant objects and they appear as such in the theoretical equations governing them, that is, those equations are stated independent of any coordinate
system.



coded as sets of reals, this means that, on the domain of these fields, D can be represented as a set of reals coding a
three-place relation (that is, ei × ej ×Deiej). Now, if one assumes (as one usually does in the context of General Relativity)
that the manifold M is separable—i.e. that it can be covered by countably many chart domains—then countably many
such three-place relations, codable as a single such, suffice to represent D throughout the manifold M. In this manner,
even quantification over connections is brought within the scope of RA2.

Still, remarkable as all this may be, we are not able to state—much less prove—in RA2 fundamental general theorems
on manifolds, such as the theorem that there exists a unique Riemannian connection on a (semi-) Riemannian
manifold, or the theorem that a metric tensor gab on a manifold determines a unique general derivative operator
compatible with this metric. For recall that the general notion of manifold is not available in RA2. The best we can do is
introduce particular manifolds—e.g. the manifold ℝn, or the n-sphere manifold, etc.—by explicitly axiomatizing a
system of charts. (For instance, in second-order logic, we can write down an explicit definition of the predicate “is a
chart of the ℝn manifold atlas”: we simply specify the identity functions on open sets of ℝn (as a point set with the usual
topology), which gives a C∞ subatlas; then we specify that any chart compatible with all those of the subatlas are “charts
of the ℝn manifold atlas”.) Again, for ordinary applications, such procedures are probably adequate. But without
fundamental theorems on differentiable manifolds of the sort mentioned, we can hardly claim to do justice to the
intrinsic viewpoint.
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Our discussion, thus far, has presupposed, for the sake of argument, that various coding devices are legitimate in
reducing mathematical machinery to low levels of abstraction over the natural numbers. However, it should be
recognized that delicate problems of justification arise in connection with such devices. These pertain to the status of
the mathematical knowledge employed in the introduction of a coding in the first place, e.g. when one says that an
abstract operator is uniquely determined by its action on finitely many or countably many arguments of a certain sort,
and therefore can be represented by, say, a real number or a set of reals, etc. In what sense of “could” could a
mathematical physicist carry out all relevant derivations and calculations within the coding framework, without ever
stepping outside in order to be reminded of “what on earth is really going on”? Since our non-reductionist conclusions
can be based on the more decisive case that, even with coding, relevant mathematics goes beyond even the full power
of RA2, we have preferred to develop that case without examining the delicate epistemic problems raised by appeals to
coding. But, we believe, those problems are genuine and deserve further investigation.

When we come to Quantum Mechanics, the situation is at least as problematic as in the case of General Relativity. In
many ordinary applications, a great deal of the mathematics can certainly be carried out within the framework of RA2,
but once we consider more theoretical and foundational matters, we seem to require more abstract structures. In
standard cases, quantum states can be represented as square-integrable complex-valued functions on an underlying real
space, and moreover a countable collection of continuous functions serves as a basis in the Hilbert space of such
functions.109 Thus, arbitrary quantum states in such a space can be represented by a countable sequence of basis
functions, each codable as a real, hence by a real. Linear operators on such functions are then, prima facie, at the level
of second order RA2 variables, as are the (closed) subspaces of the Hilbert space (identifiable with the projection
operators). If we now consider probability measures—countably disjointly additive [0–1]-valued functionals on the
subspaces of the Hilbert space representing the system (where, here “disjointness” of subspaces means they are
orthogonal)—we have, prima facie, climbed past
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RA2. However, given separability of the Hilbert space,110 each subspace S can itself be identified with a countable
collection fi = C of basis vectors such that C spans S and C is dense in S. And, given that each of the fi is codable as a
real, so is each subspace. And then, any probability measure can be represented as a function from reals to reals, i.e. at
the second order in RA2.

In fact, due to an important theorem of Gleason [1957], all measures on the subspaces of a Hilbert space of dimension
≥ 3 are given by the quantum mechanical algorithm, that is, they are induced by the pure and mixed quantum states
together with the usual rules for calculating probabilities. Hence, again under the above assumptions (separability of
the Hilbert space and real codability of basis functions), the measures themselves can be taken as reals (i.e. coding the
density matrices which represent the pure and mixed states on the usual presentation of the theory). Thus, reasoning
involving probability measures in the vast preponderance of ordinary applications of quantum mechanics can be
carried out in RA2, and probably even in theories considerably weaker than RA2.

However, in order to arrive at this conclusion, we assumed that the Hilbert space representing the physical system be
separable. And, furthermore, to take advantage of Gleason's theorem (permitting the representation of measures as
reals rather than sets of reals), we implicitly made use of enough mathematics to prove Gleason's theorem. In fact, the
proof of Gleason's theorem serves as a nice illustration of the potential physical significance of mathematics that
transcends RA2.

As a theorem about probability measures on the subspaces of separable Hilbert spaces (of dimension ≥ 3), Gleason's
theorem can surely be proved in RA2. All the hard work in the proof takes place in Euclidean three-dimensional space;
moreover, every infinite dimensional separable Hilbert space is isomorphic to ℓ2, the space of infinite sequences (x1, x2 .
. . , xk, . . . ) of complex numbers such that
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where the norm [[is defined by the scalar product on H via

For further details on the mathematical formalism of quantum mechanics, see e.g. Jauch [1968 ].



Σk
∞ = 1 |xk|2 is finite, with the inner product of (ak) and (bk) given by Σk

∞ = 1 ak*bk. (This fact can be proved in RA2

itself, making use of an intrinsic second-order statement of what it is to be an infinite dimensional separable Hilbert
space, on exactly the plan of the second-order logical description of mathematical structures we have been using
throughout. Second-order logic suffices here, taking vectors in a Hilbert space to be first-order objects.) And
everything we need to say about measures on the subspaces of ℓ2 can be said within RA2 along the lines already
indicated.

However, what happens if the assumption of separability is dropped? The above representation via coding then clearly
breaks down. Yet, there is a generalization of Gleason's theorem, proved in an abstract setting, which applies to non-
separable as well as separable Hilbert spaces.111 This theorem proves the existence of a unique function w(p, b) defined
on the atoms p and propositions b of an arbitrary quantum proposition system (represented by the lattice & Sscr;(H) of
closed subspaces of an arbitrary Hilbert space of dimension ≥ 3), where w(p,b) satisfies:

(i) 0 ≤ w(p,b) ≤ 1,
(ii) p < b iff w(p,b) = 1,
(iii) b ⊥ c ⇒ w(p,b) + w(p,c) = w(p,b ∨ c).

Since p is an atom, it can be represented by a (normalized) vector f in H. It then can be proved that the unique function
satisfying these conditions is given by

(*)

where Pb is the projection operator corresponding to the proposition b, and φ is the definite bilinear form (inner
product) on the Hilbert space H. (Later, when one specializes to separable Hilbert spaces, the usual representation of
w(p,b) in terms of the trace and a density matrix is recovered.)

Now, the point is that this generalized version of Gleason's
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111 See Piron [1976 ], pp. 73–81. A prelude to this is an elaborate representation theorem to the effect that an arbitrary quantum proposition system can be represented by a
family of lattices of closed linear varieties (subspaces) over abstract Hilbert spaces, which need not be separable. What would serve as a minimal framework for proving this
representation? Since its physical significance is unclear, we have preferred to concentrate on Gleason's theorem, some of whose physical content is easier to specify.
Incidentally, this source provides a quite readable proof of the extremal case of Gleason's theorem.



theorem has an indirect physical significance. As an important corollary to Gleason's theorem, there can be no
dispersion-free measures on the subspaces of Hilbert space, as sought by (non-contextual) hidden-variables
programmes.112 Now this is already implicit in the generalized representation (*) of w(p, b) above (since, for any p, b can
be varied so that w(p, b) takes on values strictly between 0 and 1). If a restriction to separable Hilbert spaces is built into
the very statement of Gleason's theorem—a statement that one succeeds in proving in a restricted framework such as
RA2 or some weaker theory—it might appear that hidden variables could be reinstated by complicating the Hilbert
space (i.e. enlarging its dimension, in this case). (The standard examples of Schrödinger wave mechanics could then
perhaps be viewed as simplifying approximations.) Thus, once again, if mathematics of importance in understanding
the physical theory is included within “applied mathematics”, we find ourselves moving to rather abstract settings,
beyond the reaches of RA2.

