Killing Fields

Let κa be a smooth field on our background spacetime (M, gab). κa is said to be a Killing field if its associated local flow maps Γs are all isometries or, equivalently, if £κ gab = 0. The latter condition can also be expressed as ∇(aκb) = 0.

Any number of standard symmetry conditions—local versions of them, at least can be cast as claims about the existence of Killing fields. Local, because killing fields need not be complete, and their associated flow maps need not be defined globally.

(M, gab) is stationary if it has a Killing field that is everywhere timelike.

(M, gab) is static if it has a Killing field that is everywhere timelike and locally hypersurface orthogonal.

(M, gab) is homogeneous if its Killing fields, at every point of M, span the tangent space.

In a stationary spacetime there is, at least locally, a “timelike flow” that preserves all spacetime distances. But the flow can exhibit rotation. Think of a whirlpool. It is the latter possibility that is ruled out when one passes to a static spacetime. For example, Gödel spacetime, is stationary but not static.

Let κa be a Killing field in an arbitrary spacetime (M, gab) (not necessarily Minkowski spacetime), and let γ : I → M be a smooth, future-directed, timelike curve, with unit tangent field ξa. We take its image to represent the worldline of a point particle with mass m > 0. Consider the quantity J = (Paκa), where Pa = mξa is the four-momentum of the particle. It certainly need not be constant on γ[I]. But it will be if γ is a geodesic. For in that case, ξnnξa = 0 and hence

ξnnJ = m(κa ξnnξa + ξnξanκa) = mξnξa ∇(nκa) = 0

Thus, J is constant along the worldlines of free particles of positive mass. We refer to J as the conserved quantity associated with κa. If κa is timelike, we call J the energy of the particle (associated with κa). If it is spacelike, and if its associated flow maps resemble translations, we call J the linear momentum of the particle (associated with κa). Finally, if κa is spacelike, and if its associated flow maps resemble rotations, then we call J the angular momentum of the particle (associated with κa).

It is useful to keep in mind a certain picture that helps one “see” why the angular momentum of free particles (to take that example) is conserved. It involves an analogue of angular momentum in Euclidean plane geometry. Figure below shows a rotational Killing field κa in the Euclidean plane, the image of a geodesic (i.e., a line) L, and the tangent field ξa to the geodesic. Consider the quantity J = ξaκa, i.e., the inner product of ξa with κa – along L, and we can better visualize the assertion.

Untitled

Figure: κa is a rotational Killing field. (It is everywhere orthogonal to a circle radius, and is proportional to it in length.) ξa is a tangent vector field of constant length on the line L. The inner product between them is constant. (Equivalently, the length of the projection of κa onto the line is constant.)

Let us temporarily drop indices and write κ·ξ as one would in ordinary Euclidean vector calculus (rather than ξaκa). Let p be the point on L that is closest to the center point where κ vanishes. At that point, κ is parallel to ξ. As one moves away from p along L, in either direction, the length ∥κ∥ of κ grows, but the angle ∠(κ,ξ) between the vectors increases as well. It should seem at least plausible from the picture that the length of the projection of κ onto the line is constant and, hence, that the inner product κ·ξ = cos(∠(κ , ξ )) ∥κ ∥ ∥ξ ∥ is constant.

That is how to think about the conservation of angular momentum for free particles in relativity theory. It does not matter that in the latter context we are dealing with a Lorentzian metric and allowing for curvature. The claim is still that a certain inner product of vector fields remains constant along a geodesic, and we can still think of that constancy as arising from a compensatory balance of two factors.

Let us now turn to the second type of conserved quantity, the one that is an attribute of extended bodies. Let κa be an arbitrary Killing field, and let Tab be the energy-momentum field associated with some matter field. Assume it satisfies the conservation condition (∇aTab = 0). Then (Tabκb) is divergence free:

a(Tabκb) = κbaTab + Tabaκb = Tab∇(aκb) = 0

(The second equality follows from the conservation condition and the symmetry of Tab; the third follows from the fact that κa is a Killing field.) It is natural, then, to apply Stokes’s theorem to the vector field (Tabκb). Consider a bounded system with aggregate energy-momentum field Tab in an otherwise empty universe. Then there exists a (possibly huge) timelike world tube such that Tab vanishes outside the tube (and vanishes on its boundary).

