Revisiting Catastrophes. Thought of the Day 134.0

The most explicit influence from mathematics in semiotics is probably René Thom’s controversial theory of catastrophes (here and here), with philosophical and semiotic support from Jean Petitot. Catastrophe theory is but one of several formalisms in the broad field of qualitative dynamics (comprising also chaos theory, complexity theory, self-organized criticality, etc.). In all these cases, the theories in question are in a certain sense phenomenological because the focus is different types of qualitative behavior of dynamic systems grasped on a purely formal level bracketing their causal determination on the deeper level. A widespread tool in these disciplines is phase space – a space defined by the variables governing the development of the system so that this development may be mapped as a trajectory through phase space, each point on the trajectory mapping one global state of the system. This space may be inhabited by different types of attractors (attracting trajectories), repellors (repelling them), attractor basins around attractors, and borders between such basins characterized by different types of topological saddles which may have a complicated topology.

Catastrophe theory has its basis in differential topology, that is, the branch of topology keeping various differential properties in a function invariant under transformation. It is, more specifically, the so-called Whitney topology whose invariants are points where the nth derivative of a function takes the value 0, graphically corresponding to minima, maxima, turning tangents, and, in higher dimensions, different complicated saddles. Catastrophe theory takes its point of departure in singularity theory whose object is the shift between types of such functions. It thus erects a distinction between an inner space – where the function varies – and an outer space of control variables charting the variation of that function including where it changes type – where, e.g. it goes from having one minimum to having two minima, via a singular case with turning tangent. The continuous variation of control parameters thus corresponds to a continuous variation within one subtype of the function, until it reaches a singular point where it discontinuously, ‘catastrophically’, changes subtype. The philosophy-of-science interpretation of this formalism now conceives the stable subtype of function as representing the stable state of a system, and the passage of the critical point as the sudden shift to a new stable state. The configuration of control parameters thus provides a sort of map of the shift between continuous development and discontinuous ‘jump’. Thom’s semiotic interpretation of this formalism entails that typical catastrophic trajectories of this kind may be interpreted as stable process types phenomenologically salient for perception and giving rise to basic verbal categories.

Untitled

One of the simpler catastrophes is the so-called cusp (a). It constitutes a meta-diagram, namely a diagram of the possible type-shifts of a simpler diagram (b), that of the equation ax4 + bx2 + cx = 0. The upper part of (a) shows the so-called fold, charting the manifold of solutions to the equation in the three dimensions a, b and c. By the projection of the fold on the a, b-plane, the pointed figure of the cusp (lower a) is obtained. The cusp now charts the type-shift of the function: Inside the cusp, the function has two minima, outside it only one minimum. Different paths through the cusp thus corresponds to different variations of the equation by the variation of the external variables a and b. One such typical path is the path indicated by the left-right arrow on all four diagrams which crosses the cusp from inside out, giving rise to a diagram of the further level (c) – depending on the interpretation of the minima as simultaneous states. Here, thus, we find diagram transformations on three different, nested levels.

The concept of transformation plays several roles in this formalism. The most spectacular one refers, of course, to the change in external control variables, determining a trajectory through phase space where the function controlled changes type. This transformation thus searches the possibility for a change of the subtypes of the function in question, that is, it plays the role of eidetic variation mapping how the function is ‘unfolded’ (the basic theorem of catastrophe theory refers to such unfolding of simple functions). Another transformation finds stable classes of such local trajectory pieces including such shifts – making possible the recognition of such types of shifts in different empirical phenomena. On the most empirical level, finally, one running of such a trajectory piece provides, in itself, a transformation of one state into another, whereby the two states are rationally interconnected. Generally, it is possible to make a given transformation the object of a higher order transformation which by abstraction may investigate aspects of the lower one’s type and conditions. Thus, the central unfolding of a function germ in Catastrophe Theory constitutes a transformation having the character of an eidetic variation making clear which possibilities lie in the function germ in question. As an abstract formalism, the higher of these transformations may determine the lower one as invariant in a series of empirical cases.

Complexity theory is a broader and more inclusive term covering the general study of the macro-behavior of composite systems, also using phase space representation. The theoretical biologist Stuart Kauffman (intro) argues that in a phase space of all possible genotypes, biological evolution must unfold in a rather small and specifically qualified sub-space characterized by many, closely located and stable states (corresponding to the possibility of a species to ‘jump’ to another and better genotype in the face of environmental change) – as opposed to phase space areas with few, very stable states (which will only be optimal in certain, very stable environments and thus fragile when exposed to change), and also opposed, on the other hand, to sub-spaces with a high plurality of only metastable states (here, the species will tend to merge into neighboring species and hence never stabilize). On the base of this argument, only a small subset of the set of virtual genotypes possesses ‘evolvability’ as this special combination between plasticity and stability. The overall argument thus goes that order in biology is not a pure product of evolution; the possibility of order must be present in certain types of organized matter before selection begins – conversely, selection requires already organized material on which to work. The identification of a species with a co-localized group of stable states in genome space thus provides a (local) invariance for the transformation taking a trajectory through space, and larger groups of neighboring stabilities – lineages – again provide invariants defined by various more or less general transformations. Species, in this view, are in a certain limited sense ‘natural kinds’ and thus naturally signifying entities. Kauffman’s speculations over genotypical phase space have a crucial bearing on a transformation concept central to biology, namely mutation. On this basis far from all virtual mutations are really possible – even apart from their degree of environmental relevance. A mutation into a stable but remotely placed species in phase space will be impossible (evolution cannot cross the distance in phase space), just like a mutation in an area with many, unstable proto-species will not allow for any stabilization of species at all and will thus fall prey to arbitrary small environment variations. Kauffman takes a spontaneous and non-formalized transformation concept (mutation) and attempts a formalization by investigating its condition of possibility as movement between stable genomes in genotype phase space. A series of constraints turn out to determine type formation on a higher level (the three different types of local geography in phase space). If the trajectory of mutations must obey the possibility of walking between stable species, then the space of possibility of trajectories is highly limited. Self-organized criticality as developed by Per Bak (How Nature Works the science of self-organized criticality) belongs to the same type of theories. Criticality is here defined as that state of a complicated system where sudden developments in all sizes spontaneously occur.

Leave a comment