But why, it may be asked, should one dwell on RA2? Is it of anything more than purely technical interest that modern
physics at certain junctures takes us past this level? Yes, for there are implications concerning the “nature of the
objects” that mathematical physics must entertain, even if only hypothetically. So long as we remain at or below the
level of RA2, models of our mathematical theories can be conceived as concocted out of objects that qualify as
“concrete” in the sense of “occurring in, or part of, physical space or space-time”, assuming, of course, that we
conceive of physical space and space-time as continuous, as we generally do. Any connected open interval of such a
space can serve as the domain of a model of RA2, i.e. its points serve as the ground-level objects of the mathematical
theory. And the second-order monadic quantifiers can be understood as
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112 A non-contextual hidden-variables theory can be understood as demanding dispersion-free measures on the subspaces of Hilbert space, i.e. measures representing states
which assign probability either 0 or 1 to every statement of the form “quantum magnitude A (pertaining to the system represented by the given Hilbert space) has a value in
Borel set S”. Such a hidden-variables programme is called non-contextual because it treats the quantum magnitudes (represented by linear Hermitian operators on the
Hilbert space) as they stand, without relativizing them to experimental context (or to maximal compatible sets of operators, etc.). It is an immediate corollary to Gleason's
theorem that, if the Hilbert space has dimension ≥3, there can be no dispersion-free measures (as quantum states always exhibit dispersion for some magnitudes, as they
respect the Heisenberg uncertainty relations). For further information on the topic of hidden variables and no-hidden-variables proofs, see e.g. Belinfante [1973 ], Clauser
and Shimony [1978 ], and references cited therein.



ranging over subregions of the domain. As noted above (Chapter 1, § 6), this remains within the spirit of “nominalism”
in the quasiformal sense of Goodman [1977], Field [1980], and others. Moreover, invoking coding devices, one can
also accommodate second-order polyadic quantifiers (as ranging over sums of atoms—points—coding k-tuples of
first-order objects). Even if we do not countenance space-time points or regions as actual—even if we eschew
“substantivalism” in one sense—we may with some plausibility claim to understand what it means to entertain such
objects hypothetically, and this is all that is required for mathematics. Thus, if all the mathematics needed for physics
could be represented at the level of RA2, a kind of nominalism could probably be sustained. If space-time
substantivalism (in the above sense) is upheld, the nominalism could be framed without the modality of mathematical
possibility; if not, at least there would be a case for this version of “modal nominalism”. (Of course, one need not insist
that such “nominalist substitutes” for ordinary mathematics be employed in actual practice; the claim, rather, would be
that, in principle, the limited means are all that are really needed, so that practice transcending those means need only
be justified on pragmatic grounds, i.e. the transcendent mathematics could be treated instrumentally.)

However, if, in fact, as it presently appears, RA2 is not adequate after all, then even modal nominalism in this sense is
doomed.113 It seems likely that structures for even richer theories need to be entertained, and with these we will have
transcended what can even be conceived as part of space-time as we understand it. Note, moreover,
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113 There is still the possibility that physical theories can be “nominalized” within a purely relational (“synthetic”) space-time framework employing the methods of Field [1980
]. We shall have more to say about this below (§ 4). But note here that Field worked out a single example—Newtonian gravitation—and, as we noted above, in this case,
space-time points and regions suffice for representing the mathematics of the theory. In fact, as our remarks above imply, it is not even necessary to introduce a purely
relational space-time version of the theory; one can reinterpret the mathematics directly via coding. And then one bypasses the sort of representation theorem that Field
highlighted. (The use of such a theorem confronts technical difficulties, to be reviewed below, § 4.) Moreover, one respects the mathematics and need not adopt an
instrumentalist stance. But—more important in the present context—there seem to be serious obstacles in the way of Field's programme as a strategy for nominalizing
modern physical theories, especially quantum mechanics, in which the domains of the models are already highly abstract, and which do not lend themselves readily to a
space-time reformulation. (In this connection, see Malament [1982 ].) Whether the programme can be made to work even for non-flat space-time theories, e.g. General
Relativity, is, I believe, an open question.



that imagining higher-dimensional physical spaces,114 coherent as this may be, does not touch the problem unless the
cardinality of the dimensions is itself uncountably infinite (!), assuming the spaces (as domains of points, apart from
further structure) are obtainable from the continuum by taking Cartesian products. (This is what one usually
understands by “higher dimensional space”.) Where c is the cardinality of the continuum, c × c = c, as does c × c × c,
etc., as does c × c × . . . × c × . . . , where the iteration is countably infinite. (In ZFC one proves this:

.) But the cardinality of the next full-level past RA2, i.e. of the power set of ,
is not approached by the totality of second-order objects of such product spaces, which is, of course, still of cardinality
2c. At any rate, the spaces it is necessary to entertain just to make enough distinctions—once we ascend beyond
RA2—bear little relation to the spaces of experience. We can hardly call such a framework “nominalistic” (unless,
perhaps, we allow infinite stretching of words without change of meaning!).

Does this mean that the modal approach collapses into set theory after all! No, that by no means follows. Structures
beyond RA2 may not qualify as nominalistic, but we can still entertain such structures hypothetically, dropping any
claim to “grasp them” by means of “geometric intuitions”. Moreover, we may still adhere to the structuralist insight
that the identity of the objects of such structures is of no interest to mathematics. We may still reason about such
structures without benefit of any assumption as to “the nature” of the objects. Instead of “modal nominalism”, then,
perhaps we should speak of “modal neutralism”. We retain, of our ordinary notion of object, only what is necessary for
mathematical reasoning (pure and applied). In pure mathematical reasoning, it is necessary to assume only logical
distinctness of the objects (i.e., distinctness in the sense of ≠) and the structural relations spelled out in axioms (which
includes collectability and relatability expressed in second order comprehension axioms). In applied mathematical
reasoning, it is, as we have already seen, also necessary to invoke an assumption of causal inertness or independence of
the material world (usually just part, but sometime all, of it). Just what is involved here will be taken up below, after we
have considered the matter of global frameworks.

MATHEMATICS AND PHYSICAL REALITY 117

114 As was suggested in Putnam [1967 ].



§3. Global Solutions
On this approach, one seeks a framework for applied mathematics that is so rich that we can be confident in advance
that no physics—past, present, or future—would require a yet richer framework. In some sense, one would also like
such a framework to be minimal. But here one must be careful. Suppose it turns out that an optimal physics
(supposing just for argument's sake that there is such a thing) for the world we occupy requires exactly 37 applications
of the power set operation past the first infinite level (i.e. the mathematics of the theory could be formalized in 38th-
order number theory). A reasonable response would be, “So what?” Does this in any way cast doubt on mathematics
that can be formalized only at the level of 39th-order number theory? The cut-off seems arbitrary on two counts: first,
no new fundamental mathematical idea is involved in simply iterating the power set operation one more time. Unlike
the leap from RA2 to higher levels, no genuine matter of principle is involved. And second, even if 39th-order number
theory is dispensable in carrying out the optimal physics of this world, this is of little philosophical interest, since it is
too easy to imagine that the physical world might have been slightly more complex, in which case 39th-order number
theory would have been “indispensable”. If “dispensability” of higher-order mathematics is to have any force at all, it
must not be of the character of a “lucky accident”! The force in question, I take it, is to persuade us that a formalist or
instrumentalist attitude toward the higher levels is tenable, that one need not conceive of the sentence pertaining to
such levels as true or false. What I am suggesting is that the “need” here must not be interpreted too narrowly, on pain
of trivializing the claim of dispensability.

It may be that these two considerations really boil down to one, namely to the first one. If no new mathematical
principle is at stake—if, say, one is entertaining structures obtained simply by repeating a given operation one more
time, and this does not involve fundamentally different sorts of objects (as the leap beyond RA2 arguably does)—then
suddenly adopting an instrumentalist stance will seem arbitrary. Since we are invoking nothing essentially new, we may
claim more readily to conceive that a more complex physics reigned.

In any case, it would be futile to seek a precise characterization of “essentially new” mathematical principles. The best
we can hope to

118 MATHEMATICS AND PHYSICAL REALITY



do is find particular examples which might then serve in defining a minimally adequate framework for applied
mathematics.

A natural suggestion here would be minimal full models of Zermelo set theory, with urelements. Apart from the
urelements, these are of the form Rω × 2, i.e. the structure that results from arbitrary finite iterations of the power set
operation beyond level ω. (If we have infinitely many urelements, we could simply allow finite iterations of power set
above the urelements themselves. But we wish to make no such assumption. We may take the first infinite level to be
independently motivated, say, along the lines of Chapter 1, § 2.) But, in such models, only one limit level is recognized.
A “new mathematical principle” that would generate further limit levels (without end) is, of course, Replacement. But,
for applied mathematical purposes, the claim would be that this is unnecessary.

