My Appresentations Rest in Protention.


The ego often originally feels the pull of an object in the case of great contrast, where a unified object stands out from its background and from other objects. While contrast is not a necessary contributor to affectivity in an object, it does often accompany an object’s affective pull. An object that is not the focus of my attention cannot pull me toward it, however, unless I am able to perceive beyond what is in focus at this moment. Apperception is my ability to extend beyond my currently intended object to other objects and meanings and beyond what is now. Only if an object which has pulled me to it were at least partially constituted in the background, attracting my attention, could there have been any pull at all. Thus we discover a link between affectivity and apperception, because an object can only call me to it if my consciousness is able to extend beyond that which is in my focus now. And, because apperception must rest in a protentional temporality in order to allow for my ability to extend beyond the zone of actualization, we also find an indirect link between affectivity and protention. Therefore, affectivity requires a temporal structure that extends my consciousness beyond the immediate present and what is currently fulfilled so that an object in the periphery can attract my attention. In other words, affectivity is related to apperception, and both function through the protentional aspect of my temporality.

This relation also reminds us of the relation between protention and appresentation, where appresentation, the concept that any presentation of an object necessarily goes beyond itself to presentations of the object not currently in view – like the back side or the inside of the building across the street – clearly requires protention. As we explained earlier, protention is the condition of possibility of my going beyond the presentation at hand to other presentations or experiences. Thus the possibility of my viewing an object as having other sides, even though I am only perceiving one side at any moment, rests in a protentional temporality; my appresentations rest in protention. The transformed affectivity that draws me to learn more about an object after it has attracted my attention, then, also resides in protention; it always calls me to experience more, to move beyond what is currently presented.

The New Husserl A Critical Reader 

Prisoner’s Dilemma. Thought of the Day 64.0


A system suffering from Prisoner’s Dilemma cannot find the optimal solution because the individual driving forces go against the overall driving force. This is called Prisoner’s Dilemma based on the imaginary situation of two prisoners:

Imagine two criminals, named alphabetically A and B, being caught and put in separate prison cells. The police is trying to get confessions out of them. They know that if none will talk, they will both walk out of there for lack of evidence. So the police makes a proposal to each one: “We’ll make it worth your while. If you confess, and your colleague not, we give you 10 thousand euro and your colleague will get 50 years in prison. If you both confess you will each get 20 years in prison”. The decision table for these prisoners is like this:


As you can see for yourself, the individual option for A, independent of what B decides to do, is confessing; moving from right column to left column, it is either reducing his sentence from 50 to 20 years, or instead of walking out of there even getting a fat bonus on top. The same applies to B, moving from bottom row to top row of the table. So, they wind up both confessing and getting 20 years in prison. That while it is obvious that the optimal situation is both not talking and walking out of prison scot-free (with the loot!). Because A and B cannot come to an agreement, but both optimize their own personal yield instead, they both get severely punished!

The Prisoner’s Dilemma applies to economy. If people in society cannot come to an agreement, but instead let everybody take decisions to optimize the situation for themselves (as in liberalism), they wind up with a non-optimal situation in which all the wealth is condensed on a single entity. This does not even have to be a person, but the capital itself. Nobody will get anything, beyond the alms granted by the system. In fact, the system will tend to reduce these alms – the minimum wages, or unemployment benefit – and will have all kinds of dogmatic justifications for them, but basically is a strategy of divide-and-conquer, inhibiting people to come to agreements, for instance by breaking the trade unions.

An example of a dogmatic reason is “lowering wages will make that more people get hired for work”. Lowering wages will make the distortion more severe. Nothing more. Moreover, as we have seen, work can be done without human labor. So if it is about competition, men will be cut out of the deal sooner or later. It is not about production. It is about who gets the rights to the consumption of the goods produced. That is also why it is important that people should unite, to come to an agreement where everybody benefits. Up to and including the richest of them all! It is better to have 1% of 1 million than 100% of 1 thousand. Imagine this final situation: All property in the world belongs to the final pan-global bank, with their headquarters in an offshore or fiscal paradise. They do not pay tax. The salaries (even of the bank managers) are minimal. So small that it is indeed not even worth it to call them salary.