Let S1 and S2 be (non-intersecting) spacelike hypersurfaces that cut the tube as in the figure below, and let N be the segment of the tube falling between them (with boundaries included).

Untitled

Figure: The integrated energy (relative to a background timelike Killing field) over the intersection of the world tube with a spacelike hypersurface is independent of the choice of hypersurface.

By Stokes’s theorem,

S2(Tabκb)dSa – ∫S1(Tabκb)dSa = ∫S2∩∂N(Tabκb)dSa – ∫S1∩∂N(Tabκb)dSa

= ∫∂N(Tabκb)dSa = ∫Na(Tabκb)dV = 0

Thus, the integral ∫S(Tabκb)dSa is independent of the choice of spacelike hypersurface S intersecting the world tube, and is, in this sense, a conserved quantity (construed as an attribute of the system confined to the tube). An “early” intersection yields the same value as a “late” one. Again, the character of the background Killing field κa determines our description of the conserved quantity in question. If κa is timelike, we take ∫S(Tabκb)dSa to be the aggregate energy of the system (associated with κa). And so forth.

Dynamics of Point Particles: Orthogonality and Proportionality

optical

Let γ be a smooth, future-directed, timelike curve with unit tangent field ξa in our background spacetime (M, gab). We suppose that some massive point particle O has (the image of) this curve as its worldline. Further, let p be a point on the image of γ and let λa be a vector at p. Then there is a natural decomposition of λa into components proportional to, and orthogonal to, ξa:

λa = (λbξba + (λa −(λbξba) —– (1)

Here, the first part of the sum is proportional to ξa, whereas the second one is orthogonal to ξa.

These are standardly interpreted, respectively, as the “temporal” and “spatial” components of λa relative to ξa (or relative to O). In particular, the three-dimensional vector space of vectors at p orthogonal to ξa is interpreted as the “infinitesimal” simultaneity slice of O at p. If we introduce the tangent and orthogonal projection operators

kab = ξa ξb —– (2)

hab = gab − ξa ξb —– (3)

then the decomposition can be expressed in the form

λa = kab λb + hab λb —– (4)

We can think of kab and hab as the relative temporal and spatial metrics determined by ξa. They are symmetric and satisfy

kabkbc = kac —– (5)

habhbc = hac —– (6)

Many standard textbook assertions concerning the kinematics and dynamics of point particles can be recovered using these decomposition formulas. For example, suppose that the worldline of a second particle O′ also passes through p and that its four-velocity at p is ξ′a. (Since ξa and ξ′a are both future-directed, they are co-oriented; i.e., ξa ξ′a > 0.) We compute the speed of O′ as determined by O. To do so, we take the spatial magnitude of ξ′a relative to O and divide by its temporal magnitude relative to O:

v = speed of O′ relative to O = ∥hab ξ′b∥ / ∥kab ξ′b∥ —– (7)

For any vector μa, ∥μa∥ is (μaμa)1/2 if μ is causal, and it is (−μaμa)1/2 otherwise.

We have from equations 2, 3, 5 and 6

∥kab ξ′b∥ = (kab ξ′b kac ξ′c)1/2 = (kbc ξ′bξ′c)1/2 = (ξ′bξb)

and

∥hab ξ′b∥ = (−hab ξ′b hac ξ′c)1/2 = (−hbc ξ′bξ′c)1/2 = ((ξ′bξb)2 − 1)1/2

so

v = ((ξ’bξb)2 − 1)1/2 / (ξ′bξb) < 1 —– (8)

Thus, as measured by O, no massive particle can ever attain the maximal speed 1. We note that equation (8) implies that

(ξ′bξb) = 1/√(1 – v2) —– (9)

It is a basic fact of relativistic life that there is associated with every point particle, at every event on its worldline, a four-momentum (or energy-momentum) vector Pa that is tangent to its worldline there. The length ∥Pa∥ of this vector is what we would otherwise call the mass (or inertial mass or rest mass) of the particle. So, in particular, if Pa is timelike, we can write it in the form Pa =mξa, where m = ∥Pa∥ > 0 and ξa is the four-velocity of the particle. No such decomposition is possible when Pa is null and m = ∥Pa∥ = 0.