There is no difficulty in characterizing the relevant sorts of structures in the second-order logical framework we have
been employing. One writes the Zermelo axioms in second-order form, i.e. Aussonderung is written as,

(Auss)

To the Zermelo axioms, one then adds as a further axiom the statement,

“There is just one limit ordinal”, (R)

so that the height of any model is ω × 2 (as it would be standardly described in set theory). (‘R’ is for ‘restriction’.) Call
the resulting finite list of axioms Z+. Then applied mathematical statements can generally be given the form,

(3.3)

where ‘U’ stands for the statement that certain non-mathematical objects of interest are included in the urelement basis
of the structure, and where ‘A’ stands for a statement of application describing what would obtain concerning relations
between the urelements and items of X relevant to the particular theory being applied.

There are a number of advantages to this global approach. First, (3.3) gives a uniform pattern that works
independently of the particular applied theory. Second, the theory Z+ seems tailor-made for applications typically
encountered in mathematical physics, in which
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one begins at some infinite level (such as the reals or the complexes) and then freely moves up to higher-type objects,
but always by a finite number of steps. Thus, the mathematical constructions actually encountered can be taken over
intact; one need not resort to special coding procedures or other substitutes, and one then bypasses thorny questions
of justifying such devices. (As was asked at the end of § 2, when a coding is used to reduce the “level of
indispensability”, in what sense of “could” is one claiming that the coded mathematics could be used for all the
purposes of the uncoded?) Third, one now can express statements about arbitrary “sets” of urelements. One has
available the collecting operation of any model of Z+ and is not confined to instances of second-order logical
comprehension. Thus, we can represent directly the statement, for example, that every collection of urelements is at
most countably infinite (if we wish), or that the maximum distance between urelements of any collection is finite, etc.
The primary disadvantage would seem to be that, with (3.3), we give up hope of even modal “nominalism” in the sense
discussed in § 2. Instead, we have a modal neutralism, as already suggested. But, very likely, this is the best we can
achieve within a realist, non-constructive framework anyway.

An important question, however, may be raised regarding (3.3) from the opposite end: granted that as much
mathematics as can be formulated within Z+ is to be included in a framework for applied mathematics, is this really
enough? Might we not require, for example, the full power of ZF, or ZFC, or even ZFC + large cardinal axioms? Just
because we haven't encountered the need for such stronger axioms yet doesn't mean that we won't, much less that we
couldn't (in some suitable sense of “natural possibility”). The most that can be said for (3.3) is that it is adequate for
known and foreseeable applications, but that defines no principled demarcation. In particular it should by no means be
inferred that mathematical principles beyond Z+ are generally dispensable from a scientific standpoint and should
therefore be viewed in purely formalist terms.

Now, it may seem on the face of it outlandish that large cardinal axioms, or even the Axiom of Replacement, should
ever be needed in scientific applications. However, remarkable recent investigations of Harvey Friedman's115 suggest
that the idea is not so outlandish after all.
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Since Gödel's incompleteness theorems, it has been known that mathematical theories incorporating strong existence
axioms can have as deductive consequences sentences frameable in a lower-level mathematical language (e.g. the lowest
level usually considered, that of the natural numbers) which are undecidable at that level (i.e. in a given theory
appropriate to that level, say, PA1). Thus, for example, if PA1 is consistent, the number-theoretic assertion of its own
consistency, Con(PA1), is undecidable in PA1, but in any set theory T in which one can prove the existence of a model
of the natural numbers one can also deduce Con(PA1). In general, systems involving objects of higher type have
consequences “lower down” which may be new, that is, not demonstrable (or refutable) in the natural formalism of the
lower level. Of course, one can always “fix” the lower-level theory by adding the desired consequence as an axiom, but
(a) new undecidables will emerge, decidable at the richer level, and (b) such patched-up theories may be just that, ad hoc
extensions not founded on any intuitively reasonable principles.

Because of this phenomenon of non-conservativeness116 of richer mathematical theories with respect to lower-level
theories, there arises the prospect of justifying the richer theories indirectly in virtue of their power to decide questions
at the lower (more “observational”) level that otherwise would remain undecided (except, perhaps, in ad hoc
extensions). It was just this prospect that led Gödel to some of his well-known speculations concerning the possible
justification of strong axioms of infinity for set theory.117 One drawback to the programme, however, has been that,
typically, the examples of undecidables (at the lower level) which get decided higher up were of a rather esoteric sort,
statements that had little intuitive mathematical content and that depended on a great deal of coding in order to have
any intuitive content at all. (Gödel sentences and statements of consistency were the stock-in-trade examples.) For
some time, mathematical logicians have sought better examples, examples of undecidables with rather direct,
mathematical significance, pertaining to problems that a mathematician might well pose in the course of
mathematical—as opposed to metamathematical—work. A major result along these lines was that of Paris–Harrington
[1977], in
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which a number-theoretic statement of (a finite version of) Ramsey's partition theorem was shown to be unprovable in
Peano arithmetic.

A whole series of remarkable results along similar lines has been obtained by Friedman [1981], in which the lower-level
theory is already some axiomatic set theory (e.g. some natural modification of Z or ZF) and the higher-level theory is a
richer set theory (e.g. ZFC or ZFC + a large cardinal axiom, etc.). But the statement in question is not an “esoteric”
set-theoretic statement, but a statement pertaining to functions of a sort encountered in “normal” mathematics “lower
down” (e.g. Borel functions from ℝω → ℝ).118

Interesting, you may say, but what has all this got to do with applied mathematics? Perhaps nothing. However, the
prospect is raised that among the “natural mathematical undecidables” could be found statements actually encountered
in physics or some other empirical science. One can imagine that some sentence, S, unprovable in Z (or Z+ with
urelements), but statable even at the level of real numbers or functions on the reals, could be invoked in explaining
some observable phenomenon. It might be that the existence of gaps in some sort of periodic table—expected, say, as
an empirical regularity rather than on the basis of a rigorous mathematical symmetry argument—could best be
explained as the reflection of an unsuspected mathematical phenomenon, say the inexistence of a certain type of
function. (Perhaps tremendous resources could be saved—it would no longer be thought necessary to build the huge
apparatus designed to find “particles” filling the gaps.) Yet to establish the mathematical fact, S, perhaps it would
suffice to allow
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118 For a survey of results, see Nerode and Harrington, in Harrington et al. [1985], pp. 1–10. An example of an intuitive mathematical statement that requires uncountable
iterations of the power set operation to prove (specifically, that is provable in ZFC but not in ZC) is the statement, “Every symmetric Borel subset of the unit square
contains or is disjoint from the graph of a Borel function”.A series of results is based on analysing Cantor's diagonal argument that the unit interval I is uncountable. That
argument produces a Borel diagonalization function F: Iω → I such that no F(y) is a coordinate of y. But Cantor's F depends on the order in which the coordinates of y are
given. If F is required to be invariant in the sense that F(y) = F(y′) whenever y and y′ have the same coordinates, then the statement “If F: Iω → I is invariant, then some F(x) is
a coordinate of x”, is provable in ZC but not in ZFC with the power set axiom deleted. Various modifications of this idea lead to examples of similar statements that are
provable in ZFC + a large cardinal axiom, but not in ZFC. And there are even examples of statements of this sort which are provable in ZFC + “there is a measurable
cardinal” but not in ZFC + “there is a Ramsey cardinal”! Thus, even at the level of “large, large cardinals” (incompatible with the Axiom of Constructibility, as Ramsey
cardinals already are), it is necessary to go even further to prove certain “natural mathematical statements”.



uncountable iterations of the power set operation (Replacement) or to assume the existence of a large cardinal. Doesn't
the mere theoretical possibility of such a situation show that a “once and for all” framework for applied
mathematics—as suggested in a scheme such as (3.3)—is fundamentally misguided?

This depends, I think, on how that framework is understood. As a scheme simply for expressing the statements of
applied mathematics, something like (3.3) may well be defensible. But it should not therefore be inferred that such a
framework demarcates any limit to “justification of mathematical axioms from below”. Once we recognize (i) that
justification comes in degrees, and (ii) that an axiom may receive justification indirectly in virtue of what can be proved
using the axiom, even though a categorical framework is employed lower down—i.e. a framework which has only one
model up to isomorphism and which, therefore, “semantically decides” everything formulable in the language—then
there simply need be no such limit.