Pareto Optimality

There are some solutions. (“If you don’t give a solution, you are part of the problem”). Most important: Human wealth should be set as the only goal in society and economy. Liberalism is ruinous for humans, while it may be optimal for fitter entities. Nobody is out there to take away the money of others without working for it. In a way of ‘revenge’ or ‘envy’, (basically justifying laziness) taking away the hard-work earnings of others. No way. Nobody wants it. Thinking that yours can be the only way a rational person can think. Anybody not ‘winning’ the game is a ‘loser’. Some of us, actually, do not even want to enter the game.

Yet – the big dilemma – that money-grabbing mentality is essential for the economy. Without it we would be equally doomed. But, what we will see now is that you’ll will lose every last penny either way, even without divine intervention.

Having said that, the solution is to take away the money. Seeing that the system is not stable and accumulates the capital on a big pile, disconnected from humans, mathematically there are two solutions:

1) Put all the capital in the hands of people. If profit is made M’-M, this profit falls to the hands of the people that caused it. This seems fair, and mathematically stable. However, how the wealth is then distributed? That would be the task of politicians, and history has shown that they are a worse pest than capital. Politicians, actually, always wind up representing the capital. No country in the world ever managed to avoid it.

2) Let the system be as it is, which is great for giving people incentives to work and develop things, but at the end of the year, redistribute the wealth to follow an ideal curve that optimizes both wealth and increments of wealth.

The latter is an interesting idea. Also since it does not need rigorous restructuring of society, something that would only be possible after a total collapse of civilization. While unavoidable in the system we have, it would be better to act pro-actively and do something before it happens. Moreover, since money is air – or worse, vacuum – there is actually nothing that is ‘taken away’. Money is just a right to consume and can thus be redistributed at will if there is a just cause to do so. In normal cases this euphemistic word ‘redistribution’ amounts to theft and undermines incentives for work and production and thus causes poverty. Yet, if it can be shown to actually increase incentives to work, and thus increase overall wealth, it would need no further justification.

We set out to calculate this idea. However, it turned out to give quite remarkable results. Basically, the optimal distribution is slavery. Let us present them here. Let’s look at the distribution of wealth. Figure below shows a curve of wealth per person, with the richest conventionally placed at the right and the poor on the left, to result in what is in mathematics called a monotonously-increasing function. This virtual country has 10 million inhabitants and a certain wealth that ranges from nearly nothing to millions, but it can easily be mapped to any country.


Figure 1: Absolute wealth distribution function

As the overall wealth increases, it condenses over time at the right side of the curve. Left unchecked, the curve would become ever-more skew, ending eventually in a straight horizontal line at zero up to the last uttermost right point, where it shoots up to an astronomical value. The integral of the curve (total wealth/capital M) always increases, but it eventually goes to one person. Here it is intrinsically assumed that wealth, actually, is still connected to people and not, as it in fact is, becomes independent of people, becomes ‘capital’ autonomously by itself. If independent of people, this wealth can anyway be without any form of remorse whatsoever be confiscated and redistributed. Ergo, only the system where all the wealth is owned by people is needed to be studied.

A more interesting figure is the fractional distribution of wealth, with the normalized wealth w(x) plotted as a function of normalized population x (that thus runs from 0 to 1). Once again with the richest plotted on the right. See Figure below.


Figure 2: Relative wealth distribution functions: ‘ideal communist’ (dotted line. constant distribution), ‘ideal capitalist’ (one person owns all, dashed line) and ‘ideal’ functions (work-incentive optimized, solid line).