Suppose a particle O with positive mass has four-velocity ξa at a point, and another particle O′ has four-momentum Pa there. The latter can either be a particle with positive mass or mass 0. We can recover the usual expressions for the energy and three-momentum of the second particle relative to O if we decompose Pa in terms of ξa. By equations (4) and (2), we have

Pa = (Pbξb) ξa + habPb —– (10)

the first part of the sum is the energy component, while the second is the three-momentum. The energy relative to O is the coefficient in the first term: E = Pbξb. If O′ has positive mass and Pa = mξ′a, this yields, by equation (9),

E = m (ξ′bξb) = m/√(1 − v2) —– (11)

(If we had not chosen units in which c = 1, the numerator in the final expression would have been mc2 and the denominator √(1 − (v2/c2)). The three−momentum relative to O is the second term habPb in the decomposition of Pa, i.e., the component of Pa orthogonal to ξa. It follows from equations (8) and (9) that it has magnitude

p = ∥hab mξ′b∥ = m((ξ′bξb)2 − 1)1/2 = mv/√(1 − v2) —– (12)

Interpretive principle asserts that the worldlines of free particles with positive mass are the images of timelike geodesics. It can be thought of as a relativistic version of Newton’s first law of motion. Now we consider acceleration and a relativistic version of the second law. Once again, let γ : I → M be a smooth, future-directed, timelike curve with unit tangent field ξa. Just as we understand ξa to be the four-velocity field of a massive point particle (that has the image of γ as its worldline), so we understand ξnnξa – the directional derivative of ξa in the direction ξa – to be its four-acceleration field (or just acceleration) field). The four-acceleration vector at any point is orthogonal to ξa. (This is, since ξannξa) = 1/2 ξnnaξa) = 1/2 ξnn (1) = 0). The magnitude ∥ξnnξa∥ of the four-acceleration vector at a point is just what we would otherwise describe as the curvature of γ there. It is a measure of the rate at which γ “changes direction.” (And γ is a geodesic precisely if its curvature vanishes everywhere).

The notion of spacetime acceleration requires attention. Consider an example. Suppose you decide to end it all and jump off the tower. What would your acceleration history be like during your final moments? One is accustomed in such cases to think in terms of acceleration relative to the earth. So one would say that you undergo acceleration between the time of your jump and your calamitous arrival. But on the present account, that description has things backwards. Between jump and arrival, you are not accelerating. You are in a state of free fall and moving (approximately) along a spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The floor of the observation deck, and then later the sidewalk, push you away from a geodesic path. The all-important idea here is that we are incorporating the “gravitational field” into the geometric structure of spacetime, and particles traverse geodesics iff they are acted on by no forces “except gravity.”

The acceleration of our massive point particle – i.e., its deviation from a geodesic trajectory – is determined by the forces acting on it (other than “gravity”). If it has mass m, and if the vector field Fa on I represents the vector sum of the various (non-gravitational) forces acting on it, then the particle’s four-acceleration ξnnξa satisfies

Fa = mξnnξa —– (13)

This is Newton’s second law of motion. Consider an example. Electromagnetic fields are represented by smooth, anti-symmetric fields Fab. If a particle with mass m > 0, charge q, and four-velocity field ξa is present, the force exerted by the field on the particle at a point is given by qFabξb. If we use this expression for the left side of equation (13), we arrive at the Lorentz law of motion for charged particles in the presence of an electromagnetic field:

qFabξb = mξbbξa —– (14)

This equation makes geometric sense. The acceleration field on the right is orthogonal to ξa. But so is the force field on the left, since ξa(Fabξb) = ξaξbFab = ξaξbF(ab), and F(ab) = 0 by the anti-symmetry of Fab.