One objection to this line of reasoning should be considered. If the desired mathematical statement, S, of our highly
speculative example is statable in the lower-level language, and if the (costly) empirical facts “confirm it”, why not
simply add it directly to the lower-level theory (e.g. Z+)? The result would be somewhat analogous to adding the Axiom
of Choice to ZF2. Semantically, the addition is redundant (or else the result is inconsistent in the sense of “unsatisfiable
in a full model”), since all full models of ZF2 already agree on the Axiom of Choice (and, we assume, they all say
“yes!”—we allow models to speak in various tones of voice!). Yet, proof-theoretically, the addition is significant, even
at the level of second-order systems.119 If this course were followed, there would seem to be no role left for the higher-
level set-theoretic axioms to play.

The response to this, I think, is twofold. First, adopting S outright as an axiom may have nothing to recommend it
other than its fit with the empirical observations. It may have no independent mathematical motivation. As a result, the
move could count as ad hoc and not preferable to some alternative, such as a modification in the physical theory itself.
In comparison, a strong set-theoretic principle, such as Replacement, may have all kinds of independent mathematical
motivation. Considerations such as those encountered above (Chapter 2, § 4) would be relevant; and many other
consequences
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internal to mathematics could be adduced. (For example, in the presence of Choice and Replacement, cardinal
arithmetic becomes more unified, in that cardinals can be taken as initial ordinals, all sets have comparable cardinalities,
etc.) If the justification of mathematical axioms is a multifaceted affair (as we believe it to be), with partial justification
stemming from various sources, then we may be comparing a situation (adopting S as an axiom, i.e. modal existence of
a Z+ + S structure) in which the only source is empirical with one (adopting ZF, i.e. modal existence of a ZF structure)
in which there is already independent partial justification. Thus, the two situations need by no means be equivalent.

The second part of the response is really an extension of the first. Even if S were to have independent mathematical
motivation as a new axiom, S might be only one among a large number of “physically significant undecidables”.
Suppose it happened that each of these could be proven from the same higher set-theoretic principle, but in the absence
of this they were mutually independent. They could, moreover, “sound” as intuitively different as you please. Surely,
the higher principle here would be playing a unifying role of the very sort that guides theory construction in general.
Rather than rest with the highly disparate result of adding each undecidable (perhaps there are even infinitely many) as
a separate axiom, surely adoption of the higher set-theoretic principle would seem the reasonable course.

In sum, we are lead to the view that a global scheme for applied mathematics, such as (3.3), can at best be claimed to
be expressively adequate. The thrust behind our speculations concerning Gödel's and Friedman's programme
concerning justification of higher axioms from below should be taken seriously. Discoveries at the level of empirical
science could indeed transmit a sort of justification upward, well beyond the limit of expressive adequacy. And, indeed,
it does seem misguided to seek any a priori limit to this process.

§4. “Metaphysical Realist” Commitments? “Synthetic Determination”
Relations
Let us now return to the issue raised above concerning the proviso of “no-disturbance” built into our understanding
of the applied mathematical counterfactuals. When entertaining any such counterfactual, we must of course assume
that the actual situation in
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question is “held constant”. In invoking a suitable mathematical structure, about whose actual existence we wish to
remain neutral, we are of course not contemplating any “change” in the actual non-mathematical situation, apart from
what would logically follow from the assumption of the mathematical structure (such as the relations that would arise
in virtue of our background logical comprehension principles). As we might naïvely put it: “the real, material situation
is supposed to remain exactly as it is.”120

Now, so long as we are prepared to rest with such a blanket formulation, we can employ the counterfactuals in the
form already illustrated above. If called upon to say how it is we know that the consequents of the conditionals carry
information about the actual world or system in question, and not some different world, our answer must be, “we
stipulated at the outset that all matters of material fact are held fixed; that is what we understand by this counterfactual
idiom. What's the problem?”121

Philosophy is in the business of finding problems, and then wrangling over whether the problem is merely a
Scheinproblem (or perhaps a problem of a worse kind (replace the ‘n’ in ‘Schein’ by ‘ss’!)). (This procedure can then be
iterated, guaranteeing an endless supply of problems. At limits, λ, take the problem to be, “What is the λth problem?”
This yields transfinitely many problems!) In the present case, the problem (if it is one) seems to be that, if called upon
to be more specific about the material matters of fact that are assumed fixed, we very readily find ourselves invoking
applied
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120 It would be better to say “real non-mathematical situation”, since presumably the problems here arise independently of commitment to a materialist ontology. Dualists,
phenomenalists, et al., may seek to apply mathematics in various ways, and they too would need to invoke an assumption of non-interference or fixity of the non-
mathematical world recognized. Here and below, this should be understood, though for brevity we shall sometimes speak of “material conditions”, etc.

121 Something like such a stipulation lies behind Horgan's [1987 ] reasonable solution to a related problem raised by Hale and Resnik [1987 ] concerning Horgan's use of
counterfactuals [1984 ] to “nominalize” applied mathematics. The objection was that ordinary patterns of explanation of mathematics-free statements, O (e.g. “observation
statements”), would be upset under a counterfactual interpretation, because in the modalized theory one would deduce, not O, but something of the form □ (A ∝O) (where
A is an appropriate antecedent involving mathematical axioms). Horgan's solution is, in such cases, to add as an axiom,

on the grounds that, if O were to hold under the conditions envisioned in A, then it holds in fact. This is reasonable because in entertaining A, we entertain no alteration of non-
mathematical matters of fact.



mathematical descriptions. We may say that the relative positions and velocities of these masses are to remain fixed, or
that these physical fields are to retain their actual values at every point, and so forth. Of course, we don't confine
ourselves to such descriptions. There is much we can say about our material surroundings in qualitative terms, without
apparent reference to mathematical objects. But the point is that we are hard-pressed to specify in any kind of precise
detail “physical or material conditions” without appealing to our best theoretical descriptions, and in these apparent
mathematical reference is rife. If we attempt to eliminate such reference along the lines of our modal conditionals, we
need to stipulate that material conditions are to be held fixed in understanding these. But if it is insisted that we spell this
out in detail, we find ourselves employing non-hypothetical applied mathematics . . .

There are, broadly speaking, two lines of response to this circularity problem that can be pursued. Each is associated
with a philosophical position on questions of (non-mathemetical) realism. The first line rejects the problem: it rejects the
demand for any detailed specification of “facts to be held fixed” in the antecedents of the counterfactuals, resting
instead with the general formulations already given. For reasons that will emerge in a moment, this view seems to be
committed to a certain kind of “realist” view of nature, a realism that has been challenged lately in the philosophical
literature.122 The second line of response accepts the need for greater specificity in spelling out “the facts to be held
fixed”, but attempts to avoid the circularity just noted by framing the relevant conditions in “synthetic, relational
terms”, that is, in a vocabulary involving solely relations among non-mathematical objects and not containing any
apparent reference to abstract mathematical objects (numbers, functions, sets, etc.). (Here and below, such vocabulary
is called “synthetic” by analogy with synthetic geometry, which is carried out solely in terms of relations among
geometric objects (e.g. ‘betweenness’, ‘congruence’, etc.).) The aim of this approach is to allow for neutrality on the
“metaphysical commitments” associated with the first approach. At the same time, it bears an interesting resemblance
to certain recent efforts to sustain a kind of “nominalism” by attempting to demonstrate that theories framed entirely
in terms of relations on a non-mathematical domain (e.g. space-time) can capture
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the content—for scientific purposes—of standard mathematical-physical theories.123 Let us examine these two
approaches in turn.

The first approach is committed to a realist view of nature that might be put roughly as follows: in science, we
investigate a unique material reality, existing objectively and independent of our minds, our language, conceptual
scheme, and so forth.124 Of course, this world can be described in many diverse ways, some of which may even be
“incommensurate” with others (in various senses); and, of course, our descriptions, conceptualizations, and so forth,
are “mind-dependent”. When it comes to mathematics, however, we need not regard its abstract structures as literally
part of the actual world. It is sufficient that they be conceptually possible. In applying mathematics to the actual world,
we appeal to mathematical structures as a way of carrying information about that world. In our own language, we may
well not have any alternative way of expressing this information; mathematical language may be indispensable for any
precise, detailed description, especially one which we can use in a theory for purposes of prediction and explanation.
Nevertheless, this indispensability reflects our own language, perhaps our own capacities. It doesn't mean, for example,
that abstract mathematical objects literally participate with the non-mathematical in making up material reality. When,
for instance, we describe the relative positions of a bunch of particles (at a time, or over an interval of time), we find it
convenient—perhaps for certain purposes, indispensable—to invoke numerical coordinates (e.g. to assign a triple or
quadruple of real numbers). We think of position as a function from material particles to (triples or quadruples) of real
numbers. But, quite independently of this mathematical function, in fact the particles have their relative locations or
spatio-temporal distribution. These material relationships are part of material reality as much as the particles
themselves: the system consists of particles-in-a-particular-configuration. Mathematics is convenient (perhaps essential)
in describing that configuration in detail, but the configuration is “already there” prior to
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123 I refer here to work of Field [1980 ] and Burgess [1984 ] to which we will return below.
124 As the term “independent” is quite ambiguous, this sort of statement (or its negation, favoured by various “anti-realisms”) must be articulated with some care. In fact, it is

non-trivial to find notions of “mind-independence” that can be used even to differentiate “realist” and “instrumentalist” positions from one another. For an attempt in this
direction and a discussion of some of the problems, see Hellman [1983 ].



the mathematical description, and independent of any (quite arbitrary) structure for real numbers that may be invoked
in such a description. Similarly for physical fields. We describe them as, say, vector-valued functions on a spatio-
temporal domain, but we should not therefore identify the field with a mathematical representation of it (i.e. with an
information-bearing mathematical function—the linguistic description is, of course, not in question here). Fields have
physical effects; their mathematical counterparts carry information as to what those effects will or would be under
various conditions, but, as abstract objects, they themselves don't literally have the effects. A sofa, too, presumably,
could be given a mathematical description, via a density function (on a region of space-time, say). But we do not
literally identify the sofa and the density function.