Every person x in this figure feels an incentive to work harder, because it wants to overtake his/her right-side neighbor and move to the right on the curve. We can define an incentive i(x) for work for person x as the derivative of the curve, divided by the curve itself (a person will work harder proportional to the relative increase in wealth)

i(x) = dw(x)/dx/w(x) —– (1)

A ‘communistic’ (in the negative connotation) distribution is that everybody earns equally, that means that w(x) is constant, with the constant being one

‘ideal’ communist: w(x) = 1.

and nobody has an incentive to work, i(x) = 0 ∀ x. However, in a utopic capitalist world, as shown, the distribution is ‘all on a big pile’. This is what mathematicians call a delta-function

‘ideal’ capitalist: w(x) = δ(x − 1),

and once again, the incentive is zero for all people, i(x) = 0. If you work, or don’t work, you get nothing. Except one person who, working or not, gets everything.

Thus, there is somewhere an ‘ideal curve’ w(x) that optimizes the sum of incentives I defined as the integral of i(x) over x.

I = ∫01i(x)dx = ∫01(dw(x)/dx)/w(x) dx = ∫x=0x=1dw(x)/w(x) = ln[w(x)]|x=0x=1 —– (2)

Which function w is that? Boundary conditions are

1. The total wealth is normalized: The integral of w(x) over x from 0 to 1 is unity.

01w(x)dx = 1 —– (3)

2. Everybody has a at least a minimal income, defined as the survival minimum. (A concept that actually many societies implement). We can call this w0, defined as a percentage of the total wealth, to make the calculation easy (every year this parameter can be reevaluated, for instance when the total wealth increased, but not the minimum wealth needed to survive). Thus, w(0) = w0.

The curve also has an intrinsic parameter wmax. This represents the scale of the figure, and is the result of the other boundary conditions and therefore not really a parameter as such. The function basically has two parameters, minimal subsistence level w0 and skewness b.

As an example, we can try an exponentially-rising function with offset that starts by being forced to pass through the points (0, w0) and (1, wmax):

w(x) = w0 + (wmax − w0)(ebx −1)/(eb − 1) —– (4)

An example of such a function is given in the above Figure. To analytically determine which function is ideal is very complicated, but it can easily be simulated in a genetic algorithm way. In this, we start with a given distribution and make random mutations to it. If the total incentive for work goes up, we keep that new distribution. If not, we go back to the previous distribution.

The results are shown in the figure 3 below for a 30-person population, with w0 = 10% of average (w0 = 1/300 = 0.33%).


Figure 3: Genetic algorithm results for the distribution of wealth (w) and incentive to work (i) in a liberal system where everybody only has money (wealth) as incentive. 

Depending on the starting distribution, the system winds up in different optima. If we start with a communistic distribution of figure 2, we wind up with a situation in which the distribution stays homogeneous ‘everybody equal’, with the exception of two people. A ‘slave’ earns the minimum wages and does nearly all the work, and a ‘party official’ that does not do much, but gets a large part of the wealth. Everybody else is equally poor (total incentive/production equal to 21), w = 1/30 = 10w0, with most people doing nothing, nor being encouraged to do anything. The other situation we find when we start with a random distribution or linear increasing distribution. The final situation is shown in situation 2 of the figure 3. It is equal to everybody getting minimum wealth, w0, except the ‘banker’ who gets 90% (270 times more than minimum), while nobody is doing anything, except, curiously, the penultimate person, which we can call the ‘wheedler’, for cajoling the banker into giving him money. The total wealth is higher (156), but the average person gets less, w0.

Note that this isn’t necessarily an evolution of the distribution of wealth over time. Instead, it is a final, stable, distribution calculated with an evolutionary (‘genetic’) algorithm. Moreover, this analysis can be made within a country, analyzing the distribution of wealth between people of the same country, as well as between countries.

We thus find that a liberal system, moreover one in which people are motivated by the relative wealth increase they might attain, winds up with most of the wealth accumulated by one person who not necessarily does any work. This is then consistent with the tendency of liberal capitalist societies to have indeed the capital and wealth accumulate in a single point, and consistent with Marx’s theories that predict it as well. A singularity of distribution of wealth is what you get in a liberal capitalist society where personal wealth is the only driving force of people. Which is ironic, in a way, because by going only for personal wealth, nobody gets any of it, except the big leader. It is a form of Prisoner’s Dilemma.