On this view, material reality consists of a great diversity of objects interrelated in a rich variety of ways, only some of
which are gotten at at all in our schematic, human-based languages and theories. Obviously, we cannot say anything
about this reality without introducing our own predicates, concepts, and so forth. But this doesn't vitiate the idea of
material reality; it just limits the usefulness of that idea. But limited usefulness is not complete uselessness, and, in any
case, uselessness is not incoherence. And, in applied modal mathematics, we see that the idea does have some use: as a
very general and schematic device for helping us say what we are doing when we describe the world mathematically.125

As reasonable as this natural realism may seem, it has its challengers. It has been argued that it is incoherent to speak of
a unique “way that the world is” or even of a unique “world”: the world is as many ways as it can be truly described; or,
better, we should not even speak of “the world” but only of “world-versions”, “world descriptions”, “world-
portrayals”, and so on.126 Now the above outlined realist perspective certainly avoids any commitment to a unique
correct description of material reality. Still, it seems committed to material properties and relations as well as objects,
whether describable or expressible in human language or not.127 And this is seen as
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125 This may be considered a partial response to Goodman [1978 ] which emphasizes the emptiness of reference to a unique world underlying our own constructions. It is not
by any means suggested here that the role of such reference in applied modal mathematics is its only or principal use.

126 Goodman [1972 ] and [1978 ].
127 The above sketch of a realist position has interesting affinities with Putnam's “On Properties” (in [1970 ]), reflecting an earlier realist perspective.



“metaphysical” in a pejorative sense. The realist could respond that the position is nothing more than an objective view
of science; that material reality is what science investigates; and that the commitment should be called “hypo-physical”
rather than “metaphysical” (‘hypo’ for “under” or “supporting”). In any case, realist commitments there are, and those
who seek to avoid them will want to know whether they can succeed within a modal-structural framework for applied
mathematics.

This brings us to the second approach. Here one attempts to provide a specification of relational (synthetic) predicates
on the (non-mathematical) domain of mathematical application which can be utilized in the antecedents of the
counterfactuals to achieve the effect of “fixing the actual material situation”. What is required of such a vocabulary?

First, we must suppose that the synthetic predicates, say of a finite list R1 . . . Rn, are “ontologically adequate” in the
sense that every non-mathematical object of interest in the mathematical application in question falls within the actual
extensions of some predicate on the list. But more than this is clearly necessary. To see what is involved: suppose that
mutually conflicting mathematical descriptions, d1, d2, . . . , of an actual situation were compatible with a given
description of that situation in terms of the Ri; then we could not truly assert any of the respective counterfactuals
containing the di (or their counterparts generated by the translation pattern) as consequents. In effect, one would not
have “fixed enough” to know which applied mathematical statements applied to the actual situation. Suppose that the Ri

were insufficient to determine, say, the mass of a certain object o. Then the modal conditional associated with the
ordinary statement “o has mass r” could not be affirmed: it would not be the case that, necessarily, were there a suitable
mathematical structure respecting the R predicates (i.e. in which the R predicates had their actual extensions), there
would be a mass-representing function assigning o the value r. For, by hypothesis, there could be mathematical
structures respecting the R predicates and different mass-representing functions associated with those structures
assigning o different values, each compatible with the R description. (The different functions would still be “mass-
representing” in giving “actually measured and theoretically predicted values of mass” in different physically possible
worlds. The conditions on magnitude-representation given above should be understood as “world relative”
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in this sense; different choices of “the actual world” are possible, in that a physical theory can also be “applied”
counterfactually, i.e. under assumptions of non-actual initial conditions, forces, etc. But of course, any such physically
possible situations count at logically possible as well, and so come within the scope of the ‘□’ of the applied
mathematical counterfactuals.)

If, however, one were convinced that the R predicates sufficed to “determine uniquely” a mathematical-physical
description of the situation (taking account, of course, the fixing of all arbitrary elements of such a description, such as
units of measurement, choices of guage for fields, choices of purely mathematical constructions, and so forth), then
one could employ the list in stating mathematical counterfactuals explicitly, along the following lines:

(3.4)

where we have employed the global scheme of the previous section. The second conjunct says that the urelements of
the Z+ model are just those items that are actually (@) relata of the Ri (where Ri( . . . x . . . ) is abbreviatory of the
obvious long-winded statement of this); and the third conjunct says that each of the Ri behaves in the model just as it
actually does.

Provided we were convinced of the adequacy of the Ri (in the above sense of ontological exhaustiveness and as a
determination base for mathematical-physical description), the pattern of (3.4) could be employed apart from the
realist commitments of the first approach. For here, we do no more than employ predicates with modal operators. We
say such things as “these things are actually F” or “the segment p1−p2 is actually congruent to the segment q1–q2” (to
take a simple statement typical of synthetic geometry); we never need to speak directly of properties or relations in
reality. Questions of reference between linguistic predicates and material properties and relations can be postponed,
sidestepped, or even rejected as “meaningless”. In this sense, the scheme (3.4) is “metaphysically (or hypo-physically)
neutral”.

There is a way in which (3.4) can be broadened without (substantially) violating this neutrality: that is to allow the use
of a semantic
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relation of “application” or “true-of ” between (relational) predicates and first-order objects (particles, fields, space-
time regions, whatever). That is, we allow clauses in the antecedent of (3.4) such as

‘heavier than’ is true of 〈x,y〉 ≡ @ ‘heavier than’ is true of 〈x,y〉

(where it must be assumed that some concrete specification of ordered pairs is available).128 In that case, the restriction
to finite bases in (3.4) can be lifted; provided we have some way of specifying a class of ‘non-mathematical’
predicates—say, by reference to syntactic rules for constructing them—the second and third conjuncts of (3.4) could
be rewritten by quantifying over such predicates and stating the desired conditions in terms of ‘true-of ’ as just
illustrated. The “realist commitments” of such a framework, whatever they may be precisely, are surely more modest
than those of a full-fledged (material) property realism. Nothing more than the semantic relation of ordinary reference
to first-order objects is presupposed.

Once this latter move is made, the possibilities of adequate synthetic bases become quite enormous. For now we can
even allow predicates of the form, “x has mass c” for particular constants, c (c can be an arbitrary rational, or any real
for which a notation can be described). We could employ predicates of the form, “x and y are separated by distance
bearing ratio r to standard length l”, where ‘r’ is a rational constant and ‘l’ is a constant designating a preselected fixed
standard (e.g. a well-isolated metre stick). Such predicates do not involve quantification over numbers; and our
understanding, of them—sufficient for their use in a scheme such as (3.4)—can perhaps be explained operationally,
without quantifying over numbers or other mathematical objects. By invoking sufficiently many predicates of this sort,
one may hope to supply the required “fixation of the material facts” without circularity, and without strong hypo-
physical commitments.

But how can we become convinced that indeed a proposed “synthetic basis”—finite or infinite—is adequate?
Adequacy, recall,
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in which the order of places is built into the predicate. The presumption would be that finitely many such designation relations are learnable one by one.



involves two parts: ontological adequacy and adequacy as a “determination base” for the applied mathematical
descriptions in question. The former is relatively unproblematic, for the particular context of application usually
involves a given domain of material objects to which a piece of mathematics is to be applied, and it suffices to cover
this domain with the synthetic predicates. “Determination” is more problematic, and it must be made more precise to
be evaluated.

One natural way of proceeding is to invoke models of an overall theory T′ including both the vocabulary of the applied
mathematical theory, T, and the proposed synthetic vocabulary, S. Such a theory links the two vocabularies, and may be
assumed to be an extension of T, as well. T, we may assume, specifies, up to isomorphism, a particular type of
mathematical structure (e.g. it might contain Z+). Then we may explicate determination along the following lines:

Let α be the class of (mathematically) standard models of T′, and let V denote the full vocabulary of T′: then S
determines V in α iff for any two models m and m′ in α, and any bijection φ between their domains, if φ is an S
isomorphism, it is also a V isomorphism.

The last clause means that if φ preserves the synthetic vocabulary, it also preserves the rest of the vocabulary of the
total theory T′, including all relations between the non-mathematical part of the domain and the mathematical part.129

132 MATHEMATICS AND PHYSICAL REALITY

129 Determination principles of roughly this general form were introduced in Hellman and Thompson [1975] as a means of explicating a kind of physicalism not committed to
strong claims of reducibility (definability of determined by determining vocabulary). Related principles, known as “supervenience principles”, have been developed and
applied in a variety of contexts. See especially Kim [1984]. For a survey, see Teller [1983]. See also Post [1987] and Hellman [1985] and references therein. The present sort
of determination principle differs from the usual in that, here, one is expanding upon a well-worked-out theory for the “higher” level, rather than for the “lower”.Note that
the restriction to mathematically standard (full) models obviates an automatic collapse to explicit definability (of determined by determining vocabulary) via the Beth
definability theorem. (Cf. e.g. Shoenfield [1967] for a precise statement and proof of the theorem; for discussion, see Hellman and Thompson [1975].)Note further that
(“vertical”) determination claims are compatible with (“horizontal”) indeterminism in temporal evolution: they merely imply that whatever temporal branching is possible in
the higher (determined) level must already be reflected in corresponding branching at the lower (determining) level.Finally, note that it is not required that the synthetic
vocabulary here be “observational” in any restrictive sense. It may, in its own right, count as highly “theoretical”; and, if the device of ‘true-of ’ semantic predicates is allowed,
theoretical vocabulary of the original applied mathematical theory may be adapted to the synthetic level by use of countably many instances involving rational values, as
suggested above (cf. the example that follows below).



The idea now would be that for suitably developed T′ and S, a determination claim of this sort could be supported,
either inductively, by examining a sufficient variety of particular systems to which T′ applied (a procedure that becomes
somewhat unwieldly when T is global cosmology and you are not God); or deductively by a mathematical argument. A
merely suggestive (and intentionally rather contrived) example of how the latter might come about, follows. It will
serve us below.

Let the original applied mathematical theory T be one involving a real scalar field φ defined on a region of space-time,
and satisfying an axiom of continuity. (T is also assumed to contain axioms for the real numbers.) Suppose that φ is
thought to represent a physical magnitude M, and further suppose that for each pair of rationals, q and ε, we introduce
a predicate, Mq,ε(x), intuitively understood as saying that the value of M at point x is within ε of q. (x is assumed to have
real coordinates in some given system; ε could be canonically chosen as of the form 2-n, for positive integral n.) (The
use of bold face for q and ε is to indicate that these are non-quantifiable parts of the new predicates; italicized letters
behave as ordinary quantifiable variables. Clearly, effective rules could be given for the construction of these M
predicates.) Now let T′ be the result of adding to T countably many axioms, one for each q and ε, of the following
form:

∀x[x a point in the domain of φ with rational coordinates ∝

Now, appealing to the mathematical facts (i) that φ(x) is the limit of 〈φ(qi)〉 for Cauchy sequences of rationals
〈qi〉 with limit x, and (ii) that φ is uniquely determined by its values at rational points, it follows that if two
mathematically standard models of T′ agree on the M predicates, they also agree on ‘φ’. Thus, the M predicates
determine φ (relative to standard models of T′). And these predicates could qualify as “synthetic” since they could be
understood as wholes, based on measurement operations (including symbolic manipulations), not as involving any
genuine reference to rationals. Similar tricks will clearly work for continuous vector fields; and the
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requirement of continuity could be relaxed to allow for countably many discontinuities.

Before considering the import of this sort of phenomenon, it would be well to forestall an objection: A determination
claim along the above lines employs model theory, and so is platonistic as formulated. How can the modalist make use
of such a claim, much less prove it in particular cases? The answer is twofold: first of all, as formulated, such a claim
can be understood abstractly; there is no use of non-mathematical vocabulary; it is a purely model-theoretic claim
concerning the interconnectedness of parts of models. As such, it could be modalized along with model theory
generally as part of set theory (along the lines of Chapter 2). Secondly, however, the claim may be read as a step in a
“reductio” argument from within platonism, in the manner of ontological reductions generally.130 From the assumptions
of platonistic mathematics, if one can arrive at suitable determination results, one can then see that applied
mathematics can be carried out modally, without circularity; hence, those assumptions can be dropped (at least, in so
far as applied mathematics is concerned).131

Suppose, then, that a determination claim of the above variety—to the effect that a specifiable “synthetic vocabulary”
uniquely determines analytical mathematical description within a given scientific theory, T—can be supported. Does
this show that the analytic theory T can be eliminated in favour of a synthetic alternative? No, this does not follow. The
key point here is that what does the determining is a class of predicates, linked to mathematical predicates within a
theory. (The links may be thought of as provided by an extension T′ of the original applied mathematical theory T, if T
does
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the nominalist (at least, not without further argument, which was not provided in Field [1980 ]). It should be pointed out, however, that such reductio reasoning is
problematic in a certain sense: how can it convince one who starts out with the assumption that platonist reference to models, etc., is unintelligible? For one in that position,
the reductio argument itself should be unintelligible. But how, then, could a “nominalist scientist” become convinced (by Field-theoretic reasoning) that the standard platonist
reasoning (which, of course, the nominalist scientist employs every day) is “just a short-cut”? One possible answer here involves distinguishing between a non-constructive
nominalist position—which holds platonist ontological commitments to be false, but not unintelligible—and a stricter constructive-nominalist position, which does hold
those commitments to be unintelligible. Then perhaps we should say that only the latter is barred from following Field-theoretic reasoning.



not already supply them.) Presumably this theory (T′)—and, more importantly, the original T, which T′ extends, is well
formulated in various ways. (For example, it may be finitely axiomatizable; presumably it is at least recursively
axiomatizable. And it may be otherwise “attractive”.) But there is no guarantee that a correspondingly attractive theory is
formulable in just the synthetic vocabulary. Indeed the set of all deductive consequences of T′ in the synthetic
vocabulary will presumably be recursively enumerable; but, as considerations of Craigian replacements in other
contexts have brought out, this is certainly not sufficient for “good systematization”, not to mention other aspects of
“attractiveness”.132 The above example illustrates this: there is no hint of an attractive theory involving just the M
predicates. (For instance, there is no direct way even to formulate an axiom of continuity using the M predicates, much
less laws interrelating the field φ with other quantities that might readily be stated in extensions of the theory T.) Thus,
even if a synthetic determination claim can be supported or proved, this by no means shows that the original applied
mathematical theory is really dispensable for scientific purposes. For that, much more would have to be demonstrated.

Now there is an alternative programme in the foundations of applied mathematics—that of Field [1980]—which seeks
just such a demonstration. It is worth examining as a very interesting approach in its own right. Moreover, comparison
with the present approach is instructive. For while there are some apparent similarities between the two approaches,
there are also some fundamental differences which deserve to be highlighted.

§5. A Role for Representation Theorems?
In his book, Science without Numbers, Field sought to extend work in the foundations of geometry to mathematical
physics with the aim of showing that ordinary applied mathematical reasoning can in principle be replaced by reasoning
entirely on a synthetic level, that
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132 Craig's observation—that any recursively enumerable theory has a recursive axiomatization—is in Craig [1953 ]. For a discussion and critique of its use in philosophy of
science, see Putnam [1965 ]. It should be noted that Field [1980 ], p. 47, explicitly eschews a Craigian replacement of platonistic applied mathematics (i.e. a recursive
axiomatization of its nominalistic consequences) as even a candidate for a nominalization, on grounds of its obvious unattractiveness as a theory.



is, in terms of relations on a non-mathematical domain, such as space-time. Much as Hilbert's work on geometry
[1971] showed that reasoning concerning metrical relations, carried out in terms of real numbers and real-valued
functions, could be replaced by reasoning entirely on the level of intrinsic geometrical relations (such as relations of
betweenness and congruence), Field sought to show that a similar replacement could be effected for reasoning involving
scalar and vector fields pertaining to physical magnitudes. A key step in the programme is proof of a “representation
theorem”, in the style of measurement theory,133 which asserts a strong correspondence between models of the
synthetic replacing theory and those of the original applied mathematical theory to be replaced.134 In outline, the form
of such a theorem is as follows:

An original applied mathematical theory (e.g. a branch of physics), T, involving, say, a scalar field ψ (and other similar
objects, which we shall suppress for brevity), is given and determines a class of models of a certain form, say, ((M,d),
ψ), where d is a metric or distance function on a manifold, M. A replacing theory Tsyn is constructed in a privileged
synthetic language, which might include, say, a relation of segment congruence, Seg-Cong(x,y,z,w), meaning intuitively that
the segment from (space-time) point x to y is congruent to the segment from z to w, i.e. as measured via d; and further
a relation of scale-betweenness, Scale-Bet(x,y,z), holding intuitively when the value of ψ at y is (inclusively) between those at
x and z; etc. The final preliminary is that Tsyn contain machinery essentially equivalent to second-order monadic
predicate logic: a standard interpretation of Tsyn will be full, in the sense that the range of the second-order quantifiers
will be all subsets (or regions) of the synthetic geometrical domain. The representation theorem then states:

For every standard interpretation (X, Seg-Congx, Scale-Betx, . . . ) which is a model of Tsyn there exists a model
((M,d), ψ) of T and a homomorphism between the two models, i.e. a bijection φ: X → M such that ∀p,q,r,s of X:
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133 As in Krantz et al. [1971 ].
134 For details on representation theorems, see Field [1980 ], Ch. 7; see also Malament [1982 ]. In our sketch below we follow the notation of Malament's review (which

concentrated on the elegant example of the Klein–Gordon field).



and similarly for other relations of the theory; moreover, the model of T and the homomorphism φ are essentially
unique, i.e. unique up to a transformation within a given class of transformations reflecting arbitrary choices such as
units of measurement.

Given such a theorem, Field then attempted to argue that any synthetically statable sentence deducible from T—i.e.
making full use of platonistic mathematics—could in principle already be deduced within Tsyn, i.e. confining oneself to
the (allegedly nominalistically acceptable) synthetic vocabulary. Now, it is clear, given such a representation theorem,
that the model-theoretic analogue of this statement holds, that is, that synthetic logical consequences of T are also
logical consequences of Tsyn (where this is spelled out in the usual way in terms of full second-order models). However,
the proof-theoretic conservativeness is not automatically implied, and, in fact, in a large class of cases it can be proved
not to hold. We will return to this point in a moment.135

Now consider the relationship between a Field-style representation theorem and a claim of synthetic determination.
Clearly they are similar in spirit: given the uniqueness clause of the representation theorem, once a synthetic model is
given (once “the synthetic facts are fixed”), there is determined an essentially unique applied mathematical model (“the
applied mathematical facts are fixed” also). Thus proving a representation theorem is intuitively quite close to
establishing a corresponding synthetic determination claim. But the connection is not perfectly tight, and especially
when we attempt to argue the converse direction, we run into difficulties. For, as we have already seen, there is no
guarantee of a “respectable” theory at the synthetic level. Although this isn't a formal condition of a representation
theorem, it is essential if such a theorem is to have the force it is

MATHEMATICS AND PHYSICAL REALITY 137

135 The proof-theoretic conservativeness claim is naturally read as the relevant claim that Field [1980 ] sought to establish. However, Field [1985 ] emphasizes that it is the
semantic conservativeness of mathematical physics over synthetic physics that should be the aim of the programme. (He there writes, “What I should have said is that
mathematics is useful because it is often easier to see that a nominalistic claim follows from a nominalistic theory plus mathematics than to see that it follows from the
nominalistic theory alone” (p. 241).) As I will have occasion to remark below, I do not think that this aim really comes to grips with the issue of indispensability of higher
mathematics—indispensability in its principal role of proving theorems. Ironically, this (so far as we know, indispensable) role appears to be conceded by Field [1985 ] in his
very argument that semantic conservativeness claims can be put to use despite the lack of a complete proof procedure (see Field [1985 ], p. 252).



supposed to have concerning dispensability of analytical mathematics. (Other difficulties with the converse inference in
question concern the domains of models; these are of a more technical nature and could probably be patched up.) This
brings out a critical difference between the two approaches: On the Field programme, it is essential to find acceptable
substitute theories in which mathematical physics can actually be carried out. This goes well beyond the present ms
reconstruction, which merely needs assurance at a certain point (and under certain requirements of “metaphysical
neutrality”) that its translates are determinate. For this, it is enough to be confident that a synthetic vocabulary is
descriptively adequate in a limited sense; it is by no means necessary to argue in addition that a good theory in this
vocabulary is forthcoming over which the applied mathematics is conservative. In sum, the Field programme seeks to
show that mathematically formulated theories are in principle dispensable for scientific purposes. Not only does the
present approach seek no such goal; we have already suggested that non-conservativeness results in higher
mathematics may turn out to have physically significant corollaries, and that no line can in principle be drawn beyond
which—proof-theoretically at any rate—rich mathematical theories become scientifically irrelevant.

Now, while it should be clear that, on an abstract level, determination claims are weaker than representation theorems,
it might still be argued that the latter are the best access we have—mathematically—to the former, that, in practice, a
representation theorem should still be sought by the modal structuralist. But then—the argument might run—once
such a theorem were proved, it would follow that the platonistic mathematics was dispensable after all, and there
wouldn't even be a need for a modal-structural reconstruction (from a stand-point seeking alternatives to standard
platonism). The answer to this is twofold. First, as the example of § 4 suggests, there are ways of bypassing
representation theorems, at least in a wide class of cases. But, second, this line of argument is in any case fundamentally
flawed. For, as has already been mentioned, even a full-fledged representation theorem does not demonstrate
deductive conservativeness of the original mathematical physical theory T over the synthetic substitute Tsyn. As several
authors have pointed out, when account is taken of the second-order machinery of Tsyn, which is actually needed to
establish Field's representation theorem (e.g. to prove the existence of a representing homomorphism between space-
time
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and ℝ4), it can be shown that, for example, standard number theory can be carried out within Tsyn and Gödel sentences
concerning provability in Tsyn (which is an axiomatic second-order theory, to which the Gödel theorems apply) arise,
such as assertions of Tsyn's consistency, etc.136 Although not provable in Tsyn (on pain of its inconsistency, in which case
the representation theorem would be vacuous), such sentences, in the language of Tsyn, are provable in suitably rich
applied mathematical theories (in particular, in ZFC with urelements, which Field exploited in his presentation). And,
although such examples may be recherché from the point of view of physics, the results of Paris–Harrington, Friedman,
and others (cf. above, § 3), suggest that it would be premature at best to suppose that all such violations of
conservativeness are “of no physical significance”.

At this point, one may be tempted to retreat to claims of “semantic conservativeness” of platonistic applied
mathematics over synthetic theories: that is, although the former can prove synthetic statements that the latter cannot,
still all synthetically statable semantic consequences of the former are indeed semantic consequences of the latter. In
the cases discussed in the literature, this is true, and is a fairly trivial consequence of the definition of (second-order)
semantic consequence. However, as I see it, this is quite beside the point. For one of the uses of higher mathematics is
to prove theorems that may be statable lower down. Although the lower-level theory—if formulated in second-order
logic—has a negation-complete set of semantic consequences, it provides no method for deciding what these are, nor
even a method of enumerating them. Now, even though no recursively axiomatizable theory can prove all these
second-order semantic consequences, deductively stronger mathematical theories provide more information about
particular cases, and these may be scientifically important. If higher mathematics is indispensable in this sense—i.e. in
the sense that it is needed to prove truths lower down of scientific importance—then surely that is indispensability
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136 See especially Shapiro [1983b ] and Burgess [1984 ]. Field [1980 ] acknowledges the difficulty at pp. 104 ff., crediting Moschovakis and Burgess with the observation that
Gödel sentences arise as counterexamples to the conservativeness of T over Tsyn . Here we emphasize the point that increasingly powerful mathematical theories may well
be relevant for proving physically meaningful synthetic assertions. The fact that, as axiomatized theories, these more powerful systems have their own undecidables, is, from
the present perspective, if anything, a reason for thinking that we may always have to consider stronger and stronger theories.



enough for the purposes of the usual pro-platonist arguments. In no way is its force weakened by the quite different
consideration of semantic conservativeness.137

Thus, proof of a Field-style representation theorem for a physical theory does not carry with it a general implication of
dispensability of the higher mathematics employed within that theory. Such a theorem may, however, yield insight on
the mechanism whereby mathematics can be successfully applied to a given non-mathematical domain (as, for
example, a representing homomorphism from space-time to ℝ4 can be claimed to provide). And, as already observed,
such theorems can be of help in justifying a modal-structural reconstruction. But I see no general inference in this
quarter that success in proving a representation theorem undermines the need for the reconstruction.

The need might be undermined in other ways, however, and attention should be called here to an alternative approach
of Burgess's [1984], which does indeed yield deductive conservativeness results in certain cases of the sort that Field
considered. In this approach, one begins with a preferred synthetic vocabulary and builds a theory Tsyn designed to “re-
express” in synthetic terms what a given original applied mathematical theory expresses about a non-mathemetical
domain (e.g. space-time, in the examples actually developed). To demonstrate that the “re-expression” is faithful, one
appeals, not to representation theorems in the style of measurement theory, but to strictly first-order proof-theoretic
considerations: namely one builds a conservative extension Text of Tsyn, by direct logical constructions—introduction of
explicit definitions, new constants, and equivalence relations permitting conservative use of abstraction
operators—and then one shows that in Text one can actually derive the theorems of T.138 The conservativeness of
Text—in the relevant deductive sense—is a direct consequence of its methods of construction
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137 Other objections to appeals to semantic conservativeness have been raised, in particular that the nominalist should not be able to understand “semantic consequence” in the
relevant (full, second-order) sense, since it involves quantification over abstract models (cf. Malament [1982]). Prima facie, this seems telling. However, by means of coding
devices, a good deal of abstract model theory (for theories such as PA and RA) can be carried out “nominalistically” (cf. Ch. 1, § 6), i.e. in monadic second-order systems,
especially when interpreted over space-time.Another point in the response to the “unintelligibility” objection would be that appeals to semantic conservativeness are part of
the overall reductio argument, which makes free use of platonist constructions, as does the representation theorem itself. Our remarks above, n. 34, would then apply here as
well.

138 For details, see Burgess [1984 ].



(reflected in general facts about first-order logic, collected in Burgess [1984]). And, while it may appear that the
machinery for a Field-style representation theorem is available, and hence (in light of Shapiro's observations in [1983])
that Gödel sentences and other witnesses to non-conservativeness ought to arise, the appearance is illusory. For, in
fact, since everything is carried out in first-order, non-standard interpretations at the level of Tsyn and Text are not ruled
out, so that there is no way to prove the existence of a representing homomorphism (e.g. from space-time to ℝ4), and
no way to provide a biconditional link between, say, the ordinary mathematical statement of Tsyn's consistency,
ConTsyn(ω, 0) (which, indeed, Text may prove), and the statement which, standardly interpreted, expresses this in the
language of Tsyn itself.139

This direct logical approach appears promising as a means of providing synthetic alternatives to certain mathematical-
physical theories. The method has been illustrated for classical field theories in which one has flat space-time as a
background. It will be very interesting to see whether it can be extended to the curved space-time framework of
General Relativity, and whether it can be adapted to non-classical (quantum mechanical) particle and field theories. In
both cases, questions arise in the choice of synthetic primitives; and, especially in the case of quantum theories, whose
models are already highly abstract (involving, in modern formulations, lattices of subspaces of an already abstract
Hilbert space), it is by no means evident that interesting synthetic reformulations are possible.140

It should also be pointed out that, even in the case of flat space-time theories, the synthetic alternatives proposed in the
literature (along the lines of both Field [1980] and Burgess [1984]) involve a commitment to space-time points as
objects, and this is a commitment that is subject to a number of objections commonly levelled against the objects of
platonist mathematics itself. It is unclear how
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139 Cf. Shapiro [1983b ]. Where ψ (r, p) abbreviates the synthetic statement that r is a sum of equally spaced, linearly ordered points with initial point p (and hence can serve
to model the natural numbers), and where ConTsyn(r, p) abbreviates a synthetic statement of the consistency of Tsyn , in Text it cannot be proved that

(where ConTsyn(ω, 0) abbreviates the ordinary abstract mathematical statement of Tsyn 's consistency. For, since Textcan prove ConTsyn(ω, 0) , if (
* ) were Text -provable, ψ(r,

p) ∝ ConTsyn(r, p) would be also. But by conservativeness, this latter would then be provable in Tsyn also, contrary to Gödel's (second) incompleteness theorem.
140 Cf. Malament [1982 ].



such objects can enter into causal relations, or how they can be epistemically accessible at all. Moreover, as recent
studies have brought out, Leibnizian indiscernibility arguments can be constructed, even in the context of space-times
of variable curvature, which prove an embarrassment to space-time substantivalism (allowing quantification over
space-time points and/or regions). For example, because of invariance of dynamical laws (such as Einstein's field
equations) under diffeomorphic transformations of a space-time manifold in itself, there is a strong case that
substantivalism is committed to a radical physical indeterminism a priori.141 Thus, there are serious questions as to
whether synthetic alternative theories represent a real advance over standard platonist physics from this broader
philosophical perspective.

On the other hand, it may be possible to frame and support synthetic determination claims without space-time
substantivalism. A detailed examination of this question cannot be undertaken here. But, especially if “true-of”
relations are employed in the modal translates together with (countably) infinitely many special synthetic predicates (as
illustrated in the example of § 4, above), the synthetic bases that become available are potentially very rich indeed.
Further inquiry along these lines would be needed to settle the matter.

In any case, from the realist perspective outlined above, the whole question appears recherché. For real material
properties and relations need not be expressible in our languages in the first place. In fact, even the division of “the
world” into objects and properties (including relations) can be viewed as in part an imposition of our own thought.
Our most neutral descriptions of objective reality are couched in the least informative, general terms, in phrases such
as “material reality” or “the actual world”. But, despite their relative vacuity, such phrases have their purposes. One of
these is to indicate awareness of an objective realm, in no sense created by our thought; and this, in turn, carries an
implication that this realm may well not correspond in any direct and simple way with our symbolic efforts to describe
it. From this perspective, there is no need to insist on a synthetic vocabulary to pick out a determining set of features
of material reality, for it is recognized from the start that such a vocabulary may not be forthcoming. Perhaps, as Bohm
and others have envisioned,142 any conditions we can formulate symbolically will be inadequate due
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142 See Bohm [1957 ].



to the variety and complexity of our world. If it were adequate—if, for instance, true synthetic determination claims
could be formulated in every case—this would have the character of a lucky accident. It should not be required as a
way of “making sense of” our applied mathematical modality. And it needn't be required, for it already makes sense to
entertain hypothetical mathematical structures which serve merely to represent our mathematical reasoning about the
natural world.

Let us finally return to the matter of indispensability arguments. On the modal view, these retain their usual
importance, but their import must be reinterpreted. For rather than supporting ordinary (actualist) existence claims,
what they support are the modal-existence postulates appealed to in applied mathematics. As we have seen, just what
these are depends on the application, and, in principle we draw no line limiting the level of abstractness of the
structures whose possibility may receive confirmation through application (coupled with “reverse mathematical”
proofs that weaker assumptions are insufficient). Nor have we insisted that such scientific confirmation is the only sort
that such assumptions can receive. That is a large question that cannot be resolved here.

However, once the cogency of the modal postulates is granted, the usual platonistic invocation of scientific
indispensability (of, for example, a fixed universe of sets) no longer stands firm. For the very possibility of carrying out
modal structural mathematics—applied and pure—demonstrates that the ordinary (actualist) existence axioms are not
really required. It is sufficient to entertain, for example, the possibility of reifying “results of collecting” along the lines
of the msi of set theory, arriving at the possibility of structures characterized in complete abstraction of any “nature” of
its component objects. (And, as we have already suggested, if it is replied that mere possibility is all that the “ordinary
existence claims of platonist mathematics” come to, then, in fact, a modal interpretation is implicitly being endorsed.)
Such possibility claims are logically weaker than the ordinary existence claims associated with objects-platonism; yet
they are sufficient for carrying out all the reasoning and constructions of platonist mathematics. Thus, actual platonist
mathematical objects are dispensable after all.

As has been recognized, however, the modal-existence claims raise questions of their own. We see no way of
explaining them away as linguistic conventions, or of otherwise reducing them to a level of
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observation, computation, or formal manipulation. At best, the modal approach involves a trade-off vis-à-vis standard
platonism, and is far from a final resolution of deep philosophical issues in this corner of the foundations of
mathematics. Our aim has been not so much to defend as to explore, and if the results are to expose weaknesses as
well as strengths, that is in the spirit of our undertaking